
Device Driver Development Demystified

Thomas Cort

MINIXCon 2016

February 1, 2016

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 1 / 31

whoami(1)

Open Source Contributor and Former Google Summer of Code Student

GSoC 2010 - UNIX domain sockets

GSoC 2011 - software porting and pkgsrc improvements

GSoC 2013 - i2c drivers for the BeagleBone Black

Tested and Imported 90+ programs from NetBSD

Other minor patches

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 2 / 31

Qualifications

I’ve developed several drivers:

i2c bus driver for BeagleBone (Black and White) & BeagleBoard-xM

Weather Cape: SHT21, BMP085, TSL2550

Power Management: TPS65217, TPS65950

RTC, CAT24C256, TDA19988 (basic), GPIO (basic)

i2cscan(8), rebooting, poweroff (BeagleBone)

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 3 / 31

Goal

Inspire you to develop more device drivers for Minix

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 4 / 31

How we’re going to get there?

Show how device drivers are built from concept to code

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 5 / 31

Developing device drivers on Minix rocks

Infinite loops don’t make the whole system freeze

Bad pointers don’t make the whole system crash

No rebooting needed. Just start and stop your driver

Most drivers are single threaded

Most drivers only handle one request at a time

Messages between drivers are well defined and documented

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 6 / 31

Questions to ask yourself when choosing a device

is it already supported (partially or fully)?

is a similar device already supported?

is anyone else already working on it?

is there documentation available?

is there hardware available?

is the device supported by other FOSS operating systems?

is it possible to use the device on a system supported by Minix?

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 7 / 31

Where to begin

Gather documentation:

Existing Minix drivers and the Minix wiki

System Reference Manuals (SRM)

Technical Reference Manuals (TRM)

Data Sheets

Example code from the device manufacturer (sdk)

Code from other operating systems (Linux, BSD, Haiku, etc)

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 8 / 31

Eliminate hardware issues before you write a line of code

Start with new or gently used hardware

Test the device with another OS

Test the computer with Minix

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 9 / 31

External Interface Design

Stand on the shoulders of giants!

If it’s a new class of device, follow the lead of NetBSD

If it’s an existing class of device, implement the established interface

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 10 / 31

Case Study

bmp085 temperature sensor

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 11 / 31

File Layout

/usr/src/minix/drivers/sensors/bmp085

bmp085.c

Makefile

README.txt

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 12 / 31

../Makefile

.include <bsd.own.mk>

.if ${MACHINE_ARCH} == "earm"

SUBDIR += bmp085

SUBDIR += sht21

SUBDIR += tsl2550

.endif # ${MACHINE_ARCH} == "earm"

.include <bsd.subdir.mk>

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 13 / 31

./Makefile

Makefile for the bmp085 pressure and temp sensor found on the Weather Cape.

PROG= bmp085

SRCS= bmp085.c

DPADD+= ${LIBI2CDRIVER} ${LIBCHARDRIVER} ${LIBSYS }\

${LIBTIMERS}

LDADD+= -li2cdriver -lchardriver -lsys -ltimers

CPPFLAGS += -I${NETBSDSRCDIR}

.include <minix.service.mk>

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 14 / 31

./README.txt

Provides answers to the following questions:

what does the driver do?

what is in each source file?

how do I start/stop/test the driver?

are there any limitations?

where can I find more information about this device?

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 15 / 31

etc/system.conf

service bmp085

{

ipc SYSTEM RS DS i2c;

};

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 16 / 31

distrib/sets/lists/minix-base/md.evbarm

./ service/bmp085 minix -base

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 17 / 31

main()

int main(int argc , char *argv []) {

int r;

env_setargs(argc , argv);

r = i2cdriver_env_parse (&bus , &address ,

valid_addrs);

if (r < 0) /* ... */

else if (r > 0) /* ... */

sef_local_startup ();

chardriver_task (& bmp085_tab);

return 0;

}

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 18 / 31

sef local startup(void)

static void sef_local_startup(void) {

/* Register init callbacks. */

sef_setcb_init_fresh(sef_cb_init);

sef_setcb_init_lu(sef_cb_init);

sef_setcb_init_restart(sef_cb_init);

/* Register live update callbacks. */

sef_setcb_lu_state_save(

sef_cb_lu_state_save);

/* Let SEF perform startup. */

sef_startup ();

}

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 19 / 31

sef cb init(int type, sef init info t *info)

static int

sef_cb_init(int type , sef_init_info_t *info) {

if (type == SEF_INIT_LU) lu_state_restore ();

/* ... i2cdriver_reserve_address () ... */

if (bmp085_init () != OK) return EXIT_FAILURE;

if (type != SEF_INIT_LU) {

if (i2cdriver_subscribe_bus_updates(bus) != OK)

return EXIT_FAILURE;

i2cdriver_announce(bus);

}

return OK;

}

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 20 / 31

sef cb lu state save(int result, int flags)

static int

sef_cb_lu_state_save(int result , int flags)

{

ds_publish_u32("bus", bus , DSF_OVERWRITE);

ds_publish_u32("address", address ,

DSF_OVERWRITE);

return OK;

}

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 21 / 31

lu state restore(void)

static int

lu_state_restore(void)

{

/* Restore the state. */

u32_t value;

ds_retrieve_u32("bus", &value);

ds_delete_u32("bus");

bus = (int) value;

ds_retrieve_u32("address", &value);

ds_delete_u32("address");

address = (int) value;

return OK;

}

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 22 / 31

bmp085 init(void)

static int

bmp085_init(void)

{

if (version_check () != OK)

return EXIT_FAILURE;

if (read_cal_coef () != OK)

return EXIT_FAILURE;

return OK;

}

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 23 / 31

libchardriver callbacks

static ssize_t

bmp085_read(devminor_t minor , u64_t position ,

endpoint_t endpt , cp_grant_id_t grant ,

size_t size , int flags , cdev_id_t id);

static void

bmp085_other(message * m, int ipc_status);

static struct chardriver bmp085_tab = {

.cdr_read = bmp085_read ,

.cdr_other = bmp085_other

};

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 24 / 31

bmp085 read(...)

if (measure (& temperature , &pressure) != OK)

return EIO;

/* ... fill buffer with measurements ... */

dev_size = (u64_t)strlen(buffer);

if (position >= dev_size) return 0;

if (position + size > dev_size)

size = (size_t)(dev_size - position);

r = sys_safecopyto(endpt , grant , 0,

(vir_bytes)(buffer + (size_t)position),size);

return (r != OK) ? r : size;

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 25 / 31

measure(int32 t * temperature, int32 t * pressure)

/* ... */

/* trigger temperature reading */

if (i2creg_write8(bus_endpoint , address , CTRL_REG ,

CMD_TRIG_T) != OK)

return -1;

micro_delay(UDELAY_T); /* wait for sampling. */

/* read the uncompensated temperature */

if (i2creg_read16(bus_endpoint , address ,

SENSOR_VAL_MSB_REG , &ut) != OK)

return -1;

/* ... */

return OK;
Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 26 / 31

Tips for Debugging and Minimizing Bugs

Make many small changes

Compile and test after each change

Lots of logging via minix/log.h

Hardware debugger when really stuck

Avoid hardware simulators when possible

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 27 / 31

Pre-submission Checklist

Does the code build without any compiler warnings?

Does building Minix for the other platform still work?

Is the driver stable, and does it word as advertised?

Does the driver have a negligible impact on performance?

Are the changes broken up into a series of small commits?

Are there well written commit messages?

Is the coding style consistent with the NetBSD coding style?

Have you complied with all applicable licenses?

Have you given proper credit to collaborators?

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 28 / 31

Submitting your changes

Ask for feedback on minix-dev Google Group

Submit a pull request on github

Respond to feedback and requests for changes

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 29 / 31

Questions?

Questions?

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 30 / 31

Contact Info

Internet Relay Chat

tcort on irc.freenode.net

E-Mail

tcort@minix3.org

Twitter

@tomcort

Website

http://www.tomcort.com/

Thomas Cort (MINIXCon 2016) Device Driver Development Demystified February 1, 2016 31 / 31

