
The MINIX3 Service Layer
Recent Past, Current Status, and Near-Term Future

MINIXCon 2016

David van Moolenbroek
david@minix3.org

Talk outline

● Terminology
● Service layer evolution
● Recent and ongoing projects

– A new information service

– Library-based file systems

– Network stack redesign

● Conclusion
● How to contribute

Terminology

Terminology

Terminology

Terminology

Terminology

Terminology

Terminology

Service layer evolution

Service layer evolution

Service layer evolution

Service layer evolution

A new information service

1

System information

● How to get system info and adjust settings?
– Largely (inherently) not portable

1

System information

● How to get system info and adjust settings?
– Largely (inherently) not portable

● Use case: the ps utility
– Show a list of current processes

1

System information

● How to get system info and adjust settings?
– Largely (inherently) not portable

● Use case: the ps utility
– Show a list of current processes

● In MINIX, ps needs info from process tables
– Distributed across PM, VFS, and the kernel

1

System information

● How to get system info and adjust settings?
– Largely (inherently) not portable

● Use case: the ps utility
– Show a list of current processes

● In MINIX, ps needs info from process tables
– Distributed across PM, VFS, and the kernel

● Traditional ps: get tables directly from services
– Every system change requires ps recompilation

1

First attempt: ProcFS

● Expose information through /proc file system
– Google Summer of Code 2009 project

– Loosely based on Linux procfs, sysfs

1

First attempt: ProcFS

● Expose information through /proc file system
– Google Summer of Code 2009 project

– Loosely based on Linux procfs, sysfs

● ps was changed accordingly – problem solved!

1

First attempt: ProcFS

● Expose information through /proc file system
– Google Summer of Code 2009 project

– Loosely based on Linux procfs, sysfs

● ps was changed accordingly – problem solved!
● That is, until we wanted to import NetBSD ps...

1

The sysctl interface 1

int sysctl(int mib[], u_int miblen,
 void *oldp, size_t *oldlenp,
 void *newp, size_t newlen);

The sysctl interface

● Access to a hierarchical key-value store
● Key: an array of numbers, one per tree level

– Management Information Base style

– For example: 1.4.2.13.5

– Symbolic names: “kern.hostname” instead of “1.10”

● Value: integer, string, or structure
● Not persistent; most keys managed by system

1

int sysctl(int mib[], u_int miblen,
 void *oldp, size_t *oldlenp,
 void *newp, size_t newlen);

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

✕

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

✕

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

✕

✕

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

✕

✕

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

✕

✕

✕

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

✕

✕

✕

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

✕

✕

✕

✕

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

✕

✕

✕

✕

Importing NetBSD ps 1

libkvm

libc

ps

userland

system

service

change to
use procfs?

replace with
custom library?

emulate sysctl
using procfs?

add sysctl
to procfs?

create new
sysctl service?

✕

✕

✕

✕

✓

Current status and future

● Management Information Base (MIB) service
– Merged, available in 3.4.0!

– About 85 of NetBSD's ~800 keys implemented

– 4,146 LoC (Lines of Code)

– ProcFS now calls into the MIB service

– Imported userland: ps, sysctl, top, ipcs, ipcrm

1

Current status and future

● Management Information Base (MIB) service
– Merged, available in 3.4.0!

– About 85 of NetBSD's ~800 keys implemented

– 4,146 LoC (Lines of Code)

– ProcFS now calls into the MIB service

– Imported userland: ps, sysctl, top, ipcs, ipcrm

● A path forward for importing other NetBSD tools

1

Try it: sysctl -a 1

Library-based file systems

2

Disk-backed file systems

● Not much progress
– 2006: “FS” service split into VFS and MFS

– 2016: two more disk-backed FSes (ext2, isofs)

2

Disk-backed file systems

● Not much progress
– 2006: “FS” service split into VFS and MFS

– 2016: two more disk-backed FSes (ext2, isofs)

● It is pretty hard to write a file system service
– Implementing e.g. rename is seriously difficult

– ext2 and isofs started as copies of MFS

– Maintenance nightmare!

2

Disk-backed file systems

● Not much progress
– 2006: “FS” service split into VFS and MFS

– 2016: two more disk-backed FSes (ext2, isofs)

● It is pretty hard to write a file system service
– Implementing e.g. rename is seriously difficult

– ext2 and isofs started as copies of MFS

– Maintenance nightmare!

● What can we do to improve on this?

2

Some first steps 2

Some first steps 2

Some first steps 2

Some first steps 2

Towards decomposition

● File systems are graphs

2

Towards decomposition

● File systems are graphs
● Most file system layouts have UNIX origins

– The graph nodes are inodes

– The graph edges are directory entries

– FS operations: series of node and edge operations

2

Towards decomposition

● File systems are graphs
● Most file system layouts have UNIX origins

– The graph nodes are inodes

– The graph edges are directory entries

– FS operations: series of node and edge operations

● To create a file, one needs to..
– Allocate a new inode

– Create a directory entry for that inode

2

Towards decomposition

● File systems are graphs
● Most file system layouts have UNIX origins

– The graph nodes are inodes

– The graph edges are directory entries

– FS operations: series of node and edge operations

● To create a file, one needs to..
– Allocate a new inode

– Create a directory entry for that inode

● This graph-level logic is (mostly) generic!
– That means we can reuse that part

2

Splitting up the file system 2

Splitting up the file system 2

Splitting up the file system 2

Splitting up the file system 2

Current status and future

● TwinFS
– A new crash-consistent file system layout

2

Current status and future

● TwinFS
– A new crash-consistent file system layout

● Prototype
– Graph layer: 2,847 LoC (reusable!)

– Edge layer: 678 LoC

– Node layer: 3,010 LoC

2

Current status and future

● TwinFS
– A new crash-consistent file system layout

● Prototype
– Graph layer: 2,847 LoC (reusable!)

– Edge layer: 678 LoC

– Node layer: 3,010 LoC

● Not merged yet – needs testing

2

Current status and future

● TwinFS
– A new crash-consistent file system layout

● Prototype
– Graph layer: 2,847 LoC (reusable!)

– Edge layer: 678 LoC

– Node layer: 3,010 LoC

● Not merged yet – needs testing

● A way forward to simplify writing FS services

2

Network stack redesign

3

A tale of scope creep

● Original goal: IPv6 support

3

A tale of scope creep

● Original goal: IPv6 support

● “Hmm, while I'm here..”

3

A tale of scope creep

● Original goal: IPv6 support

● “Hmm, while I'm here..”

● Now: three subprojects
– Native BSD socket API

– Replacing the TCP/IP stack

– Revisiting the packet level

3

Native BSD socket API

● INET and UDS are character drivers
– BSD socket API (socket, bind, connect..) in libc

– This approach has several problems

3

Native BSD socket API

● INET and UDS are character drivers
– BSD socket API (socket, bind, connect..) in libc

– This approach has several problems

● Solution: turn BSD socket calls into syscalls
– Turn INET and UDS into “socket drivers”

– VFS forwards socket calls to right socket drivers

3

Native BSD socket API

● INET and UDS are character drivers
– BSD socket API (socket, bind, connect..) in libc

– This approach has several problems

● Solution: turn BSD socket calls into syscalls
– Turn INET and UDS into “socket drivers”

– VFS forwards socket calls to right socket drivers

● Current status
– All infrastructure complete (but untested)

– Almost done converting UDS to socket driver

3

Replacing the TCP/IP stack

● Requirements for a new TCP/IP stack:
– Comes with IPv6 support

– Interface-compatible with NetBSD

– Maintainable

3

Replacing the TCP/IP stack

● Requirements for a new TCP/IP stack:
– Comes with IPv6 support

– Interface-compatible with NetBSD

– Maintainable

● Internal discussions yielded three options:
1.Import a more recent INET from minix-vmd

2.Reimplement the wrapper around lwIP

3.Use RUMP to extract NetBSD's TCP/IP stack

3

Replacing the TCP/IP stack

● Requirements for a new TCP/IP stack:
– Comes with IPv6 support

– Interface-compatible with NetBSD

– Maintainable

● Internal discussions yielded three options:
1.Import a more recent INET from minix-vmd

2.Reimplement the wrapper around lwIP

3.Use RUMP to extract NetBSD's TCP/IP stack

● Leaning heavily towards option 2

3

Revisiting the packet level

● Preparing for the future
– Support for other protocol families?

– Support for non-ethernet devices?

– Support for a firewall?

3

ETH

TCP/IP ???

???

???

Conclusion

● The service layer is evolving rapidly
– MINIX is growing up and catching up

● That calls for proper software engineering
– Not just adding functionality

– But also restructuring what is already there

– And reducing redundancy

● The main concern is maintenance!

How to contribute (1)

● We could use your help!
● Code development...

– Porting more of NetBSD userland

– Writing a device driver

– Filling in missing functionality

● ...and other activities
– Documentation

– PR work

– Testing

How to contribute (2)

● Information and wishlists
– Wiki: http://wiki.minix3.org

● Source code, bug reports, submitting code
– GitHub: https://github.com/Stichting-MINIX-

Research-Foundation/minix

● Getting support
– Newsgroup: http://groups.google.com/group/minix3

– IRC: FreeNode #minix-dev

End of talk

david@minix3.org

