
Design Patterns for modular 
services, drivers and user land

Bernd Onasch
dieCobol.de GmbH

2016-02-01
MINIXCON 2016

Amsterdam



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 2

Abstract
While porting MINIX to specific hardware the 
requirement of highly modular services and drivers 
became apparent. We need standardized MINIX micro-
kernel compliant interfaces on service and driver level to 
be able to add new hardware components like network 
cards or complete new platforms.

A generalized approach of "starting MINIX up" which is 
as independent as possible from hardware and boot 
device will additionally help making new hardware 
supportable.

Using a highly modular approach will allow MINIX to 
reach out to many platforms so far unsupported.



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 3

Boot Process

➢MINIX boot process (1) … (3)
➢Modularized booting? (4)
➢Dynamic booting? (5)



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 4

MINIX boot process (1)
Hardware

BIOS

Devices

Boot
Device

Boot
Loader

KERNEL
module

SERVICE
modules

RAMDISK
module

INIT
module

rc Scripts

Login
Shell

System
Bus

Additional
Services

System
Devices

System
Processes

Current status of booting MINIX



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 5

Boot process (2)
We are aiming for a generalized booting process
(1)Hardware and BIOS

● BIOS provides hardware support, e.g. USB
● BIOS initiates boot loader (block device or network)

(2)BIOS and boot loader interaction
● Modern BIOS and boot loader share functionality
● Boot loader is parametrized to know target OS specifics

(3)Boot loader and kernel interaction
• Stage the loaded kernel for 32/64 bit mode and graphics 

mode

What does the KERNEL really need to start?

How much more does the Developer want to have?



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 6

MINIX boot process (3)
Starting MINIX kernel and core services

● Micro-kernel initializing
● Hand-over from boot loader (multiboot data record)
● Core service startup (modules loaded by boot loader)

– Virtual memory, ProcessMgr, Scheduler, Reincarnation, …
● RAMdisk available to INIT process

● Initial system bus (PCI) validation
● Initialisation based on pre-defined RAMdisk scripts

„Hen-and-egg”-Problem
● Mass storage and file system are present after INIT
● Requirement for core services, buses and drivers before



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 7

Modularized booting?
Ideas

● Any boot loader loads MINIX, core services, initial ramdisk
● Current status: Multiboot v1 compliant boot loader

● Thin separation of MINIX kernel and boot headers
● Current status: Multiboot data handled by kernel
● Idea: Separate „boot data handling” and kernel

● Join core services into one module to simplify loading
● Current status: Many separate modules, issue for e.g. iPXE/PXE
● Idea: Use one module with offset table

● RAMdisk provides drivers to mount mass storage
● Current status: PCI and pre-selected drivers
● Idea: Dynamic bus/device loading incl. PCI and USB 
● Idea: Identical scripts in INIT ramdisk and later mounted disk

Suggested changes



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 8

Container

Container

Dynamic booting?
Hardware

BIOS

Devices

Boot
Device

Boot
Loader

KERNEL
module

CORE
SERVICES

RAMDISK

INIT
module

rc Scripts

Web
Server

System
Bus

System
Processes

Devices
& Buses

Device Broker
Service

SSH
Demon

Login
Shell

Dynamic
Detection

Suggested way of booting MINIX

Container
module

Container
module



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 9

Privilege Modes

➢Monolithic system design (1)
➢Modular system design (2)



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 10

Privilege Modes (1)
Supervisor Mode

● Unrestricted hardware access
● Free physical memory access
● Any CPU instruction

User Mode
● No direct access to hardware
● No direct access to physical 

memory
● Virtual memory isolation
● System API restricts hardware 

access
● System API controls phyiscal 

memory access

 

kernel services (e.g. Scheduler) 

System processes

Device drivers

User processes

user mode
supervisor mode

Monolithic kernel

Virtual device drivers



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 11

Privilege Modes (2)
Micro-kernel design

● Very small supervisor mode
● Additional protection layers

MINIX service design
● Core services with kernel 

communication
● Virtual Memory Service
● Scheduler and Process Mgr.
● Reincarnation Service

● Support services with messages
● System TTY console
● Device Manager

● Device drivers with messages 
● PCI, SATA, etc.

● User processes with system API

 

MINIX micro-kernel

MINIX core services

Support services

System processes

Device/Bus drivers

User processes

supervisor mode

restricted mode

user mode

kernel access mode
message access mode



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 12

Bus/Device Concept

➢Generic view on devices (1) … (3)
➢Separation of concerns (4)



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 13

Generic view on devices (1) 

Ideas
● Separation of components

● Hardware handshake (classic driver)
● Required communication protocol and functionality

● Keep layered devices separated
● Bus as interface and middle layer
● Bus provides enumeration of devices
● Layered device communicate via the bus interface

● Device management „broker”
● Devices and Buses register themselves
● Usage is requested via the broker

Suggested changes



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 14

Generic view on devices (2)

Example
● Device Broker as 

managing service
● Initial System Bus, e.g. 

PCI
● Drivers providing 

hardware handshake
● Buses providing protocol 

and functionality layer
● Every Bus or Driver 

instance registers at the 
Device Broker

 Device
Broker

PCI
System Bus

xHCI
USB HC

USB
Generic Bus

Keyboad
USB Driver

Mouse
USB Driver

SATA
Controller

SATA
Protocol Bus

HDD
Device Driver

BlockDev
 Virtual Bus

MinixFS
Virtual Driver

EXT2
Virtual Driver

Suggested
changes



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 15

Generic view on devices (3)

Benefits
● New hardware relies upon existing interfaces

● e.g. Keyboard/Mouse on USB share common code 
with system bus equivalent

● e.g. any disk on USB or SATA or Network share 
same code via „block device bus”

● Smaller implementation risks on adding new devices
● Existing and tested functionality code will be used

● Less effort on introducting new bus systems
● Providing a shared interface allows plugin of 

existing devices

Suggested changes



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 16

Separation of concerns

Expected modular (service oriented) design 
● New drivers provide clear and common interfaces
● Bus systems provide common interfaces
● Interfaces are generic for device types

● e.g. all block devices provide the same interface
● Device driver does not care for later use of I/O data

● i.e. implements hardware handshake only
● Virtual driver does not access hardware directly

● i.e. implements protocol and/or functionality



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 17

Thank you for listening.

Contact:

Bernd Onasch
dieCobol.de GmbH
Karlsruhe, Germany
bernd.onasch@diecobol.de



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 18

Additional Slides

➢Glossary
➢References



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 19

Glossary
KERNEL

● Exclusively the MINIX kernel module

SYSTEM CORE
● MINIX kernel module and core services

CORE SERVICE
● Mandatory service on system boot
● Service required to have the system running

SERVICE
● Privileged process providing a service to the userland
● Service process can be „reincarnated”

DEVICE
● Privileged process interfacing a hardware component 

BUS
● Privileged process communicating with device(s) and providing a bus structure



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 20

References
Boot Process

http://wiki.minix3.org/doku.php?id=developersguide:frompowerontologinprompt

ftp://download.intel.com/design/archives/wfm/downloads/pxespec.pdf

http://ipxe.org/docs

Privilege Modes

https://en.wikipedia.org/wiki/Protection_ring

http://www.linfo.org/kernel_mode.html

Bus/Device Concept

http://git.minix3.org/index.cgi?p=minix.git;a=summary (Status from 2016-01-12)

http://www.intel.com/content/dam/www/public/us/en/documents/technical-specification
s/extensible-host-controler-interface-usb-xhci.pdf

etc.

http://wiki.minix3.org/doku.php?id=developersguide:frompowerontologinprompt
ftp://download.intel.com/design/archives/wfm/downloads/pxespec.pdf
http://ipxe.org/docs
https://en.wikipedia.org/wiki/Protection_ring
http://www.linfo.org/kernel_mode.html
http://git.minix3.org/index.cgi?p=minix.git;a=summary
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf

	Title
	Abstract
	Boot process (Agenda)
	Boot process (1)
	Boot process (2)
	Boot process (3)
	Boot process (Modularized booting?)
	Boot process (Dynamic booting?)
	Privilege modes (Agenda)
	Privilege modes (1)
	Privilege modes (2)
	Bus/Device concept (Agenda)
	Bus/Device concept (1)
	Bus/Device concept (2)
	Bus/Device concept (3)
	Bus/Device concept (Separation of concerns)
	Closing slide
	Additional slides (Agenda)
	Additional slides (Glossary)
	Additional slides (References)

