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Abstract
While porting MINIX to specific hardware the 
requirement of highly modular services and drivers 
became apparent. We need standardized MINIX micro-
kernel compliant interfaces on service and driver level to 
be able to add new hardware components like network 
cards or complete new platforms.

A generalized approach of "starting MINIX up" which is 
as independent as possible from hardware and boot 
device will additionally help making new hardware 
supportable.

Using a highly modular approach will allow MINIX to 
reach out to many platforms so far unsupported.
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Boot Process

➢MINIX boot process (1) … (3)
➢Modularized booting? (4)
➢Dynamic booting? (5)
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Boot process (2)
We are aiming for a generalized booting process
(1)Hardware and BIOS

● BIOS provides hardware support, e.g. USB
● BIOS initiates boot loader (block device or network)

(2)BIOS and boot loader interaction
● Modern BIOS and boot loader share functionality
● Boot loader is parametrized to know target OS specifics

(3)Boot loader and kernel interaction
• Stage the loaded kernel for 32/64 bit mode and graphics 

mode

What does the KERNEL really need to start?

How much more does the Developer want to have?
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MINIX boot process (3)
Starting MINIX kernel and core services

● Micro-kernel initializing
● Hand-over from boot loader (multiboot data record)
● Core service startup (modules loaded by boot loader)

– Virtual memory, ProcessMgr, Scheduler, Reincarnation, …
● RAMdisk available to INIT process

● Initial system bus (PCI) validation
● Initialisation based on pre-defined RAMdisk scripts

„Hen-and-egg”-Problem
● Mass storage and file system are present after INIT
● Requirement for core services, buses and drivers before
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Modularized booting?
Ideas

● Any boot loader loads MINIX, core services, initial ramdisk
● Current status: Multiboot v1 compliant boot loader

● Thin separation of MINIX kernel and boot headers
● Current status: Multiboot data handled by kernel
● Idea: Separate „boot data handling” and kernel

● Join core services into one module to simplify loading
● Current status: Many separate modules, issue for e.g. iPXE/PXE
● Idea: Use one module with offset table

● RAMdisk provides drivers to mount mass storage
● Current status: PCI and pre-selected drivers
● Idea: Dynamic bus/device loading incl. PCI and USB 
● Idea: Identical scripts in INIT ramdisk and later mounted disk

Suggested changes
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Container

Container

Dynamic booting?
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Privilege Modes

➢Monolithic system design (1)
➢Modular system design (2)



2016-02-01 MINIXCON 2016 - Bernd Onasch – dieCobol.de GmbH 10

Privilege Modes (1)
Supervisor Mode

● Unrestricted hardware access
● Free physical memory access
● Any CPU instruction

User Mode
● No direct access to hardware
● No direct access to physical 

memory
● Virtual memory isolation
● System API restricts hardware 

access
● System API controls phyiscal 

memory access

 

kernel services (e.g. Scheduler) 
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Privilege Modes (2)
Micro-kernel design

● Very small supervisor mode
● Additional protection layers

MINIX service design
● Core services with kernel 

communication
● Virtual Memory Service
● Scheduler and Process Mgr.
● Reincarnation Service

● Support services with messages
● System TTY console
● Device Manager

● Device drivers with messages 
● PCI, SATA, etc.

● User processes with system API

 

MINIX micro-kernel

MINIX core services

Support services

System processes

Device/Bus drivers
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restricted mode
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kernel access mode
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Bus/Device Concept

➢Generic view on devices (1) … (3)
➢Separation of concerns (4)
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Generic view on devices (1) 

Ideas
● Separation of components

● Hardware handshake (classic driver)
● Required communication protocol and functionality

● Keep layered devices separated
● Bus as interface and middle layer
● Bus provides enumeration of devices
● Layered device communicate via the bus interface

● Device management „broker”
● Devices and Buses register themselves
● Usage is requested via the broker

Suggested changes
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Generic view on devices (2)

Example
● Device Broker as 

managing service
● Initial System Bus, e.g. 

PCI
● Drivers providing 

hardware handshake
● Buses providing protocol 

and functionality layer
● Every Bus or Driver 

instance registers at the 
Device Broker
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Generic view on devices (3)

Benefits
● New hardware relies upon existing interfaces

● e.g. Keyboard/Mouse on USB share common code 
with system bus equivalent

● e.g. any disk on USB or SATA or Network share 
same code via „block device bus”

● Smaller implementation risks on adding new devices
● Existing and tested functionality code will be used

● Less effort on introducting new bus systems
● Providing a shared interface allows plugin of 

existing devices

Suggested changes
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Separation of concerns

Expected modular (service oriented) design 
● New drivers provide clear and common interfaces
● Bus systems provide common interfaces
● Interfaces are generic for device types

● e.g. all block devices provide the same interface
● Device driver does not care for later use of I/O data

● i.e. implements hardware handshake only
● Virtual driver does not access hardware directly

● i.e. implements protocol and/or functionality
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Thank you for listening.

Contact:

Bernd Onasch
dieCobol.de GmbH
Karlsruhe, Germany
bernd.onasch@diecobol.de
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Additional Slides

➢Glossary
➢References
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Glossary
KERNEL

● Exclusively the MINIX kernel module

SYSTEM CORE
● MINIX kernel module and core services

CORE SERVICE
● Mandatory service on system boot
● Service required to have the system running

SERVICE
● Privileged process providing a service to the userland
● Service process can be „reincarnated”

DEVICE
● Privileged process interfacing a hardware component 

BUS
● Privileged process communicating with device(s) and providing a bus structure
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