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Abstract. STP is a decision procedure for the satisfiability of quantifier-free for-
mulas in the theory of bit-vectors and arrays that has been optimizedrémr la
problems encountered in software analysis applications. The basiteatare

of the procedure consists of word-level pre-processing algorittoitesafed by
translation to SAT. The primary bottlenecks in software verification andibdg

ing applications are large arrays and linear bit-vector arithmetic. Newidlgw
based on the abstraction-refinement paradigm are presenteddonimgabout
large arrays. A solver for bit-vector linear arithmetic is presented thairelies
variables and parts of variables to enable other transformations, dader¢he
size of the problem that is eventually received by the SAT solver.

These and other algorithms have been implemented in STP, which halsdzeen

ily tested over thousands of examples obtained from several real-applita-
tions. Experimental results indicate that the above mix of algorithms along with
the overall architecture is far more effective, for a variety of applicatidhan

a direct translation of the original formula to SAT or other comparablésdst
procedures.

1 Introduction

Decision procedures for fragments of first-order logic axeréasingly being used in
modern hardware verification and theorem proving tools.s€hdecision procedures
usually support integer and real arithmetic, unintergtdétections, bit-vectors, and ar-
rays. Examples of such decision procedures include Yicé€, £VC Lite,UCLID [9,
3,2,13]. Although theorem-proving and hardware verifmathave been the primary
users of decision procedures, increasingly they are besed in large-scale program
analysis, bug finding and test generation tools [7, 16]. €htesls often symbolically
analyze code and generate constraints for the decisiorguoe to solve, and use the
results to guide analysis or generate new test cases.

Software analysis tools create demands on decision proeediat are different
from those imposed by hardware applications. These apiplisaoften generate very
large array constraints, especially when tools choose ttefrgystem memory as one or
more arrays. Also, software analysis tools need to be ahieatson about bit-vectors,
and especially mo@” arithmetic, which is an important source of incorrect syste
behavior. The constraint problems are large and extrentelijanging to solve.

This paper reports on STP, a decision procedure for quariiéie first order logic
with bit-vector and array datatypes [17]. The design of S¥Ras been driven primar-
ily by the demands of software analysis research proje@iB.iSbeing used in several



software analysis, bug finding and hardware verificatiorliegiions. Notable applica-
tions include the EXE project [7] at Stanford, which genesaest cases for C programs
using symbolic execution, and uses STP to solve the contr&ther projects include
the Replayer project [16] and Minesweeper [5] at CarnegiddvidJniversity which
produce constraints from symbolic execution of machineecadd the CATCHCONV
project [14] at Berkeley which tries to catch errors due fpetgonversion in C pro-
grams. The CATCHCONYV project produced the largest exanydieed by STP so far.
Itis a 412 Mbyte formula, with 2.12 million 32 bit bit-vecteariables, array write terms
which are tens of thousands of levels deep, a large numberaf eeads with non-
constant indices (corresponding to aliased reads in mémmiany linear constraints,
and liberal use of bit-vector functions and predicates, &m& solves it in approx. 2
minutes on a 3.2GHz Linux box.

There is a nice overview of bit-vector decision procedurgl§], which we do not
repeat here. STP’s architecture is different from mostgleciprocedures that support
both bit-vectors and arrays [18, 2, 9], which are based oktharking and a framework
for combining specialized theories such as Nelson-OppBh [tistead, STP consists
of a series of word-level transformations and optimizatitmt eventually convert the
original problem to a conjunctive-normal form (CNF) forradbr input to a high-speed
solver for the satisfiability problem for propositional iodormulas (SAT) [10]. Thus,
STP fully exploits the speed of modern SAT solvers while daang advantage of
theory-specific optimizations for bit-vectors and arraysthis respect, STP is most
similar to UCLID [13].

The goal of this paper is to describe the factors that enabiet8 handle the large
constraints from software applications. In some caseglsioptimizations or a careful
decision about the ordering of transformations can makeya Hifference in the capac-
ity of the tool. In other cases, more sophisticated optitiozs are required. Two are
discussed in detail: An on-the-fly solver for mad-inear arithmetic, and abstraction-
refinement heuristics for array expressions. The rest op#peer discusses the archi-
tecture of STP, the basic engineering principles, and tloes gnto more detail about
the optimizations for bit-vector arithmetic and arraystf®enance on large examples
is discussed, and there is a comparative evaluation withsyf@], that is well-known
for its efficiency.

2 STP Overview

STP’s input language has most of the functions and predi¢atplemented in a pro-
gramming language such as C or a machine instruction setpettwat it has no floating
point datatypes or operations. The current set of opemsapported includd’RUE,
FALSE, propositional variables, arbitrary Boolean connectil@svise Boolean op-
erators, extraction, concatenation, left and right shitidition, multiplication, unary
minus, (signed) division and modulo, array read and writefions, and relational op-
erators. The semantics parallel the semantics of the SMHitBector language [1]
or the C programming language, except that in STP bit-veatan have any positive
length. Also, all arithmetic and bitwise Boolean operasioaquire that the inputs be of
the same length. STP can be used as a stand-alone progracaraparse input files in



a special human readable syntax and also the SMTLIBUBBV32 syntax [1]. It can
also be used as a library, and has a special C-language APh#kas it relatively easy
to integrate with other applications.

STP converts a decision problem in its logic to propositi@idF, which is solved
with a high-performance off-the-shelf CNF SAT solver, Mat [10] (MiniSat has a
nice API, and it is concise, clean, efficient, reliable, aathtively unencumbered by
licensing conditions). However, the process of convetinGNF includes many word-
level transformations and optimizations that reduce tiffecdity of the eventual SAT
problem. Problems are frequently solved during the transftion stages of STP, so
that SAT does not need to be called.

STP’s architecture differs significantly from many otheciden procedures based
on case splitting and backtracking, including tools likeG\and CVC Lite [3,2],
and other solvers based on the Davis-Putnam-LogemannidrayéDPLL(T)) archi-
tecture [11]. Conceptually, those solvers recursivelyedsstomic formulas and their
negations to a theory-specific decision procedures to cferckonsistency with for-
mulas that are already asserted, backtracking if the cucenbination of assertions is
inconsistent. In recent versions of this style of decisimtpdure, the choice of formu-
las to assert is made by a conventional DPLL SAT solver, wirieats the formulas as
propositional variables until they are asserted and thisidecprocedures invoked.

Architectures based on assertion and backtracking invodery-specific decision-
procedures in the “inner loop” of the SAT solver. However,dam SAT solvers are
very fast largely because of the incredible efficiency ofrtirner loops, and so it is
difficult with these architectures to take the best advantddast SAT solvers.

STP on the other hand does all theory-specific processfgreinvoking the SAT
solver. The SAT solver works on a purely propositional folamand its internals are
not modified, including the highly optimized inner loop. @pizing transformations
are employed before the SAT solver when they can solve a¢mobhore efficiently
than the SAT solver, or when they reduce the difficulty of thebem that is eventually
presented to the SAT solver.

DPLL(T) solvers often use Nelson-Oppen combination [1bjariants thereof, to
link together multiple theory-specific decision proceduidelson-Oppen combination
needs the individual theories to be disjoint, stably-inéirand requires the exchange
of equality relationships deduced in each individual tel@ading to inflexibility and
implementation complexity. In return, Nelson-Oppen easuhat the combination of
theories is complete. STP is complete because the entimaifalis converted by a set of
satisfiability preserving steps to CNF, the satisfiabilityubich is decided by the SAT
solver. So there is no need to worry about meeting the camditof Nelson-Oppen
combination. Furthermore, the extra overhead of commtinitdetween theories in
the Nelson-Oppen style decision procedures can becomelaraak for the very large
inputs that we have seen, and this overhead is avoided in STP.

The STP approach is not always going to be superior to a goddriaaking solver.
A good input to STP is a conjunction of many formulas that émabcal algebraic
transformations. On the other hand, formulas with topdleNsgunctions may be very
difficult. Fortunately, the software applications used BySend to generate large con-
junctions, and hence STP’s approach has worked well inipeact
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Fig. 1. STP Architecture

In more detail, STP’s architecture is depicted in Figure rbcBssing consists of
three phases of word-level transformations; followed byession to a purely Boolean
formula and Boolean simplifications (this process is caliitl Blasting”); and finally
conversion to propositional CNF and solving by a SAT solVee primary focus of this
paper is on word level optimizations for arithmetic, arrapsl refinement for arrays.

Expressions are represented as directed acyclic graphsgpAom the time they
are created by the parser or through the C-interface, inetyl are converted to CNF. In
the DAG representation, isomorphic subtrees are repreddmyt a single node, which
may be pointed to by many parent nodes. This representatismadivantages and dis-
advantages, but the overwhelming advantage is compactness

It is possible to identify some design principles that haweked well during the
development of STP. The overarching principle is to prdanate when faced with
hard problems. That principle is applied in many ways. Tiamsations that are risky
because they can significantly expand the size of the expreBs\G are postponed
until other, less risky, transformations are performedthi@ hope that the less risky
transformation will reduce the size and number of expressiequiring more risky
transformations. This approach is particularly helpfuldoray expressions.

Counter-example-guided abstraction/refinement is nowradsird paradigm in for-
mal tools, which can be applied in a variety of ways. It is &eotapplication of the
procrastination principle. For example, the UCLID tool ilsts and refines the preci-
sion of integer variables.

A major novelty of STP’s implementation is the particulampiementation of the
refinementloop in Figure 1. In STP, abstraction is impleraéifie. arabstract formula
is obtained) by omitting conjunctive constraints front@ncrete formulawhere the
concrete formula must be equisatisfiable with the originaiiula. (Logical formulas
¢ andvy are equisatisfiable i#h is satisfiable exactly when is satisfiable.)

When testing an abstract formula for satisfiability, thene lba three results. First,
STP can determine that the abstracted formula is unsatesfigtbthis case, it is clear
that the original formula is unsatisfiable, and hence STReamn “unsatisfiable” with-
out additional refinement, potentially saving a massiveamof work.

A second possible outcome is that STP finds a satisfyingras&gt to the abstract
formula. In this case, STP converts the satisfying assignmeea (purported) concrete



model,! and also assigns zero to any variables that appear in thiealrigrmula but
not the abstract formula, and evaluates the original foanmith respect to the purported
model. If the result of the evaluations BRUF, the purported model is truly a model
of the original formula (i.e. the original formula is indesdtisfiable) and STP returns
the model without further refinement iterations.

The third possible outcome is that STP finds a purported mbdékvaluating the
original formula with respect to that model returfd LSE. In that case, STP refines
the abstracted formula by heuristically choosing add#laronjuncts, at least one of
which must be false in the purported model and conjoiningéiformulas with the ab-
stracted formula to create a new, less abstract formuladctige, the abstract formula
is not modified; instead, the new formulas are bit-blastedyerted to CNF, and added
as clauses to the CNF formula derived from the previous attstormula, and the re-
sulting CNF formula solved by the SAT solver. This procesiseisated until a correct
result is found, which must occur because, in the worst ¢heegbstract formula will
be made fully concrete by conjoining every formula that wasted by abstraction.
When all formulas are included, the result is guaranteed toobect because of the
equisatisfiability requirement above.

3 Arrays

As was mentioned above, arrays are used heavily in softwelgsis applications, and
reasoning about arrays has been a major bottleneck in mamypdes. STP’s input
language supports one-dimensional (non-extensionaysifl7] that are indexed by
bit-vectors and contain bit-vectors. The operations oayarareread(A, i), which re-
turns the value at locatioA[i] where A is an array and is an index expression of the
correct type, andurite(A, i, v), which returns a new array with the same valuedas
at all indices except possibly where it has the value. The value of aread is a bit-
vector, which can appear as an operand to any operation dicpte that operates on
bit-vectors. The value of an array variable or an array wrée an array type, and may
only appear as the first operand ofaad or write, or as the then or else operand of an
if-then-else. In particular, values of an array type caraggear in an equality or any
other predicate.

In the unoptimized mode, STP reduces all formulas to an atjsimble form that
contains no arrayeads or writes, using three transformations. (In the following, the
expressionte(cy, e1, e2) is shorthand foif ¢; thene; elsees endif) These transforma-
tions are all standard.

The Ite-lifting transformation convertsead (ite(c, write(A,i,v),e), j) to ite(c,
read (write(A,i,v),j),e). (There is a similar transformation when theite is in the
“else” part of theite.) Theread-over-write transformation eliminates all write terms
by transformingread(write(A,i,v), ) to ite(i = j,v, read(A, 7)). Finally, theread
elimination transformation eliminates:ad terms by introducing a fresh bit-vector vari-
able for each such expression, and adding more predicatastoe consistency. Specif-
ically, whenever a termead (A, i) appears, it is replaced by a fresh variabl@and new

1 A model is an assignment of constant values to all of the variables imaufarsuch that the
formula issatisfied



predicates are conjoined to the formula: j = v = w for all variablesw introduced

in place of read termeead (A, j), having the same array term as first operand. As an ex-
ample of this transformation, the simple formitaad(A,0) = 0) A (read(A,i) = 1)
would be transformed to; = 0 Ave = 1 A (¢ = 0 = v; = vq). The formula of the
form (i = 0 = v; = v9) is called ararray read axiom

3.1 Optimizing array reads

Read elimination, as described above, expands each fobyulpton(n—1)/2 nodes,
wheren is the number of syntactically distinct index expressidistortunately, soft-
ware analysis applications can produce thousands of reitusaviable indices, result-
ing in a lethal blow-up when this transformation is applié¢hile this blow-up seems
unavoidable in the worst case, appropriate procrastind¢iads to practical solutions
for many very large problems. Two optimizations which haeerbvery effective are
array substitutiorand abstraction-refinement for reads, which we et refinement

The array substitution optimization reduces the humberriafyavariables by sub-
stituting out all constraints of the formead (A, ¢) = e1, wherec is a constant ane,
does not contain another array read. Programs often inde®irays or memory using
constant indexes, so this is a case that occurs often iniggact

The optimization has two passes. The first pass builds aigulist table with the
left-hand-side of each such equatiordd(A, ¢)) as the key and the right-hand-side
(e1) as the value, and then deletes the equation from the inmryyglihe second pass
over the expression replaces each occurrence of a key bpthesponding table entry.
Note that for soundness, if a second equation is encountenede left-hand-side is
already in the table, the second equation is not deletedranidble is not changed. For
example, if STP sawead (A, ¢) = e thenread(A, C) = ez, the second formula would
not be deleted and would later be simplifieceio= es.

The second optimizatiomead refinemenidelays the translation of arragads with
non-constant indexes in the hope of avoiding read elinongtiowup. Its main trick is
to solve a less-expensive approximation of the formulackltlee result in the original
formula, and try again with a more accurate approximatidghefresult is incorrect.

Read formulas are abstracted by performing read eliminatie., replacing reads
with new variables, but not adding the array read axiomss &histracted formula is
processed by the remaining stages of STP. As discussed avéineiew, if the result is
unsatisfiable, that result is correct and can be returneceutistely from STP. If not,
the abstract model found by STP is converted to a concreteehsodi the original
formula is evaluated with respect to that model. If the resul’RUE, the answer is
correct and STP returns that model. Otherwise, some of thg srad axioms from read
elimination are added to the formula and STP is asked tofgaltis modified formula.
This iteration repeats until a correct result is found, wahie guaranteed to happen (if
memory and time are not exhausted) because all of the finitalyy array read axioms
will eventually be added in the worst case.

The choice of which array read axioms to add during refinensemheuristic that is
important to the success of the method. A policy that seemstk well is to find a non-
constant array index term for which at least one axiom isatéa, then add all of the
violated axioms involving that term. Adding at least onesésdxiom during refinement



guarantees that STP will not find the same false model morre dhae. Adding all
the axioms for a particular term seems empirically to be adgmmmpromise between
adding just one formula, which results in too many iteragicand adding all formulas,
which eliminates all abstraction after the first failure.

For example, suppose STP is given the formutad(A,0) = 0) A (read(A, i) =
1). STP would first apply the substitution optimization by dielg read(A,0) = 0
from the formula, and inserting the pdirecad (A, 0),0) in the substitution table. Then,
it would replaceread (A, i) by a new variable;, thus generating the under-constrained
formulav; = 1. Suppose STP finds the solutioe- 1 andv; = 1.

STP then translates the solution to the variables of theéraligormula to get
(read(A,0) = 0) A read(A,1) = 1). This solution is satisfiable in the original for-
mula as well, so STP terminates since it has found a truehgatisassignment.

However, suppose that STP finds the solutien0 andv; = 1. Under this solution,
the original formula eventually evaluatesteand(A4,0) = 0 A read(A,0) = 1, which
after substitution give8 = 1. Hence, the solution to the under-constrained formula is
not a solution to the original formula.

In this case, STP adds the array read axiom 0 = read(A,i) = read(A,0).
When this formula is checked, the result must be correct [secthe new formula in-
cludes the complete set of array read axioms.

3.2 Optimizing array writes

Efficiently dealing with array writes is crucial to STP’s liti in software applica-
tions, some of which produce deeply nested write terms wheretare many suc-
cessive assignments to indices of the same arrayr8dchover-write transformation
creates a performance bottleneck by destroying sharinghi&ems, creating an unac-
ceptable blow-up in DAG size. Consider the simple formutad (write(A,i,v),j) =
read (write(A,i,v), k), in which thewrite term is shared.

The read-over-write transformation translates this ite(i = j,v, read(A, j)) =
ite(i = k,v, read(A, k)). When applied recursively to the deeply nestedte terms,
it essentially creates a new copy of the entire DAG of writentefor every distinct read
index, which exhausts memory in large examples.

Once again, the procrastination principle applies. Téwd-over-write transfor-
mation is delayed until after other simplification and sotytransformations are per-
formed, except in special cases liked (write(A, i,v),i+1), where the read and write
indices simplify to terms that are always equal or not eduairactice, the simple trans-
formations convert many index terms to constants. fElae-over-write transformation
is applied in a subsequent phase. When that happens, theléoisramaller and con-
tains more constants. This simple optimization is enorriyoeffective, enabling STP
to solve many very large problems with nested writes thatdtherwise unable to do.

Abstraction and refinement can also be used on write expressvhen the previous
optimization leaves large numbers+ehds andwrites, leading to major speed-ups on
some large formulas. For this optimization, array read-owéte terms are replaced by
new variables to yield a conjunction of formulas that is sqtisfiable to the original



set. The example above is transformed to:

V1 = V2
vy = ite(i = j,v, read(A, j))
vy = ite(i = k,v, read (A, k))

where the last two formulas are calladay write axiomsFor the abstraction, the array
write axioms are omitted, and the abstracted formyla= v, is processed by the
remaining phases of STP. As with array reads, the refinerneptiterates only if STP
finds a model of the abstracted formula that is also not a mafdék original formula.
Write axioms are added to the abstracted formula, and theereéint loop iterates with
the additional axioms until a definite result is producedh&ligh, this technique leads
to improvement in certain cases, the primary problem witls ithat the number of
iterations of the refinement loop is sometimes very large.

4 Linear Solver and Variable Elimination

One of the essential features of STP for software analygcapions is its efficient
handling of linear twos-complement arithmetic. The heéthis is anon-the-flysolver.
The main goal of the solver is to eliminate as many bits of asywariables as possible,
to reduce the size of the transformed problem for the SATesola addition, it enables
many other simplifications, and can solve purely linear fgois outright, so that the
SAT solver does not need to be used.

The solver solves for one equation for one variable at a tirhat variable can then
be eliminated by substitution in the rest of the formula, thiee the variable occurs in
linear equations or other formulas. In some cases, it casoieé an entire variable, so
it solves for some of the low-order bits of the variable. Afté-blasting, these bits will
not appear as variables in the problem presented to the S¥8drshon-linear or word-
level terms (extracts, concats etc.) appearing in lineaatons are treated as bit-vector
variables.

The algorithm has worst-case time running timéxt>n) multiplications, wheré:
is the number of equations ands the number of variables in the input system of linear
bit-vector equation$.If the input is unsatisfiable the solver terminates WithLSE.

If the input is satisfiable it terminates with a set of equadian solved form which
symbolically represent all possible satisfying assignimémthe input equations. So, in
the special case where the formula is a system of linear ieqsathe solver leads to
a sound and complete polynomial-time decision procedurghErmore, the equations
are reduced to a closed form that captures all of the possiiilgions.

2 As observed in [4], the theory of linear ma@d arithmetic (equations only) in tandem with
concatenate and extract operations is NP-complete. Although STPiaseoate and extrac-
tion operations, terms with those operations are treated as independehtesin the linear
solving process, which is polynomial.

A hard NP-complete input problem constructed out of linear operatmms;atenate and
extract operations will not be solved completely by linear solving, and &llit in work for
the SAT solver.



Definition 1. Solved FormaA list of equations is in solved form if the following invari-
ants hold over the equations in the list.

1) Each equation in the list is of the fora[i : 0] = ¢ or z = ¢, wherez is a
variable andt is a linear combination of the variables or constant times&able (or
extractions thereof) occuring in the equations of the kgteptr

2) Variables on the left hand side of the equations occurimgjer in the list may
not occur on the right hand side of subsequent equations, #igre may not be two
equations with the same left hand side in the list

3) If extractions of variables occur in the list, then theystalways be of the form
z[¢ : 0], i.e. the lower extraction index must be 0, and all extrawsionust be of the
same length

4) If an extraction of a variable[i : 0] = ¢ occurs in the list, then an entry is made
in the list forz = 2'@t, wherez! is a new variable refering to the top bits efand @
is the concatenation symbol

The algorithm is illustrated on the following system:

3x+4y+22=0
20 +2y+2=0
dy+2x+22=0

where all constants, variables and functions are 3 bits.long

The solver proceeds by first choosing an equation and alweks if the chosen
equation issolvable It uses the following theorem from basic number theory tiede
mine if an equation is solvabl&Z”_ a;z; = ¢; mod2’ is solvable for the unknowns;
if and only if the greatest common divisor ff, . . . , a,,, 2°} dividesc;.

In the example above, the solver choo3es+ 4y + 2z = 0 which is solvable since
the ged(3, 4,2,23) does indeed dividé. It is also a basic result from number theory
that a number has a multiplicative inverse moa iff gcd(a,m) = 1, and that this
inverse can be computed by the extended greatest-commizordatlgorithm [8] or a
method from [4]. So, if there is a variable with an odd coeffiti the solver isolates
it on the left-hand-side and multiplies through by the isesof the coefficient. In the
example, the multiplicative inverse 8fmods is also3, so3z + 4y + 2z = 0 can be
solved to yieldr = 4y + 62.

Substitutingdy + 6z for = in the remaining two equations yields the system

2y+42+2=0
dy+62=0

where all coefficients are even. Note that even coefficiemtsod have multiplicative
inverses in arithmetic mo#’, and, hence we cannot isolate a variable. However, it is
possible to solve fosome bitof the remaining variables.

The solver transforms the whole system of solvable equsiitio a system which
has at least one summand with an odd coefficient. To do théssdiver chooses an
equation which has a summand whose coefficient has the miminumber of factors
of 2. In the example, this would the equatiyn+ 4z + 2 = 0, and the summand would



be 2y. The whole system is divided by 2, and the high-order bit afhegariable is
dropped, to obtain a reduced set of equations

y[1:0]+22[1:0]+1=0
2y[1:0]+32[1:0] =0

where all constants, variables and operations are 2 bitet, Mg : 0] is solved for
to obtainy[1 : 0] = 2z[1 : 0] + 3. Substituting fory[1 : 0] in the system yields a new
system of equation3z[1 : 0] + 2 = 0. This equation can be solved fefrl : 0] to obtain
z[1: 0] = 2. It follows that original system of equations is satisfialllés important to
note here that the bitg]2 : 1] andz[2 : 1] are unconstrained. The solved form in this
caseist =4y + 6z Ay[1: 0] = 22[1: 0] + 3 A z[1 : 0] = 2 (Note that in the last two
equations all variables, constants and functions are 2dbity.

Algorithms for deciding the satisfiability of a system of atjons and congruences
in modular or residue arithmetic have been well-known fasregltime. However, most
of these algorithms do not provide a solved form that cagtatepossible solutions.
Some of the ideas presented here were devised by Clark Bangtimplemented in
the SVC decision procedure [12, 4], but the SVC algorithméwgmnential worst-case
time complexity while STP’s linear solver is polynomial letworst-case.

The closest related work is probably in a paper by Huang areh@Ifil2], which
reduces a set of equations to a solved form by Guassian eliimim On the other hand,
STP implements an online solving and substitution algorithat gives a closed form
solution. Such algorithms are easier to integrate into dexngecision procedures.

5 Experimental Results

This section presents empirical results on large exampdes $oftware analysis tools,
and on randomly generated sets of linear equations. Theteiié abstraction and lin-
ear solving in STP are examined. It is difficult to compare S¥ith other decision
procedures, because no publicly available decision prgesdxcept CVCL (from the
authors research group) can deal with terms involving bdthdrtors and arrays in-
dexed by bit-vectors. CVCL is hopelessly inefficient conggawith STP, which was
written to replace it. Terms in Yices can include bit-vestand uninterpreted functions
over bit-vectors. Uninterpreted functions are equivaterdrrays with nowrite opera-
tions, so it is possible to compare the performance of STPYares on examples with
linear arithmetic and one realistic example with a readrantay.

In Table 1, STP is compared with all optimizations on (All Q)yray Optimiza-
tions on (Arr-ON,Lin-OFF), linear-solving on (Arr-OFFhiON), and all optimizations
off (ALL OFF) on the BigArray examples (these examples aravigeon linear arith-
metic and array reads). Table 2 summarizes STP’s performanth and without array
write abstraction, on the big array examples with deeplyatbsrites. Table 3 compares
STP with Yices on a very small version of a BigArray exampleg aome randomly
generated linear system of equations. All experiments weren a 3.2GHz/2GB RAM
Intel machine running Linux.



Example Name (Node SizgResult/All ON |Arr-ON,Lin-OFF |Arr-OFF,Lin-ON |All OFF
testcasel5 (0.9M) sat |66 192 64 MO
testcasel6 (0.9M) sat |67 233 66 MO
thumbnailout-spinl (3.2M) |sat {115 (111 113 MO
thumbnailout-spinl-2 (4.3MNR |[MO MO MO MO
thumbnailout-noarg (2.7M)|sat {840 MO 840 MO

Table 1. STP performance in different modes over BigArray Examples. Naane followed by

the nodesize. Approximate node size is in millions of nodes. 1M is one milliodesicShared
nodes are counted exactly once. NR stands for No Result. All timings aezands. MO stands
for out of memory error. These examples were generated usingAR€IMCONV tool

Example Name (Node SizeResult WRITE Abstraction [NO WRITE Abstraction
grep0084 (69K) sat |109 506

grep0095 (69K) sat |115 84

grep0106 (69K) sat |270 > 600

grep0117 (70K) sat |218 > 600

grep0777 (73K) NR MO MO

610dd9dc (15K) sat |188 101

testcase20 (1.2M) sat |67 MO

Table 2. STP performance in different modes over BigArray Examples witlp aested writes.
Names are followed by the nodesize. 1M is one million nodes (1K is thousadels). Shared
nodes are counted exactly once. NR stands for No Result. All timings asedonds. MO
stands for out of memory error.These examples were generaitagl the CATCHCONV and
Minesweeper tools

Table 1 includes some of the hardest of the BigArray examplgsh are usually
tens of megabytes of text, typically hundreds of thousarfd32abit bit-vector vari-
ables, lots of array reads, and large number of linear cainstrderived from [14, 16].
The primary reason for timeouts is an out-of-memory exoepfiable 1 shows that all
optimizations are required for solving the hardest reatldvproblems. As expected,
STP’s linear solver is very helpful in solving these example

Table 2 includes examples with deeply nested array writdsnasdest amounts of
linear constraints derived from various applications. Tgrep” examples were gener-
ated using the Minesweeper tool while trying to find bugs iixwrep program. The
610dd9c formula is generated by a Minesweeper analysis odgrgam that is used in
“botnet” attack. The formula testcase20 was generated ByGEACONV. As expected,
STP with write abstraction-refinement ON can yield a vergéaimprovement over
STP with write abstraction-refinement switched OFF, altiioit is not always faster.

Yices and STP were also compared on small, randomly-gestesgtstems of linear
equations with coefficients ranging from 128°%, from 4 to 256 variables of 32 bits
each, and 4 to 256 equations. Yices consistently timed oRb@tseconds on exam-
ples with 32 or more variables, and was significantly slovantSTP on the smaller
examples. The hardest problem for STP in this set of bendtsweas a test case with



Example STP|  Yices
25 var/25 equations(unsat) |0.85 425
50 var/50 equations(sat) 135 TimeOut
cookie checksum example(s&2)63 218s

Table 3.STP vs. Yices. Timeout per example: 600sec. The last example wasaged using the
Replayer tool

32 equations and 256 variables of 32 bits, which STP solvé&iseconds. There are
two cases for illustration in Table 3. Yices times out on eas0 variable 50 equation
example, and when it does finish it is much slower than STP.

There is one large, real example with read-only arraysatirsithmetic and bit-
vectors which is suitable for comparison with Yices. On #wample, Yices is nearly
one hundred times slower than STP. Unfortunately, we coatccampare Yices with
STP on examples with array writes since Yices does not stippay writes with bit-
vector indexing. More meaningful comparisons will have ttill competing decision
procedures includes bit-vector operations and a theorgrajsiindexed by bit-vectors.
All tests in this section are available at
http://verify.stanford. edu/stp. htnl.

6 Conclusion

Software applications such as program analysis, bug findind symbolic simulation
of software tend to impose different conditions on decigiomcedures than hardware
applications. In particular, arrays become a bottlened&o Ahe constraints tend to be
very large with lots of linear bit-vector arithmetic in thembstraction-refinement al-
gorithms is often helpful for handling large array termss@|lthe approach of doing
phased word-level transformations, starting with thetleapensive and risky transfor-
mations, followed by translation to SAT seems like a goodgiefor decision proce-
dures for the applications considered. Finally, lineavisgl, when implemented care-
fully, is effective in variable elimination.
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