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Abstract—Fault injection campaigns have been used
extensively to characterize the behavior of systems under errors.
Traditional characterization studies, however, focus only on
analyzing fail-stop behavior, incorrect test results, and other
obvious failures observed during the experiment. More research
is needed to evaluate the impact of silent failures—a relevant
and insidious class of real-world failures—and doing so in a
fully automated way in a fault injection setting.

This paper presents a new methodology to identify fault
injection-induced silent failures and assess their impact in a fully
automated way. Drawing inspiration from system call-based
anomaly detection, we compare faulty and fault-free execution
runs and pinpoint behavioral differences that result in externally
visible changes—not reported to the user—to detect silent
failures. Our investigation across several different programs
demonstrates that the impact of silent failures is relevant,
consistent with field data, and should be carefully considered to
avoid compromising the soundness of fault injection results.

Keywords-silent failure; fail-stop; fault injection; LLVM; sys-
tem call tracing

I. INTRODUCTION

Practice shows that producing software that is entirely free
of bugs is not feasible. As software becomes more mature, the
number of bugs approximates a linear function of software
complexity [1]. Given that software complexity is, in turn,
steadily increasing over time, software faults are naturally
becoming more and more prevalent. To mitigate this problem,
researchers have devised several different strategies to build
fault-tolerant software systems. One approach is N -version
programming [2], which relies on multiple semantically equiv-
alent versions to achieve software-implemented redundancy.
Although this approach can tolerate several different classes
of failures, the need to implement at least three versions of
the same software is often deemed prohibitively expensive.

Other, more cost-effective approaches to deal with
unreliable software rely on a predetermined failure model to
implement fault detection and containment mechanisms. For
example, crash recovery techniques [3]–[6] restart individual
components or computations when a fail-stop failure occurs.
These techniques are based on two key assumptions: the
system can detect that a failure has occurred and the
underlying fault does not propagate outside the affected
component before the failure is detected. If these assumptions

are violated, recovery actions may fail to preserve the
dependability of the system. To validate these assumptions,
researchers traditionally rely on fault injection [7]–[15],
a popular technique to evaluate the effectiveness of fault-
tolerance mechanisms and characterize the behavior of a
system under errors. Most studies, however, limit their analysis
to trivially observable failures. Traditional dependability
characterization studies [16]–[18], for instance, focus only
on fail-stop behavior and other high-level properties directly
exposed to the user. More research is needed to evaluate
the impact of silent failures in fault injection experiments.
We define silent failures as a situation where a fault causes
externally visible behavior to deviate from normal behavior
(which makes it a failure) but with no clear indication of
failure such as an error exit status, a segmentation fault, or an
abnormal run time (which makes it silent). This scarcity of
research is surprising, given that silent failures are a relevant
fraction of real-world bug manifestations [19] and also known
to introduce insidious errors that can completely compromise
the dependability of a system or the effectiveness of its fault
containment mechanisms. As an example, a silent failure
introduced by a seemingly innocuous software update has been
reported as “one of the biggest computer errors in banking
history”, leading to the system mistakenly deducting about
$15 million from over 100,000 customers’ accounts [20].

Assessing the impact of silent failures in a fault injection
setting is more than a simple academic exercise. If their impact
is found to be marginal, researchers may need more sophisti-
cated fault injection tools to accurately emulate this important
class of real-world failures. If their impact is found to be
significant, on the other hand, characterization studies ignoring
silent failures may undermine the soundness of the results.
Furthermore, the ability to identify silent failures may play an
important role in the design of fault injection campaigns. For
instance, prior studies argued that faults that are activated dur-
ing testing but do not result in directly observable failures are
more representative of residual faults (faults that are actually
experienced in the field) and suggested a strategy to eliminate
irrelevant fault injection runs [21], [22]. In this context, it
is crucial to distinguish between residual faults introducing
silent failures and other faults introducing nonsilent failures
that are only triggered by a specific set of conditions. This



distinction makes it possible to better formulate the purpose
of the experiments and interpret the results correctly.

This paper presents a new automated methodology to iden-
tify and assess the impact of silent failures in fault injection
experiments. Our goal is to shed some light on the relevance
of these failures in an experimental setting, determine under
which circumstances they are most likely to occur and improve
the general understanding of what “silent” behavioral changes
an artificially injected fault may introduce in a system. To this
end, our approach is to track programs’ externally visible be-
havior (exposed through system calls), their run time, and their
exit status. To identify the relevant behavioral changes induced
by fault injection, we perform both a fault-free reference run
and an experimental run with faults injected in a controlled
setting—with a predetermined workload and fault load [22].
The controlled setting allows us to log all the relevant events
and abstract away any irrelevant differences introduced by the
environment. This approach makes it possible to compare the
behavior of the two runs and identify relevant deviations using
a simple system call matching strategy. In contrast to prior
work on anomalous system call detection [23], [24], our strat-
egy considers only externally visible behavioral deviations be-
tween isomorphic execution runs to conservatively identify all
the relevant differences. In contrast to prior work on real-world
bug characterization [19], our strategy allows us to reason on
the outcome of the fault injection experiment (i.e., nonfailure,
silent failure, other failures) in a fully automated fashion,
opening up opportunities for large-scale failure analyses.

The contribution of this paper is threefold. First, we describe
a new automated methodology to identify silent failures in
fault injection experiments. Our methodology is of general
applicability and can automatically identify several classes of
failures from the outcome of a given experiment. Second, we
present an implementation of our methodology for user-space
programs. Our current prototype runs on Linux, but can be
easily extended to other UNIX operation systems that provide
similar tracing functionality. Finally, we have applied our
methodology to evaluate the impact of silent failures across
several different programs and artificially injected fault types
and fault locations. Our results demonstrate that the impact
of silent failures is relevant, reflects field data, and should be
carefully considered in dependability benchmarking scenarios.

II. APPROACH

To determine how common silent failures are, we perform
fault injection experiments to introduce artificial but realistic
software bugs into a number of popular open source programs
and analyze the impact of the injected faults on the externally
visible behavior of those programs. We have chosen to use
fault injection rather than real bugs because this allows us
to perform a far larger number of experiments, suitable for
statistical analysis. The main steps we have taken are to:
(i) inject realistic software faults into the target program,
(ii) log the externally visible behavior of the program when
subject to a predetermined workload, and (iii) compare the
resulting logs against the behavior of a fault-free reference

TABLE I
FAULT TYPES

corrupt-index off-by-one error in array index
corrupt-integer off-by-one error in integer operand
corrupt-operator replace binary operator with random operator
corrupt-pointer replace pointer operand with random value
flip-bool negate result of boolean operation
flip-branch negate controlling value for conditional branch
no-load load zero instead of intended value
no-store remove store operation
random-load load random number instead of intended value
stuck-at-branch fixed controlling value for conditional branch
swap swap operands of binary operation

run while preventing false positives due to nondeterminism.
This section illustrates these steps in detail.

A. Fault injection

We use the EDFI [25] framework to perform fault injection.
This system is based on the ability of the LLVM compiler
framework [26] to support plug-ins that manipulate interme-
diate (LLVM IR) compiler code. The EDFI plug-in operates
on the intermediate code before any compiler optimizations
are performed, so it has almost as much information as
systems working directly on the source code, but is more
easily portable due to its integration with LLVM. The only
loss of information is the fact that preprocessor macros are
already expanded in the intermediate code, which means that
faults injected at the macro level cannot be directly supported.

One important step when designing a fault injection
experiment is to decide which types of faults are to be
injected. Ideally, these fault types should be as similar as
possible to real bugs introduced by human programmers. A
number of investigations on which types of faults are most
commonly encountered can be found in the literature [27]–
[29]. The fault types injected by our program have been
selected based on these papers and are listed in table I.

When injecting faults, for each run we inject a single fault
that we know will be activated by the workload. Doing so
eliminates runs known not to trigger the fault, similar to the
fault acceleration strategies proposed in prior work [30], [31].
We use the EDFI framework to count how often each part of
the code is executed and have it write out a map file during
compilation that lists all fault candidates. We define a fault
candidate as the combination of a code location and a fault
type that can be injected at that location. Execution counts
are tracked per basic block, which is a part of the code with
a single entry point and a single exit point. We perform a
reference run which yields execution counts and randomly
select fault candidates from the set of fault candidates in the
map file that are in basic blocks with nonzero execution counts.

We only inject a single fault at a time because simultaneous
injection of multiple faults is less controllable. Execution of
the first fault potentially influences whether any subsequence
faults are executed and potentially even changes their effects.
While interactions between faults are also an interesting field
of study, currently little is known about the relevance of
silent failures in fault injection even for the simpler case of a



single fault per run. A single-fault strategy makes it easier to
analyze the results and ascribe the observed behavior to the
injected fault.

B. Program behavior

To log the externally visible behavior of the program while
running a workload, we use the ptrace system call on
Linux. This call allows the interception of system calls before
and after they are performed. By logging system calls rather
than just comparing the expected output with the logged
output, we can identify many more cases of deviant behavior.
Suppose, for example, that the gzip program is run with the
-k flag that specifies that the input file should not be deleted.
In this case, checking the contents of the output file is not
sufficient, because some faults could cause the flag to be
ignored and the input file to be deleted. Since it is impossible
to predict what a program will do when faults are injected,
all externally visible behavior must be monitored to be able
to detect any possible failure.

An important question is which calls are externally visible.
Our intuition here is that, for example, a successful call to
unlink would affect other application programs while a call
to getpid has no impact whatsoever. We consider system
calls externally visible only if they can potentially affect
the values returned by system calls performed by unrelated
processes. We consider two processes related if both either
are the root process started by our tracer or descend from it.
For example, a write to a file counts but a write to a pipe
shared only with a child process does not. Information from
the /proc file system is not considered externally visible. It
is not normally used in application programs and including it
would make every memory write externally visible. Writes to
memory shared with unrelated programs do count, although in
our test set there were no cases of this happening. We ignore
timing in the sense that, for example, we do not consider a
sleep call to be externally visible. Ordering of externally
visible behavior, on the other hand, does count. For example,
if an old file is deleted and a new one created, swapping the
sequence of the operations would be considered an externally
visible difference. For reproducibility, we have made available
a full list of externally visible system calls at [32].

C. Comparing logs

The major issue when comparing the logs is
nondeterminism. The main source of nondeterminism
is multi-processing and multi-threading. Our log includes
externally visible system calls made by all child processes and
threads, tagged with the calling process or thread. As a result,
system calls are interleaved randomly. To solve this issue,
we compare the log for each subprocess or thread separately,
ensuring that interleaving does not interfere with system call
matching. As a consequence, some ordering information is
lost, but it is essential in making the logs comparable between
different runs. A more subtle issue is naming. To compare
the processes and threads between different runs, we need to
assign names to each that are consistent between runs. There

Fig. 1. Scheduling of fork resulting in different pids

is no such guarantee with the pids provided by the operating
system, so we provide our own process naming scheme. A
sequential scheme, such as the one provided by Linux PID
namespaces [33] is not sufficient here. Figure 1 shows the
case of a process forking twice and its first child forking
once. Numbers are assigned based on the sequence in which
the fork calls are scheduled. For example, the grandchild is
either number 3 or 4 depending on which process forks first.
To address this, we assign hierarchical process names. We use
the name r for the root process (pid 1), r.1 for its first child
(pid 2), r.2 for its second child (3 on the left, 4 on the right)
and r.1.1 for its grandchild through r.1 (4 on the left, 3
on the right). Our naming scheme allows the processes to be
reliably matched between runs, regardless of scheduling.

There are some other sources of nondeterminism we have
to control to be able to match the logs correctly. The most
obvious one is time. Many programs write the current time in
their output or use it to initialize random seeds. To prevent
time from introducing differences, we intercept calls that read
the clock and the rdtsc instruction to make them return a
virtualized time. This time is initialized to a fixed value when
the tracer starts and only incremented when the time is read.
It is inherited by child processes and threads but not shared
afterwards to prevent the introduction of more scheduling-
dependent behavior. The pid is also sometimes used in exter-
nally visible ways, such as for pid files and as a random seed.
For this reason, we virtualize pids using a hierarchical scheme
similar to the naming system described before, encoded in a
pid_t value. We use six bits for the top level child index and
four bits for each level below. The highest-order (sign) bit is
left untouched because some system calls use negation of pids.
The second highest-order bit is used to distinguish virtual pids
from real pids, because Linux never assigns such high pid
numbers. Although ptrace-based pid virtualization means
that we have to intercept and modify all system calls that take
pids as parameters or return them, there is little performance
loss as we already have to intercept all system calls.Compared
to, for example, Linux PID namespaces [33], our approach has
the advantage of not requiring specific privileges, which makes
the approach safer to use and easier to deploy. In addition, we
virtualized the /dev/random device to provide deterministic
random data. The position in this stream is inherited by sub-
processes but never shared to avoid nondeterminism. One final



source of nondeterminism is the port on which connections are
accepted by the accept call in the web servers. Because these
do not affect any other behavior, they need not be virtualized
but can simply be filtered out of the log.

Having dealt with the relevant sources of nondeterminism,
comparing the externally visible system calls performed by
the faulty program with the fault-free reference run is as
easy as invoking the diff tool for each subprocess log. We
logged each system call to a single line to make determining
which calls are different as simple as parsing them from the
diff output. Wherever relevant, any data pointed to by the
parameters is included, such as the data written in case of the
write call. To prevent logs from getting excessively large,
write buffers are hashed. Pointers passed to system calls are
never logged directly, because they might change between
runs and are not relevant to other processes. Performing
system call matching offline using a simple tool such as
diff is much simpler than many other systems and has the
advantage of allowing all behavioral differences to be revealed
without heuristics because all the necessary information is
available. Prior work, in contrast, typically requires far more
complex approaches [34].

Overall, we identified all the sources of nondeterminism
that were an issue for our test programs (and workloads) and
successfully eliminated them. We verified this by running
fault-free runs at least 256 times for each program/workload
combination to check for unexpected differences between
the logs. The 16 fault-free runs performed as a part of each
injection experiment were also checked each time. We do not
claim that our system would be able to tackle any possible
source of nondeterminism, but we believe that our approach is
effective for a broad class of programs, given the diversity in
the programs we tested. To be able to deal with more difficult
cases, fully deterministic record-replay techniques [35]–[40]
would be needed. Because we were able to deal with the
nondeterminism present in our test programs, we can compare
logs from faulty runs directly with those from fault-free runs,
allowing us to identify all the externally visible failures.

D. Silent failures

We have described how to detect failures in terms of
deviant externally visible behavior. The next step is to decide
which of these failures are silent. Our approach is to consider
whether the exit status and the run time are anomalous.
Exit status refers to the value written into the stat_loc
parameter when the parent which invoked the program uses
the waitpid system call. For correct runs, this value should
normally indicate that the program exited with exit status zero.
However, it also allows the program to indicate to its caller
that an error occurred by specifying a nonzero value. In case
the program is terminated by a signal, for example due to a
segmentation fault, the status code indicates both the fact that
the program was killed and the number of the signal that killed
it. We compared the exit status of the faulty runs with the exit
status of the fault-free reference runs, because in some cases a
nonzero exit status can legitimately be returned (for example,

the diff program returns 1 to report differences between
the input files). There were no cases where the reference run
was killed by a signal. Hence, an exit status indicating death
by signal is always a clear sign for the caller that something
went wrong, making the observed failure nonsilent.

In addition to the exit status, we also consider the run time
as a method of detecting failures. Programs that exit very early
or take an excessive amount of time are a clear indication that
something went wrong. We defined the run time as the real
time the caller would measure from the exec call to launch
the program to the waitpid call that confirms that the
program has exited. The time taken is standardized using only
mean and standard deviation of the run time for the fault-free
reference runs. The standardized time gives a good indication
of the degree to which the run time is anomalous. We decided
on a cut-off point of four standard deviations based on our
measurements. The details of this choice are described in
Section IV, which discusses the analysis of our measurements.

E. General applicability

We focus on legacy applications written in low-level
languages and our tools can easily be used with other
programs written in languages for which an LLVM front-end
is available, including C and C++ as well as many others.
To achieve this, the only change that needs to be made is
to use the LLVM compiler and set the flags to generate
bitcode. This is usually a matter of running the configure
script to change the compiler settings and then recompiling.
Our tools are built for Linux, but could easily be adapted
to other POSIX-based platforms by changing the tracer to
use the appropriate ptrace alternative. For non-POSIX
systems such as Windows, the system calls would need to be
reclassified based on their external visibility. For programs
written in higher level languages, specific tools as well as
a more appropriate set of fault types would be needed.
However, the general approach is still equally applicable.

III. PROGRAMS AND WORKLOADS

Our aim in selecting programs to test with has been to on
the one hand have a diverse set of programs while on the other
hand also having a few sets of similar programs. Diversity
in terms of size, complexity and type of work done makes
the results applicable to a wider set of software. Having
sets of similar programs that can run the same workloads
allows us to determine whether there are any patterns in the
variation of the results. This approach makes it possible to
distinguish between properties that apply to a specific class
of programs and whether the results are more affected by
the implementation of the program itself or by the selected
workload. We define workload here as a fixed sequence of
invocations to the program being analyzed, which in practice
is defined by the script performing these invocations. We
preferentially chose programs that offer their own regression
test suite to have a ‘neutral’ workload but constructed our
own workloads for programs that do not offer regression tests.



The first set consists of the compression programs
bzip2, gzip and xz. Although the programs use different
algorithms, they essentially perform the same function and
are invoked in the same way. Both bzip2 and gzip provide
a small regression test set, both of which we included in our
testing. In addition, we used the manual pages of these tools to
construct a workload that is similar for the three programs and
provides more coverage than either of the regression tests. Our
workload performs 500 iterations, performing zip, test and
unzip operations on each iteration. Arguments are randomly
combined from the available ones listed in the manual page.
Input files are also randomly generated, based on a Markov
chain approach. The transition matrix is randomly chosen
from a number of matrices representing different types of
files, including both text and binary types. The intermediate
zipped files are sometimes randomly corrupted to also invoke
some of the error handling code in the programs tested.

Two other sets are the od and sort utilities taken from
the Busybox and Coreutils projects. Busybox is normally
compiled into a single binary containing all tools, but we
configured it to provide each tool as a separate binary. We
constructed workloads for these tools using a similar approach
as described for the compression utilities. However, the argu-
ments to provide are based on the POSIX specification (which
covers both tools) and are therefore exactly identical between
the two implementations of both programs. For sort, in
addition to the randomly selected command line arguments,
we also specify a random language and include input files in
several languages to exercise more of its capabilities.

We selected bash and vim because they are considerably
more complex than the previously mentioned programs and
both include extensive regression tests. In addition, we expect
the control flow to differ from the other programs because
bash performs complex parsing and vim is more interactive
than the other programs. In the case of bash, we selected the
fastest half of the subtests to be able to perform a sufficient
number of fault injection experiments to be statistically
meaningful in the time available.

To also include some long-running programs, we added two
HTTP servers, namely Apache httpd and nginx. We tested
both HTTP servers with the Apachebench benchmark [41]
(AB), configured to perform 1000 requests. One issue with
these programs is that they consist of a parent process and a
number of worker processes. Therefore, the parent process can
deal with any failures occurring in the workers and recovery
strategies could be implemented at that level. For this reason,
we consider not just the exit status of the root process started
by our tracer, but also the exit status of any workers that
die while the benchmark is running. This information makes
our analysis more conservative as it results in fewer failures
being considered silent. Another consideration was that error
codes being logged could be considered a nonsilent failure
mode. We analyzed the logs and found that errors are logged
in only very few cases, not enough to influence the analysis.
Specifically, httpd logged two “403 Forbidden” errors, one
“404 Not Found” and one “500 Internal Server Error”, while

nginx logged three “400 Bad Request” errors.
To achieve determinism in the externally visible behavior,

we had to make some very minor changes in three of the
programs described. In bzip2, a field written to a file was
not initialized, causing the value to be different between runs.
This problem was fixed by always initializing the field to zero.
The gzip regression test randomly generates a directory name
to save output files to. Since the regression test script is not run
by the tracer (unlike gzip itself), time virtualization did not
make this name deterministic. We modified the script to always
use the same name. The xz program prints an unterminated
string to the error output under certain conditions. We fixed the
program to always terminate the string. With these small mod-
ifications, all programs and workloads ran sufficiently deter-
ministically to allow for the comparison described in the pre-
vious section. These changes remove what would otherwise be
spurious differences. Note that this does not affect the validity
of the experiment because writing uninitialized data is always
a bug that requires fixing anyways while in the gzip case the
change in the test script does not affect program behavior.

IV. RESULTS

We have run each workload for each program 16 times
without injecting faults and 256 times with a single injected
fault. The runs without faults serve as a reference for calls per-
formed, exit status and timing. They have also been compared
with each other to ensure that there are no false positives
due to nondeterminism. Faults to inject have been selected
randomly from the set of candidate faults that were activated
in the reference runs, ensuring that all faulty runs result in
activation of the injected fault. This approach also means that
the injected faults are representative of activated candidate
faults. Hence, fault types that can be injected in more different
executed code locations are represented proportionally more
often. This choice is based on the intuition that mistakes that
can be made in more places are likely to be made more often.

All experiments were performed in a Ubuntu 12.04.3 LTS
virtual machine with 3GB of memory running a 32-bit x86
Linux 3.8.0-29 kernel. For virtualization, we used QEMU
1.6.0 with KVM acceleration enabled. The host machines
used CentOS 6.4 with a 64-bit x86 Linux 2.6.32-358 kernel.
A new virtual machine was started for each individual
experiment to ensure that the context is exactly the same
every time. To reduce interference that might make the time
measurements unreliable, we never ran more than one virtual
machine on the same host machine at the same time.

It should be noted that the number of times we have run the
workload is not the same as the number of times the program
has been invoked. The number of times the tested program
is invoked differs between workloads. On the low end, there
are the HTTP servers httpd and nginx, both of which
are started once and continue to serve requests until after the
workload script has been completed. On the high end, there are
the compression programs bzip2, gzip and xz, which are
invoked by our workload many times to test different types of



TABLE II
COVERAGE OF TEST PROGRAMS

program workld. % of basic blocks % of fault cand.
bash rtest 44.3% 46.4%
bzip2 doc 71.2% 83.1%
bzip2 rtest 60.2% 77.5%
gzip doc 41.1% 52.3%
gzip rtest 25.3% 31.6%
httpd ab 17.9% 19.3%
nginx ab 22.4% 23.8%
od (bb) doc 45.0% 55.9%
od (cu) doc 35.9% 44.5%
sort (bb) doc 34.4% 45.5%
sort (cu) doc 30.3% 28.6%
vim rtest 47.8% 53.5%
xz doc 60.6% 63.6%

files and combinations of arguments. For example, each work-
load run of gzip represents 1870 invocations of the program.

It should also be noted that the number of times the
program is invoked by the workload script is not the same as
the number of processes. Each program may use the fork or
clone calls to create new processes and threads. These are
tracked by the same tracer instance so that we can consider
the end result of the whole as perceived by the script that
invoked the program. In most cases, we consider the exit
status reported by the root process; that is, the process that
was created directly from the workload script. The idea is
that any other exit codes are internal to the application and
the caller never learns about them. However, we made an
exception for the HTTP servers httpd and nginx, where
we also consider the exit codes of the worker processes. The
reasoning here is that it is reasonable to expect that these
servers themselves deal with failing worker processes, for
example by logging errors and/or launching new ones. The
results presented in this section are all per invocation rather
than per process, with the HTTP servers including a summary
of the behavior of the subprocesses of that invocation.

Table II indicates the levels of coverage we achieved.
With regard to the workloads, rtest is the official regression
test, doc means constructed based on documentation and ab
means ApacheBench [41] has been used. Coverage numbers
are provided both in terms of basic blocks and in terms
of fault candidates. There is a clear difference between the
two and generally coverage in terms of fault candidates is
substantially higher. This means that basic blocks executed by
the workload tend to be larger on average than basic blocks
not executed. This seems reasonable if one assumes that
error handling code is on the one hand relatively unlikely to
be executed and on the other hand contains relatively many
branches and hence smaller basic blocks.

The coverage numbers we reached are relatively low and
could have been made higher by using symbolic execution to
artificially create coverage-maximizing workloads [42]. How-
ever, we specifically chose these workloads to mimic the types
of regression tests that would be used by software developers
in practice. Artificial workloads are of little use in this case
because in most cases they cannot easily be verified whether

the program functions correctly for these inputs - in fact they
often specifically aim to make the program fail to exercise
error handling code. In addition, such workloads would not
allow comparison between similar programs with the same
workload as they are specifically tailored to a single program.
Hence, we believe that the workloads we use are most
suitable for our specific purpose despite their low coverage.

We cross-checked the coverage of basic blocks between
runs and found that the only program where variation between
runs is found is httpd. The potential impact is that faults
may be selected that are not activated in all benchmark runs.
Our analysis showed that this effect is minor, with more than
95% of the injected faults being activated.

In this section we will use the results of the tests described
to compare the impact of a number of factors on silent
failures. First, we consider to what extent there is a difference
between the programs we tested and whether it is the program
itself or the workload that makes a difference. Next, we
consider how the different fault types behave with regard to
silent failures. Finally, we consider whether the number of
times a fault is activated makes a difference.

A. Differences across programs

With regard to timing, we have used the fault-free reference
runs to estimate the mean and standard deviation of the run
time for each individual invocation. We consider the run
time to be anomalous if it is at least four standard deviations
above or below the mean of the reference run times. Using
two standard deviations would give 5.5% false positives and
three standard deviations would give 1.7% false positives,
while with four standard deviations there is not a single case
in our reference runs that would violate the time constraints.
The standard deviations are generally very low compared to
the mean, allowing anomalies to be detected quite well. For
example, in the 95th percentile of the invocations (instances
where program is started by the workload script) the standard
deviation is only 3% of the mean runtime.

To get an impression of what happens in cases where
programs show failure, we have computed the frequencies of
all combinations of calls that cause differences between correct
and faulty behavior. By far the most common case is that
the difference is only due to write calls. This accounts for
38.3% of the faulty invocations when weighing each program
is equally. This case is also the hardest to detect, because there
is no visible difference other than the incorrect output. In a fur-
ther 17.6% of the cases, open and write calls make up the
only visible difference. In a further 2.5%, read and write
calls together make up the difference. It should be noted here
that read calls are only externally visible when from sockets
and pipes to unrelated processes. No other common combina-
tions of just a few calls differing are particularly common; in
most other instances there are many simultaneous differences.

Table III shows how many failures occurred and how many
are considered silent according to different criteria. Each
number represents a percentage of the program invocations
in which the injected fault was activated. Although we only



TABLE III
NUMBER OF FAILURES PER PROGRAM/WORKLOAD

program workld. total silent-exit silent-time silent-both
bash rtest 33.7% 14.7% 9.7% 8.0%
bzip2 doc 66.3% 32.1% 35.0% 23.1%
bzip2 rtest 57.1% 33.9% 34.6% 26.0%
gzip doc 64.3% 24.5% 26.1% 17.5%
gzip rtest 49.1% 7.2% 35.8% 7.0%
httpd ab 51.5% 15.8% 14.9% 14.4%
nginx ab 57.0% 13.3% 5.9% 4.7%
od (bb) doc 64.6% 30.9% 23.1% 19.6%
od (cu) doc 54.2% 22.9% 21.3% 17.8%
sort (bb) doc 52.8% 14.0% 9.5% 5.2%
sort (cu) doc 51.2% 10.2% 9.7% 5.0%
vim rtest 29.7% 17.8% 24.1% 16.9%
xz doc 46.1% 21.1% 23.0% 14.3%

injected faults that are activated by the workload at least once,
there are invocations in which the fault was not activated and
these are excluded here. It should be noted that (as explained
before) for httpd and nginx we consider the exit status of
the worker processes as well as the main process.

The first interesting observation from Table III is that there
are many faults that do not cause any externally visible devi-
ations in behavior even when they are activated. The percent-
ages suggest that the issue of nonfailure of activated faults is of
a similar magnitude as the issue as nonactivation due to limited
coverage. The different between programs is substantial. This
means that, for example, to test a similar number of failures
one would have to inject more than twice as many faults in
vim as in Busybox od. Unlike coverage, this issue rarely
receives any attention in traditional fault injection campaigns,
which typically only strive to provide reasonable fault activa-
tion guarantees [30], [31]. When comparing between programs
and benchmarks, what stands out most is that the number
of failures is very low for bash and vim. These programs
perform relatively complex processing compared to the others
as they implement many different functionalities. Busybox od,
bzip2 and gzip, on the other hand, have relatively high fail-
ure rates. These programs linearly process a single stream of
input, always in more or less the same way. It seems plausible
that there is more opportunity for a corrupted state not to be
used again in case of the more complex programs, while the
linear programs are using the same state over and over again.
This means that studies which examine the impact of faults and
recovery after faults for a single program (such as [11], [43])
should not be generalized to different classes of programs.

Having looked at the failure rates in general, we will
now consider the number of silent failures. The “Silent-exit”
column indicates what percentage of activated faults consists
of failures that would not be detected by the exit status.
“Silent-time” refers to failures that do not differ from the
reference run time by more than four standard deviations.
The “Silent-both” column refers to failures that cannot be
detected from either exit status or run time. While performing
checks on the exit status and run time allows at least half of
the failures to be detected in almost all cases, it is also clear
that each program has a substantial number of silent failures.

The average over all programs is 13.8% of all activated faults
resulting in silent failures, which, interestingly, seems to
suggest high correlation with the fraction of faults introducing
latent bugs according to findings discussed in prior work [19].
This number is high enough to say that any research involving
fault injection should consider that a substantial number of
faults might spread to other components (in this case through
system calls) while not being easily detected. Care must be
taken to detect these faults through their anomalous behavior.
In addition, any research performing state recovery based on
the assumption that failures are usually fail-stop (such as [4],
[5]) should consider the implications of silent failures.

Which approach is more effective at detecting failures
differs strongly between programs. It is clear that different de-
tection mechanisms are effective for different programs. Many
failures triggered by the gzip and vim regression tests can be
detected from the exit status, while it is relatively uncommon
for failures in these programs to have a large effect on the
run time. For bash and Busybox sort, on the other hand,
run time is a better detection mechanism. There is no obvious
pattern in which programs and workloads are most like to have
many silent failures. The numbers for od and sort are very
similar between the Busybox and Coreutils implementations,
which may be due to the fact that both implement the exact
same functionality and run the same benchmark. However,
when considering the compression programs using the same
benchmark, it is clear that bzip2 has more silent failures
than xz does. This might have to do with the fact that xz
implements a more advanced algorithm and is hence more
complex, the same reasoning as for the failure rate in general.
Still, it is conceivable that programming style also plays a
substantial role here. A program that contains many checks and
assertions, tests each return code and exits whenever anything
is wrong would be much less likely to have any silent failures.

The main conclusion from our experiments comparing
programs is that silent failures occur in sufficient numbers
to be a serious threat in fault injection experiments. We have
not been able to pinpoint the source of variation between
programs, but it seems credible that coding style is a big factor.
Error checks and consistency checks (including assertions)
should be able to make some silent failures nonsilent. In
addition, we found that considering just activation of faults
is not enough because many activated faults do not result in
deviant behavior, especially in more complex programs.

B. Differences across fault types

Usually fault injection experiments consider a variety of
mistakes commonly made by programmers (for fault types
used by us, see Table IV). It is reasonable to expect that
different types of faults result in different program behavior.
Table IV shows the percentage of activated faults resulting in
failures per fault type, with each program weighed equally.
The differences in the likelihood of failure are very large. We
will discuss the fault types that stand out here.

The “corrupt-pointer” fault type stands out for almost
always causing deviant behavior when activated. This is



TABLE IV
NUMBER OF FAILURES PER FAULT TYPE

fault type total silent-exit silent-time silent-both
corrupt-index 72.5% 48.7% 55.4% 42.7%
corrupt-integer 42.3% 24.7% 22.4% 17.8%
corrupt-operator 40.4% 21.3% 18.6% 12.7%
corrupt-pointer 92.1% 20.3% 7.7% 3.1%
flip-bool 61.9% 29.1% 25.6% 16.4%
flip-branch 54.3% 27.4% 23.7% 17.3%
no-load 48.1% 32.3% 25.4% 21.0%
no-store 44.2% 15.7% 12.9% 7.8%
random-load 55.4% 23.2% 17.0% 13.3%
stuck-at-branch 38.3% 19.5% 17.8% 11.9%
swap 12.0% 4.0% 5.6% 3.4%

easily explained by the fact that most random pointers point
into unallocated memory, causing a segmentation fault when
they are dereferenced. This is consistent with the fact that
many failures triggered by this fault type can be detected by
exit code, either because of being killed by a segmentation
fault or by returning an error exit code after a segmentation
fault is caught or detected in a child process. Even more
cases are detected based on run time. Hence, although an
activated “corrupted-pointer” fault is very likely to result in
failure, this failure is very unlikely to be silent.

The “swap” fault, on the other hand, stands out for resulting
in very few failures. The most likely reason here is that some
of the most commonly used operators, such as +, *, ==,
!=, & and | are commutative so that swapping the operands
has no effect. Potential effects for the other operators are
quite diverse, including incorrect values, buffer over- or
underflows, divisions by zero or NULL pointer dereferences.
Many of these cases are caught by exit status, which suggests
that the more dramatic results are quite common for the
noncommutative operators.

Another interesting fault type is “corrupt-index”, where
activated faults are most likely by far to result in silent
failures. This is caused in part by a high failure rate in
general, but it also has the highest proportion of silent failures
of all fault types. Since this fault type is an off-by-one error,
it is likely to cause small deviations in buffers and minimal
buffer overflows. Unless this happens to affect another
variable used as a pointer or as an index or it overwrites a
string terminator, segmentation faults are relatively unlikely
to result (only 5.8% of the cases). Hence, the relatively few
cases where it is detected from the exit status are most likely
due to consistency checks and assertions.

Summarizing, it has been shown that different fault types
differ greatly with regard to the likelihood to cause failure and
the ease with which failures can be detected. In both senses,
experiments injecting pointer-related faults are much easier
to perform and control than experiments with data-related
faults. Branch-related faults are somewhere in between, often
triggering silent failures but having more potential of being
uncovered by anomaly detection systems.

C. Impact of ease of reachability

We have now considered differences between programs and
fault types with regard to the occurrence of silent failures.
The final factor we consider is fault location. One particularly
important aspect of fault location is which locations are easy
to reach while testing and which locations are harder to
reach. Considering for example the compression programs,
we would say that the main compression loop is easy to
reach as any test that does not cause the program to fail early
(for example by specifying invalid arguments) would reach it.
Some other parts of the code execute in some operation modes
but not others. Those are considered moderately easy to reach.
There are many error handlers, on the other hand, that only
execute under a very specific set of conditions. These are
the locations we consider to be harder to reach. In addition,
there is the question of how likely a fault is to cause failure
when it has been activated. This is a similar idea to being
in a hard-to-reach location if we consider it hard-to-reach in
an input space. A typical example to illustrate this is a buffer
overflow. Even if the code location of the bug is easy to reach
(for example in the main loop), an input size must also be
found that is sufficiently large to overflow the buffer into some
relevant state while not being so large as to fail input size
checks earlier on. An overflow of a small buffer is therefore
easier to reach in the input search space than an overflow of
a large buffer. Because hard-to-reach bugs are more likely to
escape testing, it is important to know whether they suffer as
much from silent failures as other fault locations.

To determine which fault locations are hard-to-reach,
we consider the fraction of invocations in which they are
activated (reachability in code space) or in which they result
in failure when activated (reachability in input space). A
histogram of both variables is shown in figure 2. It should be
noted that the HTTP servers have been excluded here because
they only involve a single invocation. All other programs
have been weighed equally. The “frequency” axis specifies
the number of injected faults in the bins on the x-axis. It is
clear that for both issues, there is great diversity between fault
locations. Some faults are (almost) always activated while
other faults are activated only in a few test cases. Similarly,
while many faults either always cause failure or never cause
failure when activated, there is also a substantial number of
faults that only cause failure in a part of the cases.

For our further analysis, we classified both the activation
and failure variables in three groups: <20% is considered
hard to reach, ≥ 80% is considered easy to reach and the
remainder is considered moderately easy to reach.

Table V shows the relationship between reachability and
hidden failures. The most interesting result is found when con-
sidering the likelihood of activation. Faults that are activated
only in a few of the test invocations, suggesting that they are
relatively hard to reach in a test set, do not only result in failure
more often but are also especially likely to result in hidden
failures. This suggests that more extensive error checking is in
place in code locations that are often used, exposing failures



Fig. 2. Histograms of fault activation and failure ratios; frequency refers to
the total number of runs for all programs/benchmarks in that bracket

TABLE V
NUMBER OF FAILURES PER REACHABILITY CLASS

reachability class total silent-exit silent-time silent-both
Activation <20% 62.1% 36.1% 33.9% 26.6%

20-80% 56.9% 26.1% 23.2% 17.6%
≥ 80% 57.0% 14.5% 26.5% 10.5%

Failure <20% 1.5% 0.9% 0.9% 0.7%
20-80% 52.6% 34.0% 27.6% 21.6%
≥ 80% 97.7% 36.1% 42.2% 25.6%

that would otherwise remain hidden. However, it is known that
especially those code locations that are rarely used are more
likely to contain bugs [21], [22]. This means that developers
need to spend more effort into extending their regression
tests to cover a larger part of the code and that they should
perform more sanity checking especially in those regions that
are not often used and hence more likely to contain bugs.

With regard to faults that are relatively unlikely to result
in failure when activated, table V shows that, although (by
definition) a relatively small fraction of those result in failure,
a relatively large fraction of those failures remain silent. This
supports our argument that considering whether or how often
faults are activated is not enough to identify which faults are
likely to escape testing. There is also a class of faults that can
be triggered often but only results in failure under very specific
conditions. The fact that these faults are also relatively likely
to be silent supports the idea that fault injection experiments
should not focus on just activation of faults, but also consider
how many faults result in behavioral differences.

V. THREATS TO VALIDITY

In this section, we consider various factors that may have
interfered with our experiments and the extent to which they
influenced the results.

Although most of our data was gathered outside the faulty
program by our tracer, the number of fault activations was
determined from the per-basic block execution information
gathered by EDFI inside the faulty program. The choice to
take this approach was made because externally logging such
events would be prohibitively expensive since we counted
execution of every basic block. It is therefore possible that
faults overwriting random memory could have interfered with
activation counts read from the faulty program’s memory by
the tracer. The worst thing that could happen in this case

would be an activated fault resetting the activation count
to zero. If the fault were to result in a failure, this would
be visible as a failure without fault activation. This did not
happen a single time in our experiments. We think it is
therefore safe to assume that if the activation count was reset
in cases without failure, it would at most affect an insignificant
number of runs and have no impact on the results.

Another concern is the faulty program interfering with the
tracer itself. Because there is no shared memory between
them, the only way to interfere would be through system
calls, which are monitored. To prevent interference, we have
the tracer check the arguments of risky system calls against a
white list. The system call is canceled with error code EPERM
for system calls that modify resources not on the white list,
such as opening a file or sending a signal to an external
(untraced) program. We manually expanded the white list to
the point where no calls need to be canceled and because
there are no resources on the white list that would affect the
tracer, we know that it is safe from interference.

Another potential issue is the use of virtualization, which
could potentially interfere with the times measured. To
minimize this effect, we only run a single virtual machine per
host at a time. In addition (as described in the Section IV),
we found that there were no extreme deviations in run time
in the reference run, which suggests that we successfully
mitigated this issue.

Although our approach has the advantage of allowing detec-
tion of any externally visible failure because system call logs
can be compared to reference runs, it also comes with some
limitations. Ordering information between processes or threads
is lost. This is desirable in most cases because it prevents
scheduling from introducing false positives, but it could miss
failures caused by incorrect interactions between processes.
Suppose, for example, that process A performs action X and
process B performs action Y. It could be the case that process
X has to be performed before action Y, for example if the
former is the deletion of an old log file and the latter is creation
of a new one. In this case, processes A and B need to use
some form of interprocess communication, such as signals,
semaphores, pipes or shared memory, to enforce the correct
order. If a fault causes Y to be performed prematurely, it
would be a failure that our system call matching approach
would not be able to detect. However, if programs are to be
studied that perform this kind of behavior, it would be possible
to address this issue by identifying synchronization points
between threads and processes. If the synchronization point is
marked in the logs for both processes, reordering with respect
to the synchronization point would be detected and race
condition-inducing failures would also be found. Alternatively,
for particularly complicated cases it would be possible to
complement our analysis with general-purpose deterministic
record-replay frameworks [35]–[40] to address this issue.

VI. RELATED WORK

Fault injection is the de facto standard technique for system
dependability benchmarking. Its versatility and relatively low



implementation costs have helped many researchers assess the
dependability of several classes of systems, spanning from
distributed [7] and local [8]–[10] user programs to operating
systems [11], [12], file caches [15], and device drivers [13],
[14].

Much prior work in the area focuses on the develop-
ment of general-purpose fault injection tools. A common
implementation strategy is to introduce program mutations
that mimic realistic software or hardware faults. Mutations
have been applied at the source level [22], [44], [45], at
the binary level [15], [27], [46], or, more recently, at the
intermediate code level [25], [47], [48]. An alternative is to
introduce program mutations at runtime, using software and
hardware traps [7], [46], [49], [50] or library interposition
mechanisms [9], [10].

Until recently, however, there has been little attempt to
investigate the general properties of fault injection and its
impact on the running system. A number of studies evaluate
the ability to inject realistic and representative software faults,
typically focusing on what to inject [27], [51] where to
inject [21], [22], and how to inject [52]. This is useful to
reliably draw general conclusions from experimental results.
Other studies investigate how to improve fault activation guar-
antees, typically injecting faults into hot code spots identified
by program profiling [30], [31]. This is useful to eliminate
invalid runs with no faults activated and ultimately improve the
efficiency of large-scale fault injection experiments. The latter
is also the goal of efficient fault exploration strategies [8], [10],
which rely on domain-specific heuristics to drastically reduce
the number of fault injection runs to the interesting cases.
While useful to analyze and improve the general properties
of fault injection, all these studies reveal little insight into its
impact on the system behavior.

Other studies have sought to analyze the impact of arti-
ficially injected faults on a running system, but without at-
tempting to fully characterize its behavior—and thus unable to
thoroughly investigate the impact of silent failures. Traditional
characterization studies, for instance, solely focus on fail-stop
behavior [16], [17] or high-level properties directly exposed
to the user view of the system [18]. More recent studies
investigate how faults progressively propagate throughout the
system [43], [53]. The typical strategy is to rely on taint
analysis techniques to identify all the corrupted portions of
the internal system state. While able to expose some failures
that do not normally result in fail-stop behavior during the
experiment, this strategy cannot alone pinpoint behavioral
changes that corrupt the external state of the system and even-
tually lead to subtle long-term failures. Given that prior work
has demonstrated that fault propagation normally results in
transient internal state corruption [53], we expect any strategy
that ignores behavioral changes and external state corruption
to heavily underestimate the impact of silent failures.

Relatedly, bug characterization studies have also attempted
to analyze the system behavior in presence of real-world soft-
ware faults. Most studies, however, do not specifically consider
silent failures, but typically focus on fail-stop behavior [11],

[54], fault propagation [11], or bug reproducibility [55], [56].
A notable exception is represented by the work of Fonseca
et al. [19], which investigates internal and external effects of
real-world concurrency bugs. Their notion of latent bugs is
similar, in spirit, to our definition of silent failures in that they
both lead to subtle long-term errors not immediately reported
to the user. Their study demonstrates the substantial presence
of silent failures in real-world bug manifestations and also
confirms that they are most often induced by corruption of
external system state—persistent on-disk state, in particular.
When compared to our analysis, however, their investigation
is limited to concurrency bugs, requires extensive manual
analysis, and is based on a relatively small sample size. Our
investigation, in contrast, is supported by automated analysis
of fault injection results, which requires no manual inspection
and naturally provides much more stable and general results.

To conclude, our work draws inspiration from prior work
in different research areas. The general methodology used in
our analysis is inspired by prior work comparing faulty and
fault-free execution runs using state diffing techniques [15],
[57]. Compared to our work, prior efforts differ in purpose—
evaluating the effectiveness of fault-tolerance mechanisms—
and scope—analyzing differences in the system state (and not
in its behavior). Our system call-based behavior characteriza-
tion is inspired by prior work on anomalous system call detec-
tion [23], [24]. In contrast to prior work, our detection strategy
compares semantically equivalent execution runs, naturally
resulting in a simpler and more conservative behavioral anal-
ysis. Our detection strategy, in turn, is inspired by prior work
comparing similar execution runs to detect deviant program
behavior. In contrast to our work, N -variant systems [58], [59]
compare semantically equivalent execution runs with different
memory layout (to detect security attacks) and multi-version
execution [60], [61], compares execution runs from multiple
program versions (to perform online patch validation). Finally,
our cross-execution system call matching strategy is inspired
by recent mutable record-replay techniques [34], [62], which
seek to deterministically replay a recorded execution on a
different program version. In our work, however, mutability
is solely induced by fault injection and system call matching
is only operated after “replaying” the fault-free execution run.
This drastically simplifies our matching strategy, which only
compares completed execution runs and need not rely on the
sophisticated heuristics proposed in prior work [34].

VII. CONCLUSION

Based on our findings, we can now answer the research
questions behind our investigation. First, it has become clear
that silent failures are very common in fault injection experi-
ments. On the one hand, this confirms that research based on
fault injection experiments can be safely used to investigate
the impact of real-world software bugs, where silent failures
have been shown to be of similar relevance [63]. On the other
hand, this also means that any research dealing with fault
injection must carefully consider the impact of silent failures.
Our results demonstrate that the widely adopted assumption



that failures are generally fail-stop is hardly sound, as all
the programs we investigated revealed a significant number
of silent failures. When faults are activated but no failure is
observed at the end of an experiment, it is important to assess
the effectiveness of the adopted failure-detection techniques.
This is important since the program might have actually failed
during the experiment but the impact of the failure gone
completely unnoticed. In particular, we encountered many
cases of faults that only deviate from correct behavior in terms
of the data read or written by the program. Such deviations
could easily go unnoticed even when anomaly detection sys-
tems are used. Our approach of comparing externally visible
behavior against a reference run, on the other hand, is a more
sensitive tool for detecting failures and hence allows for more
conservative experiments where no failure goes unnoticed.

In addition to finding that silent failures are an important
concern that cannot be ignored, we also identified the cir-
cumstances in which silent failures are particularly common.
In general, it can be said that complex programs with many
different functionalities are more likely to show silent failure
behavior than programs that linearly perform a single task.
However, there is considerable variation across programs that
cannot easily be explained from high-level characteristics.
Instead, it seems reasonable to expect that the programs which
use more consistency checks and assertions are less likely
to fail silently. Given the similarity between injected faults
and real-world bugs, this reinforces the idea that defensive
programming is an important practice, even if the response to
an unexpected condition is not more than an immediate panic.

Besides the programs tested in a fault injection experiment,
the design of the experiment itself has also a substantial
impact. We found large differences between fault types, with
pointer corruption faults behaving most predictably (failing
often, generally in highly visible ways) and faults leading
to data corruption being the most difficult to address (failing
infrequently, often in subtle ways). Hard-to-reach code tends
to generate a relatively large number of silent failures, which,
in turn, means that low-coverage benchmarks run a risk of
masking the presence of silent failures. It can generally be
said that a well-designed fault injection experiment using a
broad range of fault types and good coverage is more likely
to encounter silent failures than a poorly designed experiment
with only the most obvious fault types and poor coverage.

In addition to providing the first thorough measurement of
silent failures, our work also introduces a new framework to
automatically identify fault-induced deviations in externally
visible behavior. Our framework implements a simple and
conservative system call matching strategy, without resorting
to complex heuristics or missing any relevant deviations. In our
future work, we are planning to extend our framework to deal
with more complex forms of nondeterminism that are even
more generally applicable. Detecting synchronization points
across processes and threads, for instance, could be a viable
option to eliminate common forms of scheduling nondeter-
minism. More complicated situations, such as test programs
that adapt their process model to the system load, could

be tackled using deterministic record-replay techniques [35]–
[40]. This would allow us to extend our analysis to generic
systems software. Another potential application of our tool
could be to study the interactions between multiple injected
faults. Overall, we believe our framework could be used
in dependability research to improve the soundness of fault
injection experiments.
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