
File-Level, Host-Side Flash Caching with Loris

Raja Appuswamy, David C. van Moolenbroek, Sharan Santhanam, Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam, Netherlands

{raja, dcvmoole, s.santhanam, ast}@cs.vu.nl

Abstract—As enterprises shift from using direct-attached stor-
age to network-based storage for housing primary data, flash-
based, host-side caching has gained momentum as the primary
latency reduction technique. In this paper, we make the case
for integration of flash caching algorithms at the file level, as
opposed to the conventional block-level integration. In doing so,
we will show how our extensions to Loris, a reliable, file-oriented
storage stack, transform it into a framework for designing
layout-independent, file-level caching systems. Using our Loris
prototype, we demonstrate the effectiveness of Loris-based, file-
level flash caching systems over their block-level counterparts,
and investigate the effect of various write and allocation policies
on the overall performance.

Index Terms—Caching, Flash, File System Architecture, SSD,
NAS, Loris

I. INTRODUCTION

Over the past few years, many enterprises have shifted

from using direct-attached storage to network-based storage

for housing primary data. By providing shared access to

a large volume of data and by consolidating all storage

resources at a single spot, network-based storage improves

scalability and availability significantly. The storage industry

has also witnessed an equally phenomenal increase in the

adoption of flash-based solid state storage. While flash can

be used in several capacities (data/metadata caches, primary

storage devices, etcetera) in a networked storage server, recent

research has shown that using flash at the host rather than

server side has several advantages [4], [14]. First, a hit on

the host-side flash cache can be serviced immediately without

an expensive network access. Second, by filtering requests, a

host-side cache significantly reduces the number of requests

that need to be serviced by the server. By eliminating bursty

traffic, host-side caching enables servers to be provisioned

for average I/O volumes, rather than peak volumes, thereby

reducing capital expenses.

Figure 1 shows the architecture and components involved

in a typical host-side caching implementation. As shown in

the figure, storage resources consolidated at the server side are

exported to the host side using a Storage Area Network (SAN)

protocol like iSCSI. File systems at the host, which tradition-

ally managed direct-attached storage devices, are now used

to manage remote storage volumes. Several systems integrate

caching into the storage stack below the file system and above

the iSCSI client, thereby retaining backward compatibility

with existing file systems.

Block-level caching systems can be classified into two types

depending on their write policy, namely, write through and

write back. A write-through cache issues writes to both the

File

System

VFS

Flash Cache

SATA iSCSI

IP SAN

Figure 1: Traditional host-side flash caching architecture. The figure
shows pooled storage resources at the server side exported to the host
side over an IP-based Storage Area Network. On the host side, the
dotted lines demarcate file-aware layers from those that are not. Thus,
the flash cache is managed by a file-unaware, block-level cache driver
that uses the SATA and iSCSI subsystems to communicate with the
local cache device and remote primary storage. The semantically-
aware file system remains oblivious to the usage of a cache device.

networked primary storage and the local flash cache in the

order in which they were received and waits for these writes to

complete before passing back an acknowledgement to the file

system. A write-back cache, on the other hand, acknowledges

writes as complete as soon as they are serviced by the local

flash cache. The networked primary storage is updated asyn-

chronously in background. Under write-intensive workloads,

write-back caching is guaranteed to improve performance as

it converts high-latency, foreground writes into asynchronous,

low-latency background writes. However, as a block-level,

write-back cache intercepts and caches file system requests, it

absorbs writes to both metadata and data blocks alike, thereby

causing several problems as it silently changes the file system-

enforced data ordering.

The first issue is the impact on the correctness of sev-

eral server-side administrative operations such as backup,

snapshoting and cloning. For instance, a snapshot initiated

at an inopportune time might capture an inconsistent image

of the data volume. Thus, backups made off this snapshot

would not help in disaster recovery, as the host file system

might not be able to fix the inconsistency in the restored

snapshot. Second, a loss of file system metadata due to an

SSD failure could have a negative impact on availability as it

can cause substantial data loss. Third, almost all state-of-the-

art enterprise storage systems adopt the “release consistency”



model [4] when multiple storage clients access the same

storage volume. Under this model, a volume is shared across

clients in a serial fashion with only one client maintaining

exclusive access at any time. When block-level write-back

caching is used in such a setting, the failure of one client

can render the network storage inconsistent or, in the worst

case, unusable by any other client. In light of these issues, it is

not surprising that several write-back caching implementations

even make explicit disclaimers warning administrators about

storage-level inconsistencies after a cache failure [6].

A. Consistent, Block-Level Write-Back Caching

To solve these issues caused by unordered write-back policy,

two solutions were proposed recently [12]. The first technique,

referred to as Ordered Write Back, is based on the simple

idea that consistency at the networked storage system can be

maintained by evicting blocks in the same order in which they

were received by the cache. The intuition behind this idea is

the fact that file systems already maintain a consistent disk

image by enforcing ordering of write requests (for example,

journaled writes must precede actual data writes). However,

this approach has several bottlenecks that impose a significant

performance penalty. For instance, the cache must keep track

of dependencies between data blocks – an operation with

non-trivial compute and memory requirements. It must also

preserve and write back all dirty copies of the same block,

thereby wasting cache space and network bandwidth.

To solve problems with Ordered Write Back, Journaled

Write Back has been proposed. The idea behind this approach

is to use a host-side, persistent journal, in concert with a

journal on the server side, to bundle file system updates into

transactions that are checkpointed asynchronously to remote

storage in the background. Thus, the Journaled Write Back

approach enables consistent, block-level, write-back caching

at the host side only when used in concert with networked

servers that provide a atomic-group-write interface. In addi-

tion, under certain configurations, this approach would suffer

from performance issues due to redundant use of journaling by

both the file system and block-level cache to protect the same

data and metadata blocks. Recently, researchers have shown

how such redundant journaling, albeit in a different context

(SQLite database and ext4 file system), deteriorates application

performance significantly in the Android stack [9].

B. Filesystem-Based Caching

Given that all modern file systems use techniques like

journaling and shadow copying to ensure metadata consistency

across reboots, the natural alternative to integrating caching at

the block level is to modify existing file systems to be cache

aware. However, such an integration has one major issue –

its lack of portability. A caching algorithm integrated into a

file system is restricted to work only within the scope of that

file system. This lack of portability would only be an incon-

venience rather than a show stopper if device heterogeneity

were nonexistent.

Heterogeneity exists both within and across device families.

New devices, with interfaces different from the traditional

block-based read/write interface, are emerging in the storage

market. For instance, some flash devices and Storage Class

Memory devices are byte accessible, while Object-based stor-

age devices, on the other hand, work with objects rather than

blocks. Integrating these devices into the storage stack requires

building custom file systems, and hence reimplementing the

caching algorithm, for each device family.

Similarly, different SSDs, sometimes even from the same

vendor, have different performance characteristics. For in-

stance, Intel X25-V SSD design makes a price/performance

trade-off, as it sacrifices sequential read/write throughput by

reducing the number of channels populated with NAND flash.

Intel X25-M, on the other hand, has equally impressive random

and sequential read/write performance figures. Achieving op-

timal performance in such cases requires pairing devices with

their ideal layout algorithms. For instance, a log-structured

layout might be best suited for an Intel X25-M, while it

could deteriorate performance when used with X25-V. This

heterogeneity in layout management forces one to reimplement

caching algorithms not just across device families, but also for

each new layout algorithm within device families.

C. Our Contributions

Solving the heterogeneity issues faced by file system-based

caching solutions requires decoupling flash-cache manage-

ment from layout management. In prior work, we proposed

Loris [2], a fresh redesign of the storage stack that implements

layout-independent, file-level RAID algorithms. In this paper,

we present our design extensions to Loris that transform it into

a framework for implementing layout-independent caching

solutions. In doing so, we make three major contributions to

state of the art.

First, in contrast to traditional approaches, we make the

case for integrating caching algorithms at a different level

in the storage stack (Section II). With the new integration,

caching algorithms work at a higher level of abstraction by

managing files rather than disk blocks. As we will see later

in this paper, one of the major challenges with such an

integration is implementing efficient subfile caching. Thus,

our second contribution is the Loris-based subfile caching

framework that can be used by any caching algorithm to map

each logical file block to a different storage target (Section III).

Our third contribution is a thorough comparative evaluation of

our Loris prototype with a block-level solution to prove the

effectiveness of our approach against a traditional block-level

cache, and to understand the impact of caching policies on

overall performance (Section IV).

File-level caching has been implemented earlier in the

context of distributed file systems like AFS [8] and Coda

[11]. In these systems, the client implementation runs as a

user-space application and uses the local file system to perform

coarse-grained, whole-file caching of application data (not

system metadata) stored in a networked file store. We, on

the other hand, integrate flash-caching algorithms directly into



File

System

VFS

Physical

Naming

VFS

Cache

Logical

Disk DriverDisk Driver

Software

RAID

(a) (b)

Figure 2: The figure depicts (a) the arrangement of layers in the
traditional stack, and (b) the new layering in Loris. The layers above
the dotted line are file aware; the layers below are not.

the local storage stack and show how a file-level (but not

whole file) integration of caching algorithms can be used to

implement unified, block-granular caching of both application

data and system metadata, without any of the consistency

issues or performance overheads of the traditional block-level

integration.

II. THE CASE FOR FILE-LEVEL HOST-SIDE CACHING

WITH LORIS

In this section, we will first provide a quick overview of

the Loris storage stack. Following this, we will show how

Loris makes layout-independent integration of flash caching

possible, and we will make the case for such an integration

by describing its advantages over file system-based and block-

level approaches.

A. Loris - Background

Loris is made up of four layers as shown in Figure 2. The

interface between these layers is a standardized file interface

consisting of operations such as create, delete, read, write,

and truncate. Every Loris file is uniquely identified using

a <volume identifier, file identifier> pair. Each Loris file

belongs to a file volume, which is a rooted collection of

files and directories. Each Loris file is also associated with

several attributes, and the interface supports two attribute ma-

nipulation operations—getattribute and setattribute. Attributes

enable information sharing between layers, and are also used

to store out-of-band file metadata. We will now briefly outline

the responsibilities of each layer in a bottom-up fashion.

1) Physical Layer: The physical layer exports a physical

file abstraction to the logical layer. A physical file is a stream

of bytes that can be read or written at any random offset.

Thus, details such as the device interface and on-disk layout

are abstracted away by the physical layer.

Each physical layer implementation is tasked with providing

1) device-specific layout schemes for persistent storage of

files data/attributes, and 2) end-to-end data verification using

parental checksumming. Each storage device is managed by

a separate instance of the physical layer, and we call each

Data blocks

Inodes

In-core volume index

In-core meta index

Logical layer

Physical layer

Meta index inode Volume index inode Data file inode

V1

F1

I1 I2

Figure 3: The figure shows the relationship between meta index
and volume index. The figure shows the meta index file containing
the file volume metadata entry for volume V1, which could be
<V1, REGULARVOL, volume index configuration=<raidlevel=1,
stripesize=N/A, physicalfiles=<D1:I1>>. Thus, inode I1 in physi-
cal module D1 is used to store the volume index file data (an array
of logical file configuration entries) for file volume V1. The logical
file configuration entry for file <V1, F1> could be <raidlevel=1,
stripesize=INVALID, physicalfiles=<D1:I2>>. Thus, inode I2 in
physical module D1 is used to store file F1’s data.

instance a physical module. Our current physical layer pro-

totype is based on the traditional UNIX file system layout.

Each physical file is represented by an inode. Each inode

contains enough space to store the file’s Loris attributes, seven

direct data block pointers, and one single, double and triple

indirect block pointer. Free blocks/inodes are tracked using

block/inode bitmaps. Although our physical layer implements

parental checksumming of all data and metadata, we will omit

the details as we do not use it in our evaluation.

2) Logical Layer: The logical layer exports a logical file

abstraction to the cache layer. A logical file is a virtualized

file that appears to be a single, flat file to the cache layer.

Details such as the physical files that constitute a logical file,

the RAID levels used, etc. are confined within the logical layer.

The logical layer works with physical files to provide both

device and file management functionalities. It is made up of

two sublayers, namely the file pool sublayer at the bottom,

and the volume management sublayer at the top.

In prior work, we introduced a new Loris-based storage

model called File Pooling, that simplifies management of

storage devices [3]. File pools simplify storage administration

and enable thin provisioning of file volumes [3]. The file

pool sublayer maintains data structures necessary for tracking

device memberships in file pools, and provides device manage-

ment operations for online addition, removal and hot swapping

of devices.

The volume management sublayer supports file volume vir-

tualization. As we mentioned earlier, each logical file belongs

to a file volume. Each file volume is physically represented

by a volume index file which is created at file volume creation

time. This file stores file configuration information entries for

all files belonging to its volume. This configuration informa-

tion consists of 1) RAID level used, 2) stripe size used (for

certain RAID levels), and 3) list of physical files that store the

logical file’s data.

Similar to the way the volume index file tracks the mem-

bership of files in file volumes, file volumes themselves are

tracked by the meta index file. This file contains file volume



metadata entries, one per volume, that record: 1) the number

of files in that volume, 2) tiering/caching policy used, and 3)

physical file(s) that store the volume index data among other

details. Figure 3 describes the relationship between these two

data structures with an example.

3) Cache and Naming Layers: The cache layer provides

in-core caching of data pages. Our prototype cache layer

implements the LRU cache replacement algorithm.

The naming layer acts as the interface layer. Our prototype

naming layer implements the traditional POSIX interface

by translating POSIX files and attributes into their Loris

counterparts. It implements the directory abstraction by using

Loris files to store directory entries. All POSIX semantics

are confined to the naming layer. However, the naming layer

uses the attribute infrastructure to help the other layers discern

Loris metadata from application data. For instance, as far as

the logical layer is concerned, directories are just regular files

with special attributes that mark them as important. It uses

this information to mirror directories on all physical layers

for improving availability.

4) Crash Recovery in Loris: Similar to other systems,

Loris also uses snapshot-based recovery to maintain metadata

consistency across system failures. Due to lack of space, we

will just present an overview here and we would like to direct

the reader to [17] for further details. During normal operation,

after every preconfigured time interval, Loris takes a system-

wide snapshot. During this operation, all Loris layers flush out

any dirty data and metadata that is yet to be written. Then, the

logical layer asks each physical module to take a snapshot of

all metadata (both physical module’s layout-specific metadata

and those belonging to the other Loris layers) and tag the

snapshot with a common timestamp. It is important to note

here that only metadata, not application data, is snapshotted

and the physical layer can distinguish metadata from data

using attributes as we mentioned earlier. Thus, each global

metadata snapshot can be identified using a single timestamp

across all physical modules.

After a system failure, logical layer probes all physical

modules for their latest timestamp. If the system had shutdown

gracefully, all physical modules would return back the same

timestamp. A disparity in timestamp indicates an unclean

shutdown, upon which the logical layer instructs all physical

modules to roll back metadata to the latest common timestamp.

Thus, in a nutshell, the task of providing consistency in Loris is

divided between the logical and physical layers. Each physical

module is tasked with implementing some form of metadata

snapshoting. The logical layer works with physical module

snapshots and coordinates recovery to a globally consistent

snapshot after a system failure.

B. File-level Host-side Caching With Loris

Comparing Loris with the traditional stack (Figures 1, 2),

one can observe two things. First, the file system, which

is a monolithic module in the traditional stack, has been

decomposed into naming, cache, and physical layers in the

Loris stack. Second, as the dotted line indicates, all Loris

Naming

VFS

Cache

Logical

Cache Phys iSCSI Phys

IP SAN

Layout Mgmt.

Flash Cache Mgmt.

RAM Cache Mgmt.

I/f & Policy Mgmt.

Figure 4: Host-side flash caching with the Loris stack. The figure
shows the roles and responsibilities of each layer when the Loris
stack is used as a host-side caching solution. Contrasting this with
Figure 1, one can see that the local flash cache is managed by the
file-aware logical layer.

layers operate at the file level in contrast to the traditional

stack, where RAID and caching algorithms operate at the

block level. It is because of these two fundamental design

differences that Loris enables a new level (the logical layer)

at which flash caching can be integrated.

Figure 4 shows how Loris can be used as a host-side cache.

Loris runs on the host machine as the primary file system and

manages both the local SSD and the remote iSCSI volume.

Physical layer implementations customized for SSD and iSCSI

storage map device blocks to Loris physical files. The caching

logic (allocation and replacement algorithms), however, is

implemented at the file level, in the logical layer, in contrast

to the traditional caching design where it is integrated at the

block level. This integration possesses all the advantages of a

file system-based approach without any of its disadvantages.

First, the file-level implementation of caching makes it

device or storage interface agnostic. Switching to a new type

of caching device (like MEMS or Object-based Storage (OSD)

instead of SSD) requires just implementing corresponding

physical modules. Thus, file-level caching obviates translation

layers as there is no necessity to map any device inter-

face to a generic block interface. In the absence of such

abstractions, device-specific physical layer implementations

can implement highly-customized optimizations that exploit

advantages specific to each device family. For instance, one

could implement a short-circuit-shadow-paging-based physical

layer for a PCM device [5], or a physical layer that exploits

the virtualized-flash-storage abstraction offered by modern PCI

Express SSDs [10], without affecting the caching implemen-

tation. Later in this paper, to show the benefit of interface-

agnostic flash caching, we will describe our implementation

of a simplified NFS-client-like physical layer that enables to

usage of any networked, file-based remote storage system as

primary data store.

During normal operation, the logical layer treats all phys-

ical modules (local and remote) alike and establishes global

metadata checkpoints across them. Irrespective of where they

are stored, all metadata updated between two checkpoints get

persisted as a part of the next global checkpoint, or reverted



during recovery after a crash, as a single atomic unit. Thus, the

second benefit is that any Loris-based caching implementation

can recover from OS crashes and power failures on the host

side using Loris’ built-in consistency mechanism without any

additional effort.

We would like to explicitly mention here that these

consistency-enforcing metadata checkpoints are created and

maintained by the physical layer implementations and thus,

have no influence on logical layer-resident, flash-cache man-

agement algorithms that perform caching of application data.

Also, these checkpoints are different from administrator-

triggered file volume snapshoting of all data and metadata.

While Loris is capable of supporting such snapshoting, and

while the interaction between snapshoting and caching cer-

tainly requires special attention [4], our focus in this paper

is on using Loris as a host-side cache with any server-

side NAS or SAN appliance. In this scenario, administrators

typically use server-side (not client-side) snapshoting facilities

for performing various administrative operations. We intend to

integrate host-side snapshoting with the caching framework

described in this paper as a part of future research which

involves investigating the utility of Loris as a hypervisor flash

cache in virtualized data center (Section V).

Third, by being file aware, Loris can use different caching

policies for different file types. For instance, Loris could asso-

ciate all metadata with the write-through policy. Thus, even if

the user specifies a write-back policy for all application data,

writes by the naming layer to directory files and by the logical

layer to volume index file will be written through immediately

to the networked storage server. By having all metadata written

through immediately, Loris can recover from all host side

failures. For instance, a failure of the SSD on the host side

would only result in application data loss and never renders the

networked primary storage unusable. Inconsistencies between

data and metadata caused by an SSD failure can be easily

identified by the logical layer and propagated to the application

on demand, thereby providing high availability. Thus, Loris

provides a framework for implementing persistent, file-level

write-back caching systems that do not suffer from any of

consistency issues that plague the block-level integration.

Fourth, as the caching algorithms are plugin-based, Loris

can easily pair workloads with ideal caching algorithms in

contrast to even modern, state-of-the-art cache-aware file sys-

tems that adopt a single, one-size-fits-all approach to flash

caching. This flexibility is especially important in modern data

centers where server consolidation forces a single host-side

caching system to service requests from disparate workloads

with different RPOs. For instance, ZFS [1] uses SSDs that

can sustain high random IOPS for caching read-only data and

SSDs with high sequential write throughput for storing the

ZFS journal (ZIL) [13] irrespective of application workload.

Loris, on the other hand, could pair workloads with write-back

or write-through caching depending on their RPO.

Although Loris provides a convenient framework for imple-

menting host-side caching systems, the whole-file nature of

mapping maintained by the logical layer makes it impossible

V0

F1:V1

V2V1

F2:V2

I1 I2 I3 Inodes

Data blocks

Volume index

Meta index

Logical layer

Physical layer

F1:B1 F1:B2 F2:B1

Figure 5: File-as-a-volume subfile mapping approach: The figure
shows blocks F1:B1, F1:B2 of file < V0, F1>, and block F2:B1 of
file < V0, F2> are mapped to physical files I1, I2 (for F1), and I3
(for F2).

to implement fine-grained, subfile caching, as caching a single

file block requires caching the entire file. Even worse if the fact

that such subfile caching is mandatory for implementing write-

back caching, where files can be arbitrarily written/updated

in small chunks. Thus, the logical layer must be completely

redesigned to support fine-grained, subfile caching.

III. LORIS-BASED HOST-SIDE CACHE: ARCHITECTURE

Our new logical layer consists of three plugin-based sub-

layers: 1) the volume management sublayer with extended

support for subfile caching, 2) the cache management sublayer

that manages the flash-based host-side cache, and 3) the file

pool sublayer which provides device management and RAID

services. Each of these sublayers has a well-defined interface,

similar to the Loris interface, and can be replaced without

changing the other sublayers. As device management and

RAID algorithms are out of the scope of this paper, we will

now describe in detail the first two sublayers.

A. Volume Management Sublayer: Subfile Mapping

As we mentioned earlier, our original logical layer maps

each logical file to one or more physical files. However,

implementing subfile caching requires mapping each logical

file block (not the whole file) to one or more physical files. In

addition, we also need to maintain metadata that identifies the

block cached in the SSD as clean or dirty; the action taken

during background synchronization and cache eviction varies

depending on the block state (clean data can be just discarded

whereas dirty data must be written back to primary storage).

As the relationship between files and blocks is very similar

to the relationship between file volumes and files, we initially

implemented this indirection by recursively extending the file

volume abstraction. When a logical file was created, an entry

was allocated for it in its parent file volume’s volume index

as before. In addition, we created a new volume, whose

logical configuration information entries record the logical

block–physical file(s) mapping for each block as shown in

Figure 5. Thus, by treating each logical file as a file volume,

we were able to extend the existing abstraction to support

subfile mapping with minimal effort.

However, preliminary evaluation revealed that the overhead

caused by metadata allocation and lookup was a significant

source of performance degradation. With the aforementioned

subfile mapping, we were storing physical file information



for each logical block. Each physical file is represented by a

<moduleid, inode number> pair, which is encoded using four

bytes in our current implementation. Assuming an block size

of 4-KB, and assuming that all blocks are cached on the SSD,

a 4-GB file would require 8-MB (eight bytes per block, four

for HDD physical file and four for the SSD one).

To eliminate the metadata overhead, we increased the

mapping granularity from a block to an extent - a logically

contiguous group of blocks. While this did improve per-

formance significantly, it still suffered from two problems.

First, as each extent was stored as a separate physical file,

at small extent sizes, most read/write requests would need to

be serviced by reading/writing multiple physical files. Despite

the fact that our prototype exploits the Native Command

Queuing (NCQ) capability of both HDD and SSD by queuing

these reads/writes in parallel, we found that splitting a single,

large read/write request into several constituent extent-sized

requests had a significant performance impact. Second, extent-

granular mapping complicates write-back caching as caching

algorithms and staging/eviction of data must be extent aligned.

In addition, writes misses force the entire extent to be read

from the disk, if not already cached, causing performance

deterioration at large extent sizes. Thus, we abandoned the

“file-as-a-file-volume” approach and adopted a newer one.

Our new approach is based on the insight that rather than

storing each logical block in a separate physical file, we could

use a single physical file to pack related blocks. In other words,

each logical file could be associated with two physical files,

one on the SSD, and the other on the iSCSI volume. By doing

so, for each logical block, we would need to record whether

1) it has been cached on the SSD physical file, and 2) if the

SSD copy is dirty. We could easily accomplish this with just

two bits per block. Thus, in contrast to the previous approach,

a 4-GB file can be encoded using 128-KB for caching status

bits, 128-KB for the dirty bits, and 8 bytes for the physical

file information. Thus, we reduce the metadata footprint by

a factor of 32 (8 bytes to 2 bits per entry). In addition, a

large request spanning multiple blocks would now translate to

a single physical file read (assuming that the corresponding

blocks are all sequential and collocated in the same device).

In our current prototype, we implemented this new mapping

by modifying the file configuration information stored by the

volume management sublayer. The new configuration informa-

tion contains 1) physical file information for the primary file

in the iSCSI physical layer, 2) physical file information for the

cached SSD file (if cached), 3) a 32-byte block status bitmap,

and 4) a 32-byte dirty bitmap. In order to implement fine-

grained caching, we use a block size equal to the OS page size

of 4-KB. Thus, the block information for all files up to 1-MB

resides entirely within its logical configuration information.

When a file files grows over 1-MB, we dynamically create a

new physical file and use it to store both bitmap blocks.

B. Cache Management Sublayer

There are two main design parameters that influence the

operation of a host-side caching system. The first parameter is

the write policy (write through or write back, as we mentioned

in Section I). The second parameter is the allocation policy that

controls when data is admitted into the cache. Based on this

policy, caches can be classified as write-allocate and write-no-

allocate (also known as write-around). As the names imply,

the former policy admits data on write misses while the latter

does not. As we wanted to systematically study the effect of

each parameter on overall performance, we implemented all

four possible host-side caching alternatives as a separate cache

management plugin.

Although these plugins differ with respect to write and

allocation policies, they all share two things in common. First,

they all admit data into the cache as a side effect of a read

miss. Second, they all use the LRU replacement algorithm to

manage the flash cache. In our current prototype, the algorithm

is implemented as a separate component independent of all

plugins. It maintains an in-memory list of entries, on per

logical file block, in LRU order. As this list does not contain

information about the physical location of logical file blocks

(which is recorded in volume index entries and protected using

Loris’ consistency mechanism), it can be maintained entirely

in memory as a power failure or system crash would result

only in the loss of recency information. In addition, as each

list entry only needs to store the logical file id and offset for

currently cached blocks, it can easily scale to large cache sizes.

C. Physical Layer Support For Subfile Caching

The aforementioned changes to the logical layer make

fine-grained cache admission possible. However, as caching

algorithms work at a page granularity, they also require the

capability to evict individual pages for freeing up cache space.

As caching algorithms operate at the logical layer, there were

two ways a Loris-based cache implementation could free

up space, namely, deleting a physical file or truncating it.

We found both these operations to be too coarse grained

and inefficient as it is impossible to implement fine-grained

individual page/block evictions using either of these methods.

To solve these problems, we added a new rdelete(range

delete) operation to the physical layer API. Only those physical

modules that will be used to manage cache devices need to

support this operation. The logical layer uses rdelete to free

arbitrary data ranges in physical files. When space is needed

in the flash cache for accommodating new data, the LRU

algorithm is invoked to find the longest sequence of logically

contiguous file blocks (blocks belonging to the same logical

file at consecutive offsets). The logical layer then issues an

rdelete call to the physical module that manages the flash cache

which, in turn, frees those data blocks and associated indirects,

effectively creating holes in that physical file.

D. Network File Store

Although our traditional Loris physical layer can be used

over an iSCSI volume, we wanted to prove the utility of layout-

independent, file-level flash caching. So, we implemented a

new physical module that can communicate with any file

server that support four basic calls to create, delete, read from



and write to a file. This network file client is essentially a

simplified NFS client that maps calls from the Loris interface

to the limited file server interface. To make our client portable

across file servers, we also implemented support for attribute

handling at the client side. Each client maintains a special file,

which is created during startup, in which it stores the attributes

for all Loris files. Thus, while read/write calls for Loris files

get mapped onto file server read/write calls, getattr and setattr

operations directed at the network client are implemented

reading/writing into this special file.

IV. EVALUATION

In this section, we will first describe the hardware/software

setup and benchmarking tools following which we will present

our comparative analysis of the four Loris-based cache man-

agement architectures to understand the impact of each policy

on overall performance.

A. Setup

The client machine we used in all tests was an Intel Core

2 Duo E8600 PC, with 4-GB RAM. We used a OCZ Vertex3

Max IOPS SSD as our host-side flash cache. Our networked

file server is an Intel Core2Duo E8600 PC, with 4-GB of

RAM and a 500-GB 7200 RPM Western Digital Caviar Blue

(WD5000AAKS) SATA drive. In all experiments, we used the

first 8-GB of both SSD and HDD to house all data.

Both client and server machines run MINIX 3, a micro-

kernel, multiserver operating system [15]. Loris runs on the

client machine and manages the flash cache while we use the

MINIX 3 File System on the server machine as our network file

store. We deliberately configured Loris (on the client side) to

run with only 64-MB RAM cache (cache layer) to ensure that

our flash-caching subsystem (in Logical and Physical layers) is

stressed thoroughly. As we vary the flash cache size in some

experiments, we will report the actual SSD size used while

describing the results of each experiment.

Although we implemented all the features we described

in Section III in our prototype, we will focus only on the

performance aspect of Loris-based file-level caching in this

paper.

B. Benchmarks and Workload Generators

We used Postmark and FileBench to generate four different

classes of server workloads for our comparative evaluation.

Postmark is a widely used, configurable file system benchmark

that simulates a mail server workload. We configured Post-

mark to perform 80,000 transactions on 40,000 files, forming

a dataset of roughly 1-GB, spread over 10 subdirectories,

with file sizes ranging from 4-KB to 28-KB, and read/write

granularities of 4-KB. We report the transaction time, which

excludes the initial file preallocation phase, for all cases.

FileBench is a flexible, application-level workload simu-

lator. We used two predefined workload models to generate

File Server and Web Server workloads. For the File Server

workload, we configured FileBench to generate 10,000 files,

using a mean directory width of 20 files, and a median file

size of 128-KB. The workload generator performs a sequence

of create, write, read, append (using a fixed I/O size of 1-MB),

delete and stat operations, resulting in a write-biased workload.

The Web Server configuration generates 25,000 files, using a

mean directory width of 20 files. The median file size used is

32-KB, which results in a workload dominated by small file

accesses, with the exception being an append-only log file.

The workload generator performs a sequence of ten whole-

file read operations, simulating reading web pages, followed

by an append operation (with an I/O size of 16-KB) to a

single log file. Unlike Postmark, the total data size generated

by the FileBench workloads varies between 1.5-GB and 4-

GB depending on the performance of the underlying caching

system.

C. Comparative Evaluation: Caching Policies

Our first goal in evaluating the Loris prototype is to un-

derstand the impact of various caching policies on overall

performance. Table I shows the IOPS/execution time achieved

by various benchmarks under Loris in the networked config-

uration. These results were obtained by fixing the host-side

flash cache to 1.5-GB. There are three important observations

to be made from Table I.

Benchmark WB WB-WA WT WT-WA

Postmark (secs) 458 2084 1348 2304

File Server (IOPS) 1046 231 255 199

Web Server (IOPS) 3423 2856 3472 2859

Table I: Execution time (in seconds) and IOPS achieved by write-
back (WB) and write-through (WT) cache plugins, with and without
write-around (WA) allocation, under various benchmarks, at a cache
size of 1536-MB.

First, notice that both write-back and write-through caching

offer identical performance under Web Server. This is because

of the fact that at 1.5-GB, the flash cache has a 100% read

hit rate and all benchmark reads are satisfied entirely on the

host side under both write-back and write-through schemes.

The only writes under Web Server are appends to the log file

which are never read back. Thus, this result proves that our

caching algorithms work as expected.

Second, clearly, write-back caching has a significant im-

pact on overall performance. It registers an impressive 310%

improvement in IOPS under File Server and 66% reduction

in execution time under Postmark. This clearly indicates the

importance of using the host-side flash cache as a read-write

cache (as opposed to a read-only cache).

Third, notice that write-around allocation policy consistently

deteriorates performance of both write-back and write-through

caching under all benchmarks. Without the write-around pol-

icy, all write misses allocate data in the SSD under both write-

back and write-through caching policies. Thus, when the cache

is large enough to hold a substantial portion of the working set,

most read/write requests can be satisfied entirely on the host

side. But with write around enabled, cache allocation happens

only as a side effect of a read miss. Thus, the first read request



����

����

����

����

����

��
�
�

���	
���� ���	
�������� ��� ���

�

���

����

����

��� ��� ���� ����

��
�
�

����	
���	
���

(a)

����

����

����

����

����

����

��
�
�

���	
���� ���	
�������� ��� ���

�

���

����

����

����

��� ��� ���� ����

��
�
�

����	
���	
���

(b)

���

����

����

����

����

����

�
��
�
�
�
�
��
�
�

�
��
	


�
	
�
�
�

���	
���� ���	
�������� ��� ���

�

���

���

���

���

��� ��� ���� ����

�
��
�
�
�
�
��
�
�

�
��
	


�
	
�
�
�

����	
���	
���

(c)

Figure 6: Figures show the IOPS/transaction time achieved by Loris under both single-device (HDD/SSD) and multi-device caching
configurations at various cache sizes in MBs (axis labels) under the File Server (a), Web Server (b) and PostMark (c) benchmarks.

for each data block has to be serviced by the networked file

server, thereby reducing performance. As we found this to be

the general case irrespective of the benchmark/experimental

setting, we will not discuss write-around caching any further.

D. Network Performance Sensitivity

One of the rationales used by proponents of write-through

caching is that the performance advantage of write-back

caching would only be marginal, at best, when deployed in

a setting with high-speed network interconnects and storage

backends. In order to understand the sensitivity of write-

caching policies with respect to network performance, we

reran the experiments on the host machine using a direct-

attached SATA HDD instead of the network file server as the

storage backend. In this configuration, we used the default

Loris physical module we described earlier to manage the

layout of both SSD and HDD.

Looking at the results under cache size 1536-MB in Fig-

ure 6, one can see that write-back caching still produces a

56% reduction in execution time under Postmark and a 234%

increase in IOPS under the File Server benchmark. Based on

these results, we believe that write-back caching is valuable

even when used in a setting with low-latency interconnects

and high-performance storage backends.

E. Cache Size Sensitivity

While write-back caching would have a clear edge over its

write-through counterpart at cache sizes where the read hit rate

is 100%, it is important to understand if it is still beneficial at

smaller cache sizes. In order to do so, we reran the experiments

in the direct-attached HDD configuration while varying the

flash cache size. Figure 6 reports the IOPS/execution time

of write-back/write-through caching policies under various

benchmark-cache size combinations.

There are three important observations. First, one can see

that even at the smallest cache size, write-back caching pro-

duces a 30% reduction in execution time under PostMark and

a 75% increase in IOPS under File Server when compared to

the disk-only case, thereby proving the utility of caching.

Second, as exemplified by the Web Server benchmark,

read-intensive benchmarks derive no benefit from write-back

caching. This is expected as the only writes under this bench-

mark are those issued to the append-only log that is never read.

Thus, one might as well resort to using write-through caching,

perhaps even with existing block-level solutions, under such

read-intensive benchmarks.

Third, under write-intensive benchmarks, write-back

caching always matches or outperforms write-though caching,

but the performance of write-back caching is extremely

sensitive to both the read/write ratio and cache size. For

instance, at cache size of 256-MB, while IOPS increases by

a sizeable 72% under the File Server benchmark with write-

back caching, Postmark results are more modest. However, at

all other cache sizes, write-back caching improves execution

time by 16% to 63% under Postmark.

F. File-Level and Block-Level Caching Comparison

One of the goals in evaluating our Loris prototype was

to prove the effectiveness of file-level caching as opposed to

block-level caching. In order to do so, we implemented a LRU-

based caching filter driver that is positioned between the file

system and AHCI disk driver. The cache driver works similar

to its file-level counterpart by maintaining an in-memory list

of disk blocks in LRU order. It implements write-back caching

of data stored in the direct-attached HDD by interposing file

system requests and satisfying both reads and writes from the

SSD if possible. To make a fair comparison, we ran Loris over

the block-level cache. Thus, in this configuration, Loris is not

used as a caching framework, but rather as just a regular file

system that manages the logical disk exposed by the block-

level cache implementation.

Figure 7 shows the performance of the two caching im-

plementations. Clearly, the Loris-based file-level caching im-

plementation outperforms its block-level counterpart by a

significant margin under both Postmark at high cache sizes

and under File Server at all cache sizes. On further inves-

tigation, we found out this to be due to the impact of file

deletions on the two caching implementations. When a file

is deleted, the Loris-based implementation frees all cached

data associated with it in the SSD. In the block-level case,

on the other hand, deletions are handled by the file system.



����

����

����

����

��
�
�

����� ���������


�

���

����

��� ��� ���� ����

��
�
�

����	
���	
���

(a)

����

����

����

����

����

����

��
�
�

����� ���������


�

���

����

����

����

��� ��� ���� ����

��
�
�

����	
���	
���

(b)

���

���

����

����

�
��
�
�
�
�
��
�
�

�
��
	


�
	
�
�
�

����� ���������


�

���

���

��� ��� ���� ����

�
��
�
�
�
�
��
�
�

�
��
	


�
	
�
�
�

����	
���	
���

(c)

Figure 7: Figures show the IOPS/transaction time achieved by both Loris and block-level write-back caching implementations at various
cache sizes in MBs (axis labels) under the File Server (a), Web Server (b) and PostMark (c) benchmarks.

Hence, the block-level cache driver never gets a notification

from the file system about deleted file blocks. Thus, unlike

Loris, which never migrates deleted data blocks, the block-

level implementation incurs heavy penalty due to unwarranted

caching and migration of useless deleted data. While this

drawback could be overcome by having the file system share

such semantic information with a block-level cache (using the

TRIM command for instance), we would like to emphasize

here that a file-level implementation has easy access to such

rich semantic information out of the box. The conclusion we

would like to draw from these results is that file-level caching

implementations are capable of meeting the performance of

their block-level counterparts without resorting to suboptimal,

redundant consistency management.

V. CONCLUSION

As flash devices grow in density, we believe that write-back

caching will become a standard feature in all future host-side

caching systems. In this paper, we showed how a file-level

integration of caching algorithms solves, by design, various

consistency issues that plague the traditional block-level inte-

gration. Using our Loris prototype, we dispelled the myth that

file-level caching implementations cannot work efficiently on

a subfile basis. Although we used Loris as our framework, we

would like to point out that one could theoretically build file-

level caching systems using the traditional storage stack with

the assistance of the stackable file system framework [7].

Given the very many benefits of file-level caching, an in-

teresting area of future research is investigating its integration

in modern virtualized data centers, where NAS-based filers

are being increasingly deployed as backend stores for storing

disk images of consolidated server virtual machines. Recent

research has shown that unwarranted translations enforced by

layers of virtualization have a huge negative impact on perfor-

mance, and that such overhead could be eliminated by using

a paravirtualized NAS client in the guest OS [16]. Thus, an

alternative to the traditional approach of having the hypervisor

perform caching of VM-disk-image blocks [4] would be to use

a hypervisor-resident, file-level flash-caching implementation

(like Loris) in combination with the paravirtualized NAS client

to cache files rather than blocks. We intend to investigate the

understand the pros and cons of such an approach as a part of

future research.

REFERENCES

[1] “Sun Microsystems, Solaris ZFS file storage solution. Solaris 10 Data
Sheets,” 2004.

[2] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum, “Loris -
A Dependable, Modular File-Based Storage Stack,” in Proc. of the 16th

IEEE Pacific Rim Intl. Symp. on Dep. Comp., 2010.
[3] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum, “Flex-

ible, Modular File Volume Virtualization in Loris,” Proc. of 27th IEEE

Conf. on Mass Storage Sys. and Tech., 2011.
[4] S. Byan, J. Lentini, A. Madan, and L. Pabon, “Mercury: Host-side flash

caching for the data center,” in Proc. of 28th IEEE Conf. on Mass Storage

Systems and Tech., 2012.
[5] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and

D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proc. of the ACM SIGOPS 22nd Symp. on Oper. Sys. Prin., 2009.

[6] J. Corbett, “A bcache update, http://lwn.net/articles/497024/.”
[7] J. S. Heidemann and G. J. Popek, “File-system development with

stackable layers,” ACM Trans. Comp. Sys., vol. 12, no. 1, pp. 58–89,
1994.

[8] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. J. West, “Scale and performance
in a distributed file system,” ACM Trans. Comp. Sys., vol. 6, no. 1, pp.
51–81, 1988.

[9] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O Stack Optimization
for Smartphones,” in Proc. of the USENIX Ann. Tech. Conf., 2013.

[10] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li, “Dfs: A file system
for virtualized flash storage,” in Proc. of the Eigth USENIX Conf. on

File and Storage Tech., 2010.
[11] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda

file system,” ACM Trans. Comp. Sys., vol. 10, no. 1, pp. 3–25, 1992.
[12] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala,

and M. Zhao, “Write policies for host-side flash caches,” in Proc. of the

11th USENIX Conf. on File and Storage Tech., 2008.
[13] A. Leventhal, “Flash Storage Memory,” Commun. ACM, vol. 51, 2008.
[14] M. Saxena, M. M. Swift, and Y. Zhang, “Flashtier: a lightweight,

consistent and durable storage cache,” in Proc. of the 17th ACM

European Conf. on Comp. Sys., ser. EuroSys, 2012, pp. 267–280.
[15] A. S. Tanenbaum and A. S. Woodhull, Operating Systems Design and

Implementation (Third Edition). Prentice Hall, 2006.
[16] V. Tarasov, D. Hildebrand, G. Kuenning, and E. Zadok, “Virtual machine

workloads: The case for new benchmarks for NAS,” in Proc. of the 11th

USENIX Conf. on File and Storage Tech., 2013.
[17] D. van Moolenbroek, R. Appuswamy, and A. Tanenbaum, “Integrated

system and process crash recovery in the loris storage stack,” in IEEE

Seventh Intl. Conf. on Net., Arch. and Storage, 2012.


