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Abstract—Several multilevel storage systems have been de-
signed over the past few years that utilize RAM and flash-based
SSDs in concert to cache data resident in HDD-based primary
storage. The low cost/GB and non-volatility of SSDs relative
to RAM have encouraged storage system designers to adopt
inclusivity (between RAM and SSD) in the caching hierarchy.
However, in light of recent changes in hardware landscape, we
believe that in the future, multilevel caches are invariably going to
be hybrid caches where 1) all/most levels are physically collocated
2) the levels differ substantially only with respect to performance
and not storage density, and 3) all levels are persistent. In this
paper, we will investigate the design tradeoffs involved in building
exclusive, persistent, direct-attached, multilevel storage caches.
In doing so, we will first present a comparative evaluation of
various techniques that have been proposed to achieve exclusivity
in distributed storage caches in the context of a direct-attached,
hybrid cache, and show the potential performance benefits of
maintaining exclusivity. We will then investigate extensions to
these demand-based, read-only data caching algorithms in order
to address two issues specific to direct-attached hybrid caches,
namely, handling writes and managing SSD lifetime.

I. INTRODUCTION

Over the last few years, advancements in fabrication pro-

cesses and Flash Translation Layer (FTL) firmware have led

to the evolution of flash-based solid state storage devices from

low endurance storage media with random write issues to fast,

energy efficient, reliable enterprise storage media. Despite low

access latencies, the high cost/GB of flash with respect to

HDDs has led to the adoption of flash as an intermediate

caching tier rather than as a primary storage solution. Sev-

eral research and commercial three-level (RAM-SSD-HDD)

caching systems exist today and an aspect fundamental to the

design of all these systems is that the RAM and SSD levels are

managed independently using different placement (when and

what data is admitted into the cache?) and replacement algo-

rithms (how is data managed in the cache?). The disparity in

cost/GB between RAM and flash combined with the volatility

of RAM encouraged designers to opt for an inclusive hierarchy

with SSDs redundantly caching data already cached in RAM.

Despite the successful adoption of these caching systems,

we believe that recent changes in hardware landscape necessi-

tate revisiting these design rationales. First, over the past few

years, the rate of adoption of flash in enterprise storage has

been paralleled by an equally phenomenal drop in memory

prices. This change has been embraced by both the hardware

industry, as witnessed by the commoditization and consumer

demand for manycore servers with large-memory DIMM

form factors and high-bandwidth memory channels, and the

software industry, as shown by the development of several

low latency, RAM-only caching/primary storage systems like

RAMCloud [13]. Today, several modern caching appliances

use battery-backed, high-end enterprise servers, provisioned

with several hundreds of GBs of RAM and SSD [1]. Second,

recent advances in nonvolatile memory technologies have

shown how Phase Change Memory (PCM)-based storage

devices can blur the line between mass storage and memory.

These devices promise high-density, non-volatile storage with

latencies as low as a few microseconds (or even nanoseconds),

with cost/GB much lower than RAM.

In light of the aforementioned changes, multilevel caches of

today (and of the future) possess three salient properties. First,

they are hybrid caches where multiple levels with different

price/performance tradeoffs are physically collocated. Second,

higher levels are not necessarily much smaller in size than

the lower ones. Third, volatility is no longer an issue either

due to the use of software/hardware techniques to deal with

power failures (batter-backed logging and replay), or due to

the persistent nature of new device families (PCM). These

properties of modern multilevel caches invalidate the age-

old assumptions made by designers for avoiding exclusion

between levels.

In this paper, we explore the tradeoffs and design alterna-

tives involved in building an exclusive, block-level, persistent,

direct-attached RAM/SSD caching hierarchy. In doing so, our

contributions are twofold. First, we show how maintaining

exclusivity in a direct-attached, multilevel cache 1) improves

performance by increasing the number of second-level hits,

2) potentially reduces operating expenses by enabling the

usage of high-latency SSDs while still achieving performance

comparable to an inclusive cache, and 3) increases SSD

lifetime by significantly reducing the number of allocations

in contrast to an inclusive cache. Second, we advance state of

art by exploring the tradeoffs involved in building persistent,

multilevel read-write caches. In particular, we will show how

contrary to conventional wisdom, unifying the management of978-1-4799-0218-7/13/$31.00 c© 2013 IEEE



both clean and dirty data under a cost-aware caching algorithm

provides better performance than a partitioning the cache into

autonomously-managed read/write regions.

II. EXCLUSIVITY IN DISTRIBUTED CACHES

It is well known that in a multilevel caching hierarchy,

when cache levels are of comparable size, the redundancy of

data between levels is extreme under inclusive caching [16].

In the most extreme case in a two-level RAM/SSD cache,

for instance, both the RAM and SSD levels cache the same

data, effectively halving the utility of the cache. Previously,

researchers have investigated a similar problem in the context

of distributed, multilevel caches. For instance, in enterprises,

it is common for end-user requests to be serviced by front-

end application servers (such as web servers), which in turn

retrieve the data from networked, second-level storage servers.

In such a scenario, both servers are likely to be equipped with

large caches, which form a distributed, two-level hierarchy.

The techniques that guarantee exclusivity in such hierarchies

can be classified into two primary types depending on how the

two cache levels are managed, namely, the Global technique

and the Unified technique.

Under the Global technique, the application and storage

server caches are managed independently similar to the in-

clusive case. However, in contrast to the inclusive case, where

each read miss results in the same data being allocated at both

first and second levels, the Global technique allocates data

only in the first level. Allocation in the second level happens

during eviction from the first level. In addition, to maintain

exclusivity, any first-level read miss that finds the data cached

at the second level results in the data being deleted from the

second level (as it is allocated at the first level).

Several approaches have been proposed to implement the

Global scheme in multilevel caches. The first approach (re-

ferred to as Hint-based aggressive caching [3]) involves adding

an explicit Demotion operation between the two cache levels.

The first level invokes this operation every time a block is

evicted to allocate the target block in the second level. Al-

though this approach offers a higher hit ratio, its performance

is directly affected by the network bandwidth between the

two servers. When bandwidth is scarce, demotions become

expensive and overall performance deteriorates. Similarly,

when the workload has little locality, this approach wastes

bandwidth by unnecessarily demoting all data.

To solve these problems, the second approach (also re-

ferred to as Hierarchy-aware reload [3]) involves passively

monitoring the first level data access patterns and using it to

automatically infer evictions at the second level. For instance,

in [4], the authors suggest maintaining a client content

tracking table (CCT) that maintains information that maps

memory regions in the application server’s cache to data

blocks. Thus, when a read request is received to transfer a

block to a memory region which previously contained some

other data, an eviction can be inferred. This information is

then used to refetch recently evicted data into the second level

cache in the background. Although this approach avoids the

network bandwidth issues between the two cache levels, it

has been shown that background reads significantly increase

the average miss penalty and nullify the benefits of exclusive

caching [5].

The Unified technique (also referred to as Client-controlled
caching), on the other hand, obviates demote operations by

managing the two caches as a single unit. For instance, in

ULC [7], a single instance of the cache management algorithm

runs in the first level and keeps track of contents of both

the application and storage server caches. When a block

is accessed, ULC attempts to place a block at the appro-

priate level depending on its predicted re-reference distance

(the number of requests serviced between two successive

references to a block). Karma [18] is another example of

the Unified technique where per-block access statistics are

used to rank and assign blocks to levels depending on their

importance. Despite being intuitively simple, recent research

has shown that the unified technique suffers from two major

issues [3]. First, it requires making extensive changes to

storage client/server software and I/O interfaces. Second, it

complicates the scenario where multiple application servers

share a single storage server.

III. CASE FOR EXCLUSIVITY IN HYBRID CACHING

Achieving exclusivity in direct-attached, multilevel cache

requires making different sets of trade offs in contrast to the

distributed case. First, both caches are collocated in a single

host with no network in between. This effectively eliminates

the bottlenecks associated with both Global and Unified tech-

niques. The Global technique benefits due to cheap demotions

and the Unified technique benefits due to the ease with which

data management across cache levels can be unified. Thus, it is

important to compare these distributed techniques in the local

context to see if the exclusivity offered by techniques provides

any performance benefit under enterprise storage workloads.

Second, although demotions are cheap, they are not free, as

each demotion equates to a slow flash write operation. Thus,

it is important to understand if exclusive caching offers any

improvement despite the flash write bottleneck, and if those

performance benefits are sensitive to variations in flash write

latency.

Third, the second level in our hybrid cache is flash-based

unlike distributed caches where it is RAM-based. Although

modern SSDs have high endurance and can sustain a large

number of erasures, the design for any hybrid caching algo-

rithm should consider SSD lifetime as a serious factor.

Fourth, unlike all the aforementioned studies, we are consid-

ering scenarios where both our caches are persistent. While all

prior research ignores caching dirty writes, achieving optimal

performance in our case requires investigating algorithms for

a multilevel read-write cache.

Thus, to make a case for exclusivity in the local context,

we need to answer the following questions:

• Does exclusive caching offer any performance improve-

ment over the traditional inclusive caching approach?



• How sensitive is the performance of exclusive caching

with respect to flash write latency?

• How sensitive is the performance of exclusive caching

with respect to the RAM/SSD size ratio?

• If exclusivity is useful, which technique (Unified or

Global) performs best?

In this section, using trace-driven simulation, we will make

a case for exclusive caching in hybrid caches and answer

all the aforementioned questions. Since research on achieving

exclusivity in a distributed setting has primarily focused on

read-only caching, we will present the results for a simulated,

two-level, read-only hybrid cache. We will consider the prob-

lem of designing an integrated read-write caching algorithm

in Section IV and managing SSD lifetime in Section V.

A. Simulation Environment

Opting for exclusion or inclusion is one of the two important

design parameters in any caching system, the other parameter

being the replacement algorithm used. In order to perform

a fair comparison of the three cache management techniques

(Inclusive, Global and Unified), we implemented a trace-driven

simulator that extended the traditional Adaptive Replacement

Cache (ARC) algorithm using these techniques. We chose

ARC, as prior research has proved ARC to be the most

effective, application-independent caching algorithm, and as it

has been used in several distributed, multilevel caching studies.

We will just summarize the ARC algorithm here due to lack

of space and refer the reader to [10] for further details.

1) ARC: The fundamental idea behind ARC is to dynami-

cally adapt to the recency or frequency changes in workloads

by using two lists that separate recently seen pages from

frequently accessed pages. The LRU list T1 contains pages

that have been seen once while list T2 contains pages that

have been seen more than once. Every hit in the cache results

in the target page being moved to the top of the T2 list, while

a miss in the cache adds a new page to the top of the T1 list.

In addition to these two lists, whose size is always enforced

to be utmost “C” pages (where C is the cache size), ARC

also maintains two LRU history lists B1 and B2. These lists

store only page addresses (or block offsets) of “C” recently

evicted pages without the actual data, and are populated each

time a page is evicted from the T1 list (B1) or the T2 list

(B2). Hence, these lists serve as ghost buffers that indicate

potential hits that could have been achieved had the data been

cached. Thus, although ARC manages a data cache of size C,

it maintains metadata for 2C pages.

ARC uses these ghost buffers to dynamically adjust a

parameter P that dictates the size of T1 (P) and T2 (C – P)

lists. When a read miss finds a ghost page in the B1 list,

ARC increases P, thereby allocating more pages to the T1 list.

On the other hand if the ghost page is found in the B2 list,

ARC decreases P, thereby allocating more pages to the T2

list. The lists themselves are truncated/expanded gradually by

using P to guide in the selection of victim lists during page

replacement. For instance, if |T1| > P, a page is evicted from

T1, if not a page is evicted from T2.
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Figure 1: Comparison of the three different caching techniques ((a)
Inclusive, (b) Global, and (c) Exclusive) used to manage a two-
level RAM/SSD cache. Dashed rectangles in the figures represent
ARC instances (two in Inclusive and Global case, and one in the
Unified case). Solid rectangles represent T lists that track data pages
and dotted rectangles represent B lists that act as ghost buffers.
Dashed lines represent read misses and solid lines represent dirty
data flushes. The figure also shows how ARC lists are managed under
each technique.

2) Two-level ARC Implementations: Figure 1 depicts how

ARC has been extended to handle our two-level hybrid cache.

Inclusive-ARC (IARC) is the most straight forward case (Fig-

ure 1a). Here, our simulator runs two separate instances of

ARC, one per level. Each instance maintains its own T-lists

and B-lists and performs cache replacement independent of the

other. Both ARC levels cache data on each cache miss. For

instance, when a request to RAM ARC results in a miss, it is

forwarded to the SSD ARC. If the data requested is cached in

SSD ARC, it is propagated to RAM ARC which allocates it

in its cache, replacing a block if the cache is full. If the data

is not found in SSD ARC, then the block is allocated in both

levels.

The Global ARC (GARC) implementation is similar to the

inclusive ARC implementation in that the two levels still

perform replacement independently. However, unlike inclusive

ARC, Global ARC allocates data in the second level only

during eviction from the first level as shown in Figure 1b.

For instance, consider a read miss at the RAM ARC. In order

to accommodate the new block, both inclusive and exclusive

ARC variants pick a target. If the target is dirty (it has been

written to), both variants write the block to the SSD ARC. But

if the target is clean, only GARC writes it to the SSD ARC

while IARC silently drops it. Similarly, on a read miss in the

SSD ARC, while IARC allocates a block in both RAM and

SSD ARCs, GARC allocates a block only in RAM ARC.



Device Read Latency Write Latency

SSD 25 μs 200 μs
HDD 5 ms 5 ms

Table I: Read/write performance characteristics of various devices
used to compute virtual execution time

The Unified ARC (UARC) implementation considers the two

levels as a single large cache as shown in Figure 1b. Thus,

unlike IARC and GARC, our Unified implementation divides

T1 and T2 lists among RAM and SSD while maintaining a

single instance of B1 and B2 history lists. Thus, while RAM

contains the top halves of the T1 and T2 while lists, SSD

contains the bottom halves. It is important to note here that

the lists might or might not have a bottom half in the SSD. The

latter case would happen if ARC, as a part of its adaptation,

has truncated the list to a size that fits entirely in RAM.

There are two major differences between UARC and GARC.

First, while UARC maintains pages in the right lists across

levels, GARC loses this information when a page crosses over

to the SSD. Thus, under GARC, a page evicted from the T2

RAM list will be added to the T1 SSD list. Second, if R

is the RAM size and S the flash size, GARC has a RAM

ARC implementation managing 2×R (R cache + R history)

pages and a SSD ARC implementation managing 2×S pages.

UARC, on the other hand, has a single ARC implementation

that manages 2× (R+ S) pages. Thus, the rate of adaptation

of parameter P, and hence the sizing of T1/T2 lists is different

in the two implementations. For instance, if a read miss in

GARC finds the page in RAM ARC’s B1 list, it increments

parameter P even if the page is cached in the SSD - a second

level hit is still a first level miss. Under UARC, on the other

hand, both first and second level hits are considered alike.

Hence, UARC would not increment parameter P. As we will

show later, both these aspects cause noticeable performance

differences between the two implementations.

3) Simulator: We implemented IARC, GARC and UARC

in our simulation framework which allows us to benchmark

these algorithms using a wide variety of real-life enterprise

storage traces. The framework is implemented in C and has

three major components, namely the parser, the hash manager,

and the cache manager. The parser is a pluggable component

that is trace specific and is responsible for translating block

requests into a canonical form. The hash manager is a common

set of routines used by various caching algorithms to keep

track of cached blocks for quick search/insertion. The cache

manager is another pluggable component that implements each

variant of the aforementioned three algorithms.

The framework is instantiated using the RAM/SSD sizes,

trace format, and cache management type as input. The

framework passes each request generated by the parser to

the cache manager one at a time and keeps track of the

following statistics (among others): 1) number of hits in RAM,

2) number of hits in the SSD, 3) number of read misses that

would need to be serviced by the HDD, 4) number of flushes

(dirty data writes) to the HDD, and 5) number of demotions

Trace I/Os
(Millions)

Read
(%)

Write
(%)

R-WSS
(GB)

RW-WSS
(GB)

Financial1 36 15 85 1.11 3.66
Financial2 18 78 22 0.82 1.17
proj0 40 6 94 1.76 3.16
src10 406 47 53 120.76 121.26
src22 17 36 64 20.31 20.31
ts0 4 26 74 0.5 0.91
wdev0 3 27 73 0.2 0.53
web3 0.5 60 40 0.22 0.59

Table II: The table lists the following characteristics of each trace:
the number of I/Os issued, read/write I/O percentages, and working
set sizes which indicate the total amount of data accessed during the
trace. R-WSS column indicates the working set of each trace when
write requests are filtered out, while RW-WSS column includes write
requests.

to the SSD. Using these metrics, the framework computes the

virtual execution time for each trace as follows

VirtualTime = |SSD read hits|×TSSDR + |SSD demotions|×TSSDW+

|read misses|×THDD + |flushes|×THDD

Since the total time taken by RAM hits is negligible in

comparison to the overall execution time, we do not account

for it in our cost model. Unless otherwise mentioned, the

defaults we used for various device access latencies are listed

in Table I. These values are identical to ones used in prior

research [12] and model the behavior of a Maxtor Atlas 10K

IV HDD and a SLC NAND flash memory.

B. Traces

We used two sets of traces that have been widely used

in prior research for evaluating caching algorithms. The first

set consists of two SPC traces (Financial1 and Financial2)

that were collected by monitoring I/O requests of OLTP

applications running at two large financial institutions [15].

The second set consists of a collection of traces from 36

different volumes across 13 servers running Windows Server

2003 SP2 [11]. Of these traces, we only used six traces that

had at least 100,000 reads and writes, as our focus is on

investigating the design tradeoffs involved in building a read-

write cache. Table II summarizes the characteristics of these

traces.

Having described the simulation framework and traces, we

will now answer the questions we posed at the beginning

of this section. Although the traces contain both read and

write requests, as we mentioned earlier, the objective of this

section is to compare various distributed exclusion techniques

in the context of a direct-attached hybrid cache. So the results

presented in this section are obtained by filtering out writes

and using our caching implementations as read-only caches.

Thus, in the following experiments, the cache size used is a

fraction of the working set size reported in the R-WSS column

of Table II.

C. Is Exclusivity Beneficial?

Figure 2 shows the hit rate achieved by our UARC im-

plementation normalized by the IARC hit rate under various
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Figure 2: Total hit count achieved by the UARC normalized by
IARC’s hit count for each trace (x-axis)/cache size (fraction of
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Figure 3: Execution time of UARC normalized with respect to IARC

traces. For each trace, the figure shows the normalized per-

formance at each cache size ranging from 1% to 64% of the

working set size (total amount of unique data accessed across

the entire trace as shown in Table II). For this experiment, we

assumed an equisized RAM/SSD cache. We will investigate

the impact of varying the RAM/SSD size ratio later in this

section.

There are two important observations to be made from the

figure. First, under most trace-cache size combinations, UARC

matches or improves the hit rates achieved by IARC. Figure 4

explains the reason behind this by showing a break down of

the hits achieved by RAM ARC and SSD ARC under our

Inclusive and Unified implementations with the Web3 trace.

As can be seen in the figure, SSD ARC achieves a much

higher hit rate under UARC due to exclusive caching, thereby

boosting overall cache efficiency.

Second, at certain cache sizes UARC outperforms IARC by

a significant margin than other sizes. For instance, under web3,

at 32% cache size, UARC improves hit count by a factor of

1% 2% 4% 8% 16% 32% 64% 
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Figure 4: Total hit count achieved at the two levels (RAM and SSD)
by both UARC and IARC under the trace Web3 at various cache
sizes
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Figure 5: Hit rate (hits/total I/Os) achieved by UARC

3.5, while at 64%, IARC catches up. Looking at Figure 4, one

can see that at 32% cache size, UARC achieves a significant

increase in the number of second-level hits, while at 64%,

the cache is large enough to satisfy most rereferences from

the first level. This indicates that UARC can capture block

rereferences at much smaller cache sizes than IARC due to its

exclusive nature.

Figure 3 shows normalized UARC execution time. Com-

paring this with Figure 2, the treachery of using hit counts

as the only performance metric is evident, as evidenced by

prior studies [5]. While under certain traces, like Src1, UARC

outperforms IARC impressively with respect to the total

number of cache hits, it fails to register a similar improvement

in overall execution time. Figure 5 shows that at 16% cache

size, only 10% of Src1 requests are serviced by the cache.

Thus, despite a significant increase in the hit rate, the overall

execution times under both UARC and IARC are dictated by

expensive cache misses.
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Figure 6: Sensitivity to SSD write latency: Figure shows the thresh-
old SSD write latency at which UARC’s execution time degrades to
that of IARC at 200μs. A latency higher than 200μs means UARC
is able match IARC’s performance despite using a slower SSD

UARC produces a 17.8% deterioration in hit rate and 8.2%

increase in execution time only under Wdev0 at cache size 4%.

On further investigation, we found this trace-cache size com-

bination to be a pathological case for ARC itself. To confirm

this, we wrote a separate single-level ARC implementation

(henceforth referred to as SARC) without any of our two-

level extensions. As expected, the number of hits achieved

under UARC and SARC were identical in all cases. Similar

to UARC, SARC also exhibited the 17.8% reduction in hit

rate.

D. Sensitivity to Flash Writes

As we mentioned earlier, demotions in a direct-attached

hybrid cache are cheap compared to the distributed setting, but

not free as each demotion is a flash write operation. In order

to understand the sensitivity of UARC’s performance to flash

write latency, we recomputed UARC’s execution time for write

latencies ranging from 200μs to 1ms. Using these values, we

computed the threshold write latency at which UARC loses its

performance edge over the default IARC configuration (which

is based on a 200μs SSD).

Figure 6 shows the write latency threshold. As expected,

greater the performance differential between UARC and IARC

(in Figure 3), higher the latency threshold. This presents a

price/performance tradeoff that can be used during provision-

ing a storage system to reduce overall capital expenses as

one could either use UARC to manage low-latency, high-

cost, SSDs to improve performance or reduce price by using

cheaper, consumer-grade SSDs with higher write latencies

while matching the performance offered by IARC.

E. Sensitivity to RAM-SSD Sizes

So far in our evaluation, we have restricted ourselves

to configurations where RAM and SSD are equal in size.

However, in order to understand how the RAM-SSD size ratio

might have an impact on the effectiveness of exclusivity, we
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Figure 7: Variations in UARC/IARC miss/allocation times under
wdev0 at 32% cache size while varying RAM/SSD size ratio

reran the simulations for each cache size while varying the

ratio from 50%-50% RAM-SSD to 10% RAM-90% SSD.

Table III shows the threshold fraction of RAM below

which UARC deteriorates performance (by at least 1%) when

compared to IARC. For instance, under Wdev0 trace, at a

cache size equal to 64% of the working set size, UARC

outperforms IARC when the RAM size is 50%, 40%, and 30%.

However, at 20% and below, UARC deteriorates performance

compared to IARC. Thus, the table lists 20% as the threshold

RAM size fraction and reports a deterioration of 29% in

execution time.

As can be seen, under several traces-cache size configura-

tions, UARC is able to match or outperform IARC at all RAM-

SSD ratios as shown by the “-” entries in the table. Thus,

even traditional systems with low RAM/SSD ratios would

benefit from exclusive caching. Even when UARC deteriorates

performance, it does so only by a small fraction (less than 5%

in all cases except under wdev0 and ts0).

The drop in UARC performance under wdev0 and ts0 at

cache size of 4% is consistent with Figure 3, and is due to

that trace-cache size combination being a pathological case

for ARC as we mentioned in Section III-C. The performance

drop at cache sizes of 32% and 64%, on the other hand, is

explained by Figure 7, which shows the variations in miss

time (|cache misses| × Thdd) and allocation time (|demotions|
*Tssdw) of UARC/IARC under wdev0, at a cache size of 32%,

while varying the RAM/SSD size ratio.

There are three interesting observations. First, UARC miss

time remains a constant due to the fact that irrespective of

the RAM/SSD ratio, the total cache size, and hence, the total

number of hits in the cache, remains fixed.

Second, IARC produces fewer hits as the relative RAM size

increases, as evidenced by the increase in miss time. This

clearly highlights the pitfall of using inclusion in the cache

hierarchy. As we mentioned earlier, under IARC, RAM and

SSD caches are managed independently and might end up

inclusively caching the same data twice. Thus, irrespective



Trace 1% 2% 4% 8% 16% 32% 64%

Financial1 - - - - - - -
Financial2 - - 10% (1.031) 10% (1.0216) 10% (1.0404) 20% (1.0543) 20% (1.0311)

hm0 - 20% (1.0132) - - - - -
proj0 10% (1.0144) 10% (1.0113) - - - - 30% (1.0378)
src10 - - - - - - -
src22 - - - - - - -
ts0 10% (1.0102) 10% (1.0198) 50% (1.0471) - 30% (1.1393) 20% (1.1460) 10% (1.1102)

wdev0 - - 50% (1.1182) - - 30% (1.3429) 20% (1.2995)
web3 - - - - - 10% (1.0111) 40% (1.0189)

Table III: RAM/SSD size sensitivity: Table shows the threshold RAM size (fraction of the overall cache size listed as column headers) at
which UARC performs worse than IARC. The value within brackets is normalized UARC execution time (UARC time/IARC time. Entries
with a value “-” denote cases where UARC matches/outperforms IARC at all RAM-SSD ratios (10%-90% to 50%-50%)
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Figure 8: Normalized UARC execution time (with respect to GARC)

of the cache size, the effectiveness of an inclusive multilevel

cache is essentially determined by the larger of the two caches.

Thus, at low RAM sizes, the increase in the number of SSD

ARC hits far outweighs the decrease in RAM ARC hits.

However, at higher RAM sizes, this is no longer the case,

and thus the effective hit rate degenerates to the hit rate of

just one level, thereby increasing the miss time.

Third, UARC allocates almost an order of magnitude more

blocks on the SSD than IARC at low RAM/SSD ratios. This

can be explained by the difference in placement logic between

IARC and UARC. While IARC allocates a block in the SSD

during a read miss, UARC allocates it when it is evicted

from RAM. Hence, decreasing the RAM size has the effect of

increasing the number of demotions, and hence, the number

of allocations. If this demotion-induced increase in execution

time due is not offset by a proportionate reduction in miss

time (due to the increase in SSD ARC hits), which happens

in the case of wdev0 and ts0 at low RAM/SSD ratios, then

exclusivity degrades performance. This explains why IARC

outperforms UARC at low RAM/SSD ratios.

F. Unified vs Global

Figure 8 presents the execution time of our UARC imple-

mentation normalized with respect to GARC’s execution time.

It is evident that UARC meets or outperforms GARC at all
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Figure 9: Total hit count achieved by SSD ARC under UARC
normalized with respect to GARC

configurations except the pathological case (wdev0). Now, we

will show how the two differences between GARC and UARC

play a role in creating this performance differential.

Figure 9 shows the number of hits achieved by SSD

ARC using UARC normalized by the corresponding GARC

values. Clearly, UARC provides a much higher hit rate than

GARC under most configurations. Although GARC maintains

exclusivity between caches, it lags behind UARC as it fails

to pass semantic information between layers as we mentioned

earlier in Section III-A2. All blocks evicted from RAM ARC

(including those from T2 list) are added to the T1 list of

SSD ARC under GARC in contrast to the UARC which

maintains block-list associations across the RAM-SSD barrier.

This difference accounts for the differential in SSD ARC hit

rates.

Figure 10 shows the RAM ARC hits achieved by UARC

normalized by corresponding GARC values. It is interesting to

see how under several traces, UARC achieves fewer hits than

GARC. As GARC maintains B1 and B2 lists separately for

RAM ARC and SSD ARC, its rate of adaptation of parameter

P is different compared to UARC. This results in more RAM

ARC hits under GARC than UARC. However, it is important

to note here that the improvements in hit rates do not always



translate to overall improvement as can be seen by comparing

Figures 8, 9, and 10.

G. Summary

Based on the results, maintaining exclusivity in a direct-

attached, persistent, hybrid, multilevel caching hierarchy im-

proves overall performance by boosting the SSD ARC hit rate

while being resistant to changes in both SSD write latencies

and RAM-SSD size ratio. As Unified caching provides non-

negligible performance improvement over Global caching, for

the rest of this paper, we will use UARC as our baseline

multilevel implementation.

IV. TOWARDS A UNIFIED, MULTILEVEL, READ-WRITE

CACHE

Having illustrated the benefit of exclusive caching under

read-only workloads in the previous section, we now turn our

attention to the topic of integrating writes into our multilevel

cache implementations. Thus, all results reported from here on

differ from previous ones with respect to two factors: 1) unlike

before, the caches serve all requests in a trace without filtering

out writes, and, 2) cache sizes reported in graphs are fractions

of the working set size reported under column RW-WSS (not

R-WSS) in Table II.

While a lot of work has been done on achieving exclusivity

in read-only caches, to our knowledge, no work has focused

on caching dirty data in an multilevel scenario. However, there

has been some research on managing single-level read-write

caches. Researchers have suggested two ways of integrating

writes into a read-only cache. The first approach involves

partitioning the cache into read/write regions and managing

them separately [2], while the second approach involves

modifying existing demand-based, read-cache algorithms, or

implementing new ones, that are targeted at not just improving

the hit rate but reducing expensive disk I/O [8] [9].

We will now investigate the applicability of these techniques

in a multilevel scenario. But before doing so, we need to

quantify the impact of exclusivity under a read-write workload

to understand if UARC retains its performance edge over

IARC when used as a read-write cache.

A. Exclusivity of Dirty Data

Achieving exclusivity in the presence of writes requires two

things. First, just like clean data, dirty data should always be

allocated in RAM ARC and be demoted to SSD ARC during

eviction. Second, when an existing data block is overwritten,

the old version, which could be in SSD or RAM ARC, should

be invalidated. While both IARC and UARC satisfy the first

condition, only UARC is capable of supporting the latter case.

Figure 11 shows the execution time of UARC normalized

by IARC under all traces for both read and write I/Os.

Comparing this with Figure 3 (the normalized execution time

under these traces with write requests filtered out), one can see

that maintaining exclusivity amidst writes offers even higher

performance benefits across all cache sizes. This improvement

stems from a reduction in read misses and number of flushes,
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Figure 10: Total hit count achieved by RAM ARC under UARC
normalized with respect to GARC
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Figure 11: Figure shows the execution time of UARC normalized
with respect to IARC. Unlike Figure 3, where UARC/IARC func-
tioned as a read-only caches due to write requests being filtered out
from traces, this figure reflects the behavior of UARC/IARC as read-
write caches

both of which can be directly attributed to the exclusive nature

of UARC. In order to consider how exclusivity reduces the

number of flushes, consider an overwrite request for a block

that is cached by SSD ARC. While UARC invalidates the

old copy in SSD ARC, IARC leaves it unmodified. If this

SSD block was clean, the performance deterioration is limited

to reduction in SSD hit rate, as it will be dropped silently

during eviction. However, if the block was dirty, in addition

to occupying precious cache space, it also causes an expensive

HDD flush when evicted. By maintaining exclusivity of both

clean and dirty data, UARC eliminates these issues by design.

B. Partitioned Multilevel Cache

Prior research has shown how employing a dynamic par-

titioning technique that divides the cache into read-write

regions, and managing each region independently could help

improve overall performance in a single-level, read-write
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Figure 12: The best case execution of time P-UARC normalized with
respect to baseline UARC’s execution time

cache [2]. Although no work has been done in extending this

technique to a two-level cache, researchers have suggested

transforming read-only/write-only caches into read-write vari-

ants by using a multilevel partitioning technique as the right

way to manage a read-write cache [17].

The first design parameter involved in building a partitioned

read-write cache is the replacement algorithm to be used

for caching dirty data (we use ARC for clean data). Unlike

most single-level write caching research that uses LRU as

the replacement algorithm, our experimentation revealed that

ARC offered a substantial reduction in write misses compared

to LRU, despite being a demand paging algorithm. Thus,

we implemented a two-level, partitioned read-write cache

simulator (P-UARC) using ARC as the replacement algorithm

for managing both read and write regions.

P-UARC has two independent UARC instances, one manag-

ing clean blocks and another managing dirty blocks, running

side by side. The only case when a block migrates between

the two instances is as a side effect of a write operation

that finds a clean block cached in the read instance. Thus,

while the write instance managing dirty data serves both

read and write requests, the clean-block-only read instance

is used only for servicing read requests. In addition, our P-

UARC implementation maintains locality information across

instances by always adding a block to the T2 list of the write

instance during migration from the read instance.

P-UARC takes as input the RAM and SSD sizes just like

UARC. In addition, it also takes a fraction that denotes the

percentage of cache space to be allocated to each instance.

Based on this fraction, it divides RAM and SSD space into

read/write chunks and spawns two UARC instances to manage

each chunk. Using P-UARC, we evaluated the impact of

partitioning on overall performance by statically varying the

read/write cache size ratio from 0.1 to 0.9. As there are a

total of 560 different combinations (seven cache sizes, ten

size ratios, and eight traces) we will just report the best case

execution time of P-UARC (that is, the lowest execution time

across all size ratios).

Figure 12 shows the best case execution of P-UARC normal-

ized by the corresponding execution time of baseline UARC

we presented in Section IV-A. As can be seen, P-UARC either

matches or lags behind UARC under most configurations.

Further analysis showed us that while P-UARC definitely

reduces the overall read miss rate, it does so at the expense of

increasing the number of flushes. This effect gets compounded

under traces where write hits caused by overwrites are equally

(or more) likely than read hits caused by rereads. This clearly

illustrates how partitioning offers no benefit when combined

with adaptive algorithms like ARC in a multilevel, persistent

cache.

C. Cost-Aware UARC

Recent research has shown how an algorithm that attempts

to optimize per-block I/O costs outperforms one that focuses

on optimizing only the overall hit rate [8] [9]. The fundamental

idea behind such cost-aware algorithms is to pick the block

with the lowest I/O cost during eviction, in contrast to a

traditional read-caching algorithm that picks the block with

the least recency/frequency.

In a single-level caching scenario, the I/O cost of evicting

any block is the sum of the cost incurred during eviction and

the cost incurred to fetch the block during next access. Thus,

for a clean block, the eviction cost is zero as it can be dropped

silently during eviction, while a dirty block has an eviction

cost of one. Similarly, the cost of fetching a block during the

next access is zero if the next access is a write operation, and

one if it is a read. In [9], the authors show how a cost-aware

replacement algorithm, which exploits next access type hints

from a database query planner by grouping blocks into lists

based on their I/O cost, is capable of outperforming state-of-

the-art read-caching algorithms.

In this section, we will investigate the utility of cost-

awareness by implementing a multilevel, cost-aware UARC

algorithm (CA-UARC). Although we could implement an

algorithm that relies on semantic hints from the file sys-

tem or higher levels to predict the next access type, its

applicability in real-life would be limited in comparison

to a transparent, block-level caching algorithm that uses a

workload-independent, generic prediction facility. In addition,

the workload traces we use in this study are devoid of any file

semantics. Thus, we will first describe two simple prediction

strategies and the rationale behind their design before detailing

our CA-UARC algorithm.

a) Dirty Bit Predictor: Our first predictor is targeted

at traces in which blocks can be clearly classified as read-

only and write-only types. In such cases, the type of next

access to a block can be predicted with 100% accuracy without

maintaining any history information as clean blocks are always

read and dirty blocks are always overwritten.

b) Access Count Predictor: Our second predictor is

based on the observation that even under traces that have

blocks that are both read and written, it should be possible



Level Status NA I/O Cost List

RAM Clean R 2 (1 SSD W + 1 HDD/SSD R) 2
RAM Clean W 1 (1 SSD W) 1
RAM Dirty R 2 (1 SSD W + 1 HDD/SSD R) 2
RAM Dirty W 1 (1 SSD W) 1
SSD Clean R 1 (1 HDD R) 1
SSD Clean W 0 0
SSD Dirty R 2 (1 HDD W + 1 HDD R) 2
SSD Dirty W 1 (1 HDD W) 1

Table IV: I/O costs of each block in RAM and SSD caches

to classify blocks as read-mostly or write-mostly depending

on the number of reads/writes. Thus, for each block, this

predictor maintains read/write access counts, which it updates

on each access. When queried for a prediction, it checks the

target block’s read/write ratio. If the ratio is less than 0.5,

it predicts a write and if it is greater than two it predicts

a read. If these conditions are not met, it predicts the next

access type to be the inverse of the previous access type based

on the naive assumption that an access stream consisting of

alternating read/write requests to blocks causes the read-write

ratio to stay close to one.

c) Ideal Predictor: In addition to the aforementioned

predictors, we also implemented an offline ideal predictor. The

predictor is invoked before the simulation run and it builds

an in-memory data structure that encodes all accesses in a

compressed form. During the simulation run, the predictor

keeps track of accesses on the fly and when queried, offers

prediction with 100% accuracy. We implemented this predictor

to both understand the best case performance benefits of

adding cost-awareness to ARC, and quantify the performance

loss due to mispredictions by other predictors.

1) I/O Costs in a Multilevel Cache: Since we are dealing

with a multilevel caching scenario, the cost of blocks cached

in RAM is different from those cached in the SSD. Table IV

summarizes the total I/O cost for each block type (clean/dirty)-

next access type (read/write) combination, for RAM and SSD

cases separately. Given these I/O costs, it is evident that RAM-

resident cached blocks can be classified into two types with

costs one (write after read, write after write), or two (read

after read, read after write), and SSD-resident ones into three

types with costs zero (write after read), one (write after write,

read after read), or two (read after write).

2) CA-UARC: In order to make UARC consider I/O costs in

addition to locality as a replacement criteria, we extended it by

first dividing each cache (RAM and SSD) into two segments,

namely, a time segment of segment that is λ% of the cache

size, and a cost segment that is (1 - λ )% of the cache size,

where λ is a statically configurable parameter. We partition the

T1 and T2 lists across these segments as shown in Figure 13.

Thus, the RAM resident MRU-part of both T1 and T2 lists is

internally decomposed into three sublists, namely, a time-LRU

sublist (RAM-TL), a cost1-LRU sublist (RAM-C1L), and a

cost2-LRU sublist (RAM-C2L). Similarly, the SSD-resident,

LRU parts of the T1 and T2 lists are subdivided into time-

LRU (SSD-TL), cost0-LRU (SSD-C0L), cost1-LRU (SSD-
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Figure 13: CA-UARC: Figure shows our extensions to the baseline
UARC data structures for implementing cost awareness. In the figure,
R and S denote RAM and SSD sizes, and λ is the fraction that
determines the size of time and cost lists.

C1L), and cost2-LRU (SSD-C2L) sublists. Thus, by varying

λ , we can change the behavior of CA-UARC from an being

entirely ARC-based to entirely cost-based.

Similar to traditional ARC, each block access results in the

target block being added to the RAM T1 or T2 list (depending

on the access being a hit or a miss). More specifically, the

block is added to the top of RAM-TL of either T1 or T2 list.

If adding the block results in the time segment (|T1-RAM-

TL| + |T2-RAM-TL|) exceeding the preconfigured size, the

LRU block from the block’s new RAM-TL is removed. (For

instance, on a block miss, the LRU block of T1 list’s RAM-TL

would be removed). The predictor is then invoked to determine

the next access type for the target block, and depending on

the prediction, the block is added to the top of either RAM-

C1 or RAM-C2. (For instance, assuming that the target block

removed from the T1 RAM-TL sublist is clean, and assuming

that the next access type is predicted to be a read, the block

will be added to T1 RAM-C2).

If adding the block to the cost list results in the cost segment

(|T1-RAM-C1L| + |T2-RAM-C1L| + |T1-RAM-C2L| + |T2-

RAM-C2L|) exceeding the preconfigured size, a target block

has to be chosen for demotion. This happens in two stages.

First, the ARC logic is used to select the victim list (T1 or

T2) following which, the LRU block from the victim’s RAM-

C1L is chosen for demotion. If RAM-C1L is empty, RAM-

C2L is victimized, and if both cost lists are empty, then the

LRU RAM-TL is victimized. Thus, we always demote the

least expensive (lowest I/O cost) block.

The demoted block is added to the appropriate SSD-TL (For

instance, if the block being demoted was resident in the RAM



Size Fin1 Fin2 proj0 src1 src2 ts0 wdev0 web3
I DB AC I DB AC I DB AC I DB AC I DB AC I DB AC I DB AC I DB AC

16% 0.81 1.02 1.01 0.83 1.02 1.00 1.00 1.03 1.03 1.00 1.00 1.01 0.96 1.00 1.00 0.93 1.01 1.01 0.90 0.95 0.94 0.76 0.97 0.96
32% 0.79 1.04 1.04 1.07 1.02 0.99 0.93 1.01 1.01 0.96 1.02 0.98 0.92 1.00 1.00 0.85 1.02 1.02 0.95 1.02 1.01 0.73 0.94 0.90
64% 1.27 1.03 1.04 1.40 1.00 1.00 0.93 1.00 1.00 0.78 0.99 0.76 0.84 1.00 0.91 1.09 0.98 0.98 1.07 1.04 1.04 1.14 0.98 0.98

Table V: Table lists the best case CA-UARC execution time across all λ values normalized with respect to baseline UARC. For each trace
(listed as column headers), we report the results achieved by CA-UARC while using the ideal predictor (I), dirty bit predictor (DB), and
access count predictor (AC)

T1 list, it would be added to the T1 list’s SSD-TL). If adding

this block results in an overflow in SSD-TL, the LRU block is

removed and moved to the appropriate cost list similar to the

RAM case. If this cost segment overflows, SSD-C0L, C1L,

C2L, and TL are checked, in that order, to select an eviction

target. If the target is dirty it is flushed back to the HDD, and

if clean, it is silently discarded.

While there are other ways to implement cost-aware exten-

sions to ARC, and we did experiment with a few suboptimal

alternatives (like using the RAM cache as a time segment

and dividing just the SSD into cost segments, or adding

cost-awareness just to the RAM cache), our CA-UARC has

the following advantages. First, by integrating cost-awareness

within ARC (compared to an split ARC-cost-aware replace-

ment combination), we preserve all salient ARC properties,

like resistance to sequential scans and adaptivity to changing

workloads. Second, by imparting cost-awareness to the RAM

and SSD cases separately, we optimize both demotion costs

and eviction costs.

Having described our CA-UARC implementation, we will

now present our performance analysis using the cost-unaware

UARC implementation as our baseline. As there are 1848

possible combinations (11 λ values from 0 to 0.9, three

prediction types, seven cache sizes, and eight traces), we

will just present summary statistics that report the best case

performance of CA-UARC (across all λ values) for each trace-

cache size-predictor type combination.
3) Benefit of Being Cost Aware - The Ideal Case: Table V

shows CA-UARC’s best case execution time (across all λ
values) normalized by the baseline UARC value. We do not

report the results for cache sizes smaller than 16% as we

saw no performance improvement at these sizes. The column

labeled “I” under each trace shows CA-UARC’s execution

time using the offline-optimal predictor, normalized by that

of baseline UARC. While the reduction in execution time

varies across configurations, the results clearly show that in

the presence of an oracle, CA-UARC reduces the execution

time by as much as 23%, proving the utility of I/O cost as a

replacement metric.

An interesting observation from the table is how, despite

being supported by an omniscient oracle, the CA-UARC im-

plementation degrades performance at the highest cache size.

On further investigation, we found this to be an unexpected

side effect of one of our optimizations. As the ideal predictor

knows all future references for a block, it prioritizes the

eviction of blocks that are never going to be accessed again

by queuing them on a special “end-of-reference” list. Our CA-

UARC implementation evicts blocks from this list first before

moving to the actual cost lists. At lower cache sizes, this

improves performance by caching only blocks with pending

accesses. However, at large cache sizes, this has the effect

amplifying disk flushes as the idealizer evicts dirty blocks that

have no accesses before clean blocks in the cost list.

4) Cost of Mispredictions - The Realistic Case: Table V

also shows the normalized execution time of CA-UARC while

using DB and AC predictors. While these predictors do offer

some improvement in performance under wdev0 and web3

workloads, they deteriorate performance even in the best case

under other traces. On investigating this further, we found

that both predictors reduce read misses significantly. But the

reduction in read misses was at the expense of an increase

in flushes similar to the P-UARC case. Thus, under traces

where overwrites occur within very short intervals, the higher

hit rate offered by the I/O cost-based replacement metric is

easily overshadowed by the incessant flushing of dirty data.

Exception to this general behavior are the results under

traces src1 and src2. Under these traces, the AC predictor

offers significant reduction in execution time. To our surprise,

we found that this was purely due to a dramatic reduction

in the number of flushes unlike other traces. Further analysis

showed us that most blocks were read/written an equal number

of times under these traces, thereby reducing the AC predictor

effectively to the guess case. As src1, src2 are source control

server traces, they have alternating sequences of reads and

writes, which the guess case predicts accurately. Thus, the

AC predictor improved performance by being domain/trace

specific.

5) Summary: Our evaluation shows how modifying re-

placement logic to balance clean and dirty data in a read-

write cache is capable of improving performance in contrast

to managing a partitioned cache with disparate caching al-

gorithms. However, more work is required to understand if

sufficient prediction accuracy can be achieved in the absence

of higher-level hints or domain-specific semantic information.

Although we have not investigated the effect of destaging on

these algorithms, we believe that these advantages would only

be amplified, as it is well known that any algorithm with a

higher destaging rate will adversely affect performance due to

interference of background writes with foreground reads [6].

V. DEALING WITH SSD LIFETIME

Endurance problems caused by limited erasure counts has

been one of the major issues hindering the adoption of flash

as the primary storage medium. However, recent research has

shown that the skewed block popularity distribution inherent

to several storage workloads can be used to allocate only

“popular” blocks in the SSD, thereby improving both lifetime

and overall cache effectiveness [14]. In this section, we
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Figure 14: SE-UARC’s best-case execution time (across all sieve
thresholds) normalized by that of baseline UARC

investigate the problem of sieving demotions to the SSD in

the context of our multilevel cache in order to answer the

following questions.

• Does sieving improve performance in a multilevel cache?

• Assuming we optimize lifetime over performance, what

is the worst-case deterioration in execution time when

demotion-based allocation is at its minimum?

• How does sieving with interact with the cost-aware re-

placement?

• How does UARC compare to IARC in the presence

of sieving with respect to both performance and SSD

lifetime?

A. Adding Sieving to UARC/IARC

Sieving uses a per-block popularity metric to distinguish

“hot” blocks that are worth caching from “cold” ones that

just thrash the cache [14]. We implemented sieving-enabled

IARC (SE-IARC) and sieving-enabled UARC (SE-UARC) by

maintaining per-block access counters in SSD ARC, which

are incremented during each read/write/demote access from

RAM ARC. Both implementations admit a block into the SSD

ARC only if its access count is higher than the preconfigured

sieving threshold. Blocks that fail this test are silently dropped

if clean, and flushed out to the disk if dirty. We would like

to explicitly point out here that SE-UARC does not perform

cost-aware replacement like CA-UARC. We used SE-UARC to

investigate the effect of sieving in isolation. We will describe

the interaction between sieving and cost-aware replacement

later in this section.

Having described our sieving-related extensions, we will

now answer the questions we posed earlier in this section

using our simulation results. To gather these statistics, we

ran the simulator multiple times while statically varying the

sieving threshold from one to 64 (powers of 2) block accesses.

As before, we will limit ourselves to reporting just summary

statistics.
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Figure 15: SE-UARC’s SSD allocation count at the highest sieve
threshold normalized by that of baseline UARC. As the y-axis has
been inverted, a higher bar represents a greater lifetime improvement
due to fewer allocations

1) Benefits of Sieving: In [14], the authors show how siev-

ing allocations improves the overall hit rate of an ensemble-

level LRU cache (shared cache across all workloads) by 35%

to 50%. Thus, an interesting question is whether sieving

retains its edge in our multilevel scenario. Figure 14 shows

the best execution time (across all thresholds) of SE-UARC

normalized by baseline UARC’s execution time (no sieving).

As can be seen, sieving offers marginal improvement at best

under most traces. In the worst case, sieving deteriorates

performance significantly at large cache sizes. This can be

intuitively explained by the reduction in the number of SSD

ARC hits.

Although not shown here due to lack of space, we also

noticed that sieving failed to improve performance of even

IARC. The best case reduction in IARC execution time was a

meager 5% across all traces. Thus, unlike prior research, we

believe that sieving cannot be used as a performance boosting

technique in direct-attached multilevel caches, especially when

used in collaboration with an adaptive caching algorithm like

ARC.

2) Ideal Lifetime Savings: Although improving perfor-

mance would have been an additional advantage of using

sieving, saving flash lifetime is its primary objective. Figure 15

shows the number of allocations made by SE-UARC at the

highest sieve threshold (64 accesses) normalized by the allo-

cation count of baseline UARC for various configurations. It

is important to note that the axis has been inverted and thus,

a higher column implies a lower allocation count, which, in

turn, translates to greater lifetime savings. Figure 16 shows

the execution time of SE-UARC at the highest sieve threshold,

normalized by baseline UARC execution time.

Clearly, sieving has a significant impact on flash lifetime

as it reduces allocations in the SSD by several orders of

magnitude under all traces. In addition, most traces show

little to no performance degradation at low cache sizes despite

such aggressive sieving. src1 and src2 are extremely cases
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Figure 16: SE-UARC’s execution time at the highest sieve threshold
normalized by baseline UARC’s execution time

with little degradation at all cache sizes. This illustrates how

the performance impact of sieving is directly proportional to

trace locality. Comparing these results with Figure 5, one can

easily see that lower the locality of the trace (lower the cache

effectiveness due to small cache size), higher the benefits of

sieving.

B. Sieving And Cost-Awareness

In the presence of sieving, the total I/O cost of each block

in RAM changes radically as a block can now be classified

as either a “hot” block that passes the sieve test or a “cold”

block that fails the test. Thus, the cost of evicting a hot block

is different from that of evicting a cold block in both clean

and dirty cases. Table VI summarizes the cost of various

block types. Based on the table, we can classify blocks into

five types, namely, cold-clean-write-next (no op), hot-clean

and hot-dirty write-next (one SSD op), hot-clean and hot-

dirty read-next (two SSD ops assuming data stays buffered

in the SSD), cold-clean read-next and cold-dirty-write-next

(one HDD op), and cold-dirty-read-next (two HDD ops). Thus,

rather than extending CA-UARC with sieving (similar to the

way we extended baseline UARC), we can use sieving to

modify the replacement logic itself. To compare these two

designs, we implemented sieving-enabled CA-UARC (SE-CA-

UARC), and sieving-aware replacement in CA-UARC (SAR-

CA-UARC).

To reiterate, while both SE-CA-UARC and CA-UARC are

cost aware, SE-CA-UARC does not allocate blocks that fail the

sieve test in the SSD ARC. In addition to this difference, SAR-

CA-UARC also uses different cost lists to maintain the RAM

cost segment when compared to CA-UARC (five as opposed to

two). It is important to note here that sieving only alters RAM

cost lists. Thus, both SE-CA-UARC and SAR-CA-UARC use

three SSD cost lists.

On evaluating the two cache types, we found that the

best-case execution time of SE-CA-UARC was identical to

SAR-CA-UARC. This indicates that integrating sieving into

the replacement logic produces little performance advantage.

Popularity Status NA I/O Cost List

Hot Clean R 1 SSD W + 1 HDD/SSD R 2
Hot Clean W 1 SSD W 1
Hot Dirty R 1 SSD W + 1 HDD/SSD R 2
Hot Dirty W 1 SSD W 1
Cold Clean R 1 HDD R 3
Cold Clean W 0 0
Cold Dirty R 1 HDD W + 1 HDD R 4
Cold Dirty W 1 HDD W 3

Table VI: Table lists the I/O costs of each block used to determine
the RAM cost lists under SAR-CA-UARC. The list number identifies
the order in which lists are chosen during demotion to free up RAM
space. The SSD cost lists have not been listed as they are exactly the
same as shown in Table IV.

However, on investigating this further, we found that while

the relative improvement over baseline UARC was similar un-

der both SE-CA-UARC and SAR-CA-UARC, the underlying

source of improvement was different. As shown in Table VI,

SAR-CA-UARC prioritizes eviction of “hot”-dirty blocks and

“cold”-clean blocks over “cold”-dirty blocks as their I/O costs

are different. In the absence of this logic, SE-CA-UARC,

on the other hand, treats both “hot” and “cold”-dirty blocks

similarly (Table IV). Thus, while SAR-CA-UARC optimized

performance by reducing the number of “cold” flushes to the

disk (at the expense of higher read misses), SE-CA-UARC

optimized performance by reducing the number of read misses

(at the expense of increased flushes).

While our cost model simulates a disk drive with balanced

read/write latencies, there are several scenarios where this

assumption is not true. For instance, in most enterprises, a

persistent cache is typically used as a high-speed front end

for a disk array. In such a scenario, it is well known that array

writes might cost much more than reads depending on the

redundancy technique used [6]. In such cases, SAR-CA-UARC

would show a distinct performance advantage as it reduces

the number of flushes. On the other hand, most caching

implementations employ background destaging of dirty data to

ensure free space availability in the cache and avoid blocking

foreground operations. Combining destaging with a write-

optimized layout for the disk tier would dramatically reduce

the cost of flushing data. In such a scenario, SE-CA-UARC

would definitely outperform SAR-CA-UARC.

C. SE-CA-UARC/IARC Comparison

Putting it all together, Figure 17 shows the best-case exe-

cution time of SE-CA-UARC, across all sieve thresholds and

λ values, normalized by the best-case execution time of SE-

IARC. We present only the results obtained while using SE-

CA-UARC in combination with the ideal predictor here due

to lack of space. Comparing this with Figure 11, one can see

that with cost-awareness in place, SE-CA-UARC consistently

outperforms IARC by a significant margin under most trace-

cache size combinations.

Figure 18 depicts yet another benefit of exclusive caching by

presenting SE-CA-UARC’s best-case SSD allocation normal-

ized by that of SE-IARC. As can be seen, SE-CA-UARC also
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Figure 17: SE-CA-UARC’s best-case execution time (across all sieve
thresholds) normalized by that of IARC
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Figure 18: SE-CA-UARC’s SSD allocation count at the highest sieve
threshold normalized by that of IARC

offers substantial reduction in the number of SSD allocations

under almost all traces. Thus, exclusivity can be used not only

to improve performance but also SSD lifetime.

VI. CONCLUSIONS

Despite being provisioned with large amounts of RAM and

SSDs, several modern enterprise storage appliances manage

the two cache levels in an inclusive fashion. By using a

trace driven simulator, we showed how maintaining exclusivity

in such direct-attached, multilevel caches not only improve

performance but also improve SSD lifetime by reducing the

number of allocations. Thus, we believe that exclusivity should

be considered a first class citizen in designing next-generation

storage systems. Although we showed the potential of cost-

aware extensions in improving the performance of a read-write

cache, more work is needed to bridge the gap between the

accuracy of online predictors and an offline ideal predictor.
While we investigated the design alternatives involved in

building a block-level exclusive cache, modern file systems

already manage a multilevel data cache, with RAM-resident

buffer cache being the first level and flash-based SSDs being

the second level. In addition, an exclusive file-level caching

hierarchy could utilize readily-available semantic information

to derive more accurate cost estimates, and hence, improve

cache effectiveness. Thus, we believe that an interesting topic

of future research is investigating exclusivity extensions to file

systems.
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