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Abstract—Fault injection is a pivotal technique in depend-
ability benchmarking. Unfortunately, existing general-purpose
fault injection tools either inject faults in predetermined memory
locations or resort to random injection, approaches that generally
result in poor fault coverage and controllability guarantees. This
makes it difficult to reproduce or compare experiments across
different systems or workloads.

This paper presents EDFI, a new tool for dependable general-
purpose fault injection experiments. EDFI combines static and
dynamic program instrumentation to perform execution-driven
fault injection, a technique which allows realistic software faults to
be injected in a controlled way as the target system executes. Our
instrumentation strategy guarantees a predetermined faultload
distribution during the entirety of the experiment, independently
of the particular system or workload considered. Our evaluation
confirms that EDFI significantly improves the precision and
controllability of prior tools, at the cost of only modest memory
and performance overhead during fault-free execution.

Keywords-Execution-driven fault injection, Dependability
benchmarking, Basic block cloning.

I. INTRODUCTION

As we enter the pervasive computing era, complex software
systems play an increasingly important role in our every-
day life. In this emerging landscape, assessing the depend-
ability properties of a software system becomes a growing
and critical concern. For dependability benchmarking pur-
poses, researchers and practitioners have traditionally relied
on software-implemented fault injection (SWIFI) tools, which
provide a relatively inexpensive strategy to mimic real-world
faults in a synthetic experimental setting.

In the past decades, fault injection campaigns have been
applied to several categories of software, including distributed
systems [1], user applications [2]–[4], operating systems [5],
[6], device drivers [7]–[9], and file caches [10]. These exper-
iments have served a number of different purposes, includ-
ing: (i) analyzing (and comparing) the behavior of different
systems under a given faultload [5], [6]; (ii) evaluating the
effectiveness of fault-tolerance mechanisms [7]–[9]; (iii) per-
forming high-coverage testing of error detection and recovery
mechanisms [2], [11], [12].

Recent research efforts to build practical fault injection tools
are largely focused on the latter scenario [3], [4], [11]. In this
context, experiments are designed to surgically inject targeted
faults into the system and trigger rarely executed code paths,
rather than mimicking real-world software faults. The ultimate
goal is typically to increase the code coverage explored during

automated testing. Ironically, earlier efforts, which are instead
focused on designing general-purpose fault injection tools, are,
in turn, heavily affected by limited program code coverage
achieved during the experiment.

In detail, the dominant approach followed by existing
general-purpose tools is to inject faults into predetermined (or
random) memory locations [1], [8], [10], [13]–[17], a location-
based strategy which cannot guarantee that faults are actually
“covered”—with a predetermined faultload distribution, i.e.,
characterization of fault locations and types (§ V)—at runtime.
Not surprisingly, prior studies have reported fault injection
campaigns with no faults activated in as many as 40% of
the experiments [1], [10]. A way to address this problem is
to substantially increase the number of faults injected, but at
the cost of more experiments invalidated by spurious faults
activated before even starting the test workload. An alternative
is to surgically inject faults into hot spots stressed by the
test workload [18]–[20], a strategy which, however, requires a
deterministic workload and does not account for code covered
only during faulty execution (e.g., error handling code).

Other approaches, in turn, periodically interrupt the system
at random execution points (i.e., typically using a timer)
and inject faults into the current runtime context [13], [16],
[17]. This time-based strategy, however, biases the experiment
toward hot code paths and severely limits the nature of the
faults that can actually be injected at runtime, ultimately
producing poorly representative software faults [21]–[23].
We believe all these shortcomings have significantly affected
the “dependability” of existing tools, often even prompting
researchers to question the validity of fault injection as a
dependability benchmarking technique [24].

This paper presents EDFI, a new tool for dependable
general-purpose fault injection experiments. Unlike all the
prior tools, EDFI implements execution-driven fault injection,
a novel technique which allows injecting a controlled and
predetermined faultload distribution as the system executes
at runtime. To address this challenge, EDFI relies on a
combination of static and dynamic program instrumentation,
which transforms the original code into multiple heterogeneous
versions at compile time and provides the ability to interleave
them in a controlled way during the experiment. This strategy
allows EDFI to (i) statically inject multiple simultaneous [25]
faults over the entire code—with a predetermined faultload
distribution—to avoid coverage problems during the experi-
ment and (ii) seamlessly switch between fault-free and faulty



execution to allow fault activation only in a user-controlled
fault injection window at runtime.

EDFI’s hybrid instrumentation strategy delivers precise
(i.e., how well the tool follows the original fault model),
controllable (i.e., how well the user can mark the begin-
ning/end of an experiment with no spurious faults activated
before/after then), and observable (i.e., how well the user can
observe/measure the output of an experiment) fault injection
experiments with negligible system impact during normal
execution. Unlike all the existing tools, EDFI offers strong
guarantees that a predetermined fault characterization given
in input (i.e., input faultload distribution) will be precisely
reflected in the observed output of the experiment (i.e., output
faultload distribution) without introducing spurious faults that
may compromise the validity of the results.

II. BACKGROUND

Software-implemented fault injection (SWIFI) is a well-
established technique in dependability benchmarking exper-
iments. Its merit lies in emulating real-world faults in a
synthetic setting with relatively simple tools.

SWIFI tools are typically designed to either inject generic
faults into the original program or emulate error conditions
at the library interfaces. The latter scenario is popular in
robustness testing campaigns, which aim to analyze the be-
havior of the system in face of error codes returned by the
libraries [3], [4] or invalid arguments supplied to library
(or system) calls [6]. While important in robustness testing
applications, these strategies are orthogonal to general-purpose
fault injection techniques in terms of both goals and represen-
tativeness, as also demonstrated in prior work [26].

General-purpose SWIFI tools, in turn, are traditionally
classified into two main categories, depending on whether
fault injection is performed at preruntime or at runtime.
The former approach injects faults by statically mutating the
original program via compiler-based techniques [8], [27] or
binary rewriting [10], [13]–[15]. Mutations can affect code
or data and follow a predetermined location-based strategy.
Locations are either user-defined or selected at random. Early
approaches, such as [13], [14], corrupt the program image with
hardware-like faults (e.g., bit flips). More recent approaches,
such as [8], [10], [15], [22], [28], in contrast, explicitly aim
at emulating realistic software faults. G-SWFIT [15], for
example, injects only fault types obtained from the analysis
of 668 real-world bugs found in the field.

In both cases, preruntime location-based approaches have
a number of important shortcomings. First, fault activation
cannot be easily guaranteed, as it is subject to code cov-
erage induced by the test workload. Even when faults are
activated, limited coverage immediately translates to very
weak guarantees on the dynamic faultload distribution actually
injected at runtime. Second, it is infeasible to prevent faults
from being activated outside the user-controlled fault injection
window, which should, however, clearly mark the boundaries
of the experiment. This greatly limits the controllability of the
approach. For example, the system may inadvertently crash

at initialization time before even starting the test workload
considered in the experiment.

Runtime location-based SWIFI strategies, such as those
explored in [1], [13], [16], [17], seek to address the con-
trollability issues of preruntime techniques. These strategies
rely on hardware or software traps to interrupt the execution
at predetermined (or random) memory locations and inject
faults. This approach, however, is still inherently prone to the
coverage problems discussed earlier. In addition, prior studies
have shown that the low-level nature of these (and other)
runtime techniques offers poor representativeness guarantees
when emulating realistic software faults [22].

Other runtime SWIFI strategies, such as those explored
in [13], [16], [17], have resorted to time-based fault triggers
to periodically interrupt the execution (e.g., every 2 seconds)
and inject faults into the current runtime context. While a
potential solution to the coverage problems that plague all the
other fault injection approaches, this strategy is hardly free
from important shortcomings. First, the injection is heavily
influenced by the workload and biased toward code paths that
are executed more often during the experiment. Second, given
that interruptions occur at random execution points, the nature
of the faults that can effectively be injected is significantly
constrained. This typically results in a weak and poorly
predictable faultload distribution injected into the program
at runtime. Not surprisingly, prior studies have found time-
based approaches to be the least representative fault injection
strategies [21]. Finally, the unpredictability of the injection
events makes it really difficult to reproduce and compare the
results across different experiments.

To conclude, a number of approaches have been devised
to mitigate the coverage problems incurred by location-based
techniques. The general idea is to profile the behavior of the
system under the test workload and inject faults into hot spots
with high probability of fault activation [18]–[20]. The main
problem with these approaches is the inability to account for
code paths only covered during faulty execution and the high
sensitiveness to the workload. The latter, in particular, results
in weak fault activation guarantees and also limits the repro-
ducibility and comparability of the experiments. These issues
have often emerged in prior studies. For example, the analysis
presented in [19] assumes a deterministic test workload to
obtain stable experimental results. DEFINE [1] reports no
fault activation in as many as 40% of the experiments even
with faults explicitly designed to match the test workload.
Finally, the analysis presented in [21] reports a high-variance
faultload distribution observed across repeated fault injection
experiments with only slight variations in the workload.

In contrast to all the prior SWIFI strategies, EDFI’s hybrid
instrumentation approach provides a dependable fault injection
environment, combining and outperforming existing prerun-
time and runtime approaches. Unlike traditional preruntime
strategies, EDFI provides full controllability of the experi-
ment, with faults only activated (and observed) within a user-
controlled fault injection window. Unlike all the location-based
strategies, EDFI is robust to limited coverage induced by



Fig. 1: Architecture of the EDFI fault injector.

the test workload. Faults are injected (and activated) directly
into the currently executed code paths, independently of the
particular system or workload considered. Unlike time-based
strategies, EDFI imposes no restrictions on fault represen-
tativeness, nor does it yield a biased or poorly predictable
fault injection experiment. Overall, EDFI’s execution-driven
strategy offers much stronger guarantees on the precision of
the dynamic faultload, naturally yielding more reproducible
and comparable fault injection results. Its LLVM-based archi-
tecture, in turn, provides a powerful, extensible, and portable
framework suitable for several fault injection scenarios.

III. SYSTEM OVERVIEW

The goal of EDFI is to provide a generic and extensible
fault injection framework which dependability researchers and
practitioners can easily adapt to their needs in many different
contexts and usage scenarios. This vision is reflected in EDFI’s
modular and portable architecture (Figure 1).

To use EDFI, users need to statically instrument the target
program with a link-time transformation pass, implemented
using the LLVM compiler framework [29]. The pass accepts
several command-line arguments to allow the user to spec-
ify the static fault model (§V), which describes the input
faultload distribution to inject into the program, for example,
a distribution mimicking fault types found in the field [15]
and locations that are representative of residual faults [28],
[30]. The pass translates the static fault model requested
into targeted code mutations and prepares the program for
execution-driven fault injection (§IV). The transformations are
all performed at the LLVM IR (intermediate representation)
level before optimizations are applied. This strategy preserves
the fundamental source-level abstractions required to inject
realistic and representative faults [23]. In addition, the LLVM
IR-level strategy seamlessly provides fault injection capabili-
ties for all the architectures supported by LLVM.

If the source code is not available, our fault injection
strategy could also be applied starting from legacy binaries.
For this purpose, the LLVM MC subproject [31] includes
disassemblers (with mature support for x86 and ARM) that can

translate binaries into LLVM IR. Great care should, however,
be taken when using this strategy, given that the resulting
LLVM IR would no longer reflect the structure and the
abstractions of the original source code. This issue has been
also recognized in prior studies, which demonstrated the rep-
resentativeness problems of binary-level fault injection [23].
In particular, the analysis in [23] found inlining and C-style
preprocessor macro expansion to be the most disrupting factors
for fault injection representativeness.

To avoid the representativeness problems introduced by
inlined functions, our instrumentation strategy ensures that
program mutations are always applied before inlining (or any
other optimizations). Preprocessor macro expansion, however,
is always performed in the language front end, with the
original macro information irremediably lost in the LLVM IR.
In its current implementation, EDFI opts for a pure LLVM
IR-based strategy, losing the ability to identify the original
preprocessor macros, but at the benefit of a uniform instru-
mentation strategy across all the source languages supported
by LLVM. If macro-level representativeness is an issue in
particular scenarios, a simple source-to-source transformation
could be used to automatically transform function-like macros
into inline functions. Recent work on source code rejuvenation
demonstrates how to implement this strategy in C++11 using
perfect forwarding [32].

A similar warning is in order for shared libraries. Our
link-time transformation pass can automatically instrument the
program and all the statically linked libraries. Shared libraries,
however, must be separately instrumented. Nevertheless, EDFI
can automatically corrupt the arguments supplied to library
calls or emulate error codes returned by shared libraries,
similar to the library-level strategy adopted by LFI [3].

Once instrumented, the binaries can run without deviating
from their original runtime behavior. The instrumentation,
however, allows the user to initiate and terminate a fault
injection experiment at any point during the execution of the
target system. To control the experiment at runtime, EDFI
relies on two control libraries, which together coordinate the
communication between the system and an external controller.
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Fig. 2: Basic block cloning example.

The control server library—which listens for external fault
injection events in the background—is transparently linked
against the program binary as part of our instrumentation pro-
cess. The control client library—which delivers fault injection
events to the server—provides a generic client-side interface
to initialize, start, and stop a fault injection experiment on
demand. EDFI already includes a simple stock controller
(i.e., edfi-ctl), which relies on the control client library
to expose a convenient command-line interface to the user.
The client library, however, can be also as easily embedded in
other complex systems to build more sophisticated controllers.
Note that the control libraries are the only platform-specific
components in our architecture, also designed to be easily
extended and support new fault injection settings. Our current
implementation includes support for UNIX applications, using
UNIX domain sockets to establish the client-server communi-
cation. A portable sysctl-based implementation to perform
fault injection into Linux and BSD OS kernels is underway.

To initiate an experiment, the user typically starts the target
program, activates a test workload, and finally instructs the
controller to start (and later stop) the fault injection experiment
in well-known system states. To configure the experiment,
the user can specify a number of parameters and a custom
dynamic fault library (or use the stock library included in our
framework), dynamically loaded into the program immediately
before starting the experiment. The input to the controller
defines the dynamic fault model (§VI) adopted, which gives the
user fine-grained control over the experiment and the ability
to emulate special dynamic conditions at runtime.

The user can also specify the logging mechanism to use
among those supported by the control libraries. At the end of
the entire process, the user can inspect the logs to determine
the number, locations, types, and faultload distribution of all
the faults injected during the fault injection experiment.

IV. EXECUTION-DRIVEN FAULT INJECTION

Execution-driven fault injection is a new fault injection tech-
nique which ensures predetermined faults to be systematically
injected, activated, and observed as the system executes at run-
time. This strategy entails several challenges. First, the faults
injected during the experiment should accurately follow the
faultload distribution defined by the static fault model. Second,
it should be possible to seamlessly switch between faulty and
fault-free execution during an experiment, as dictated by the
dynamic fault model. Finally, the switching strategy should
guarantee fine-grained control over the execution during the
experiment, but also minimize the impact on the system during
normal execution. This property is particularly important to
avoid perturbing the system before initiating the experiment.

To address these challenges, our instrumentation uses the
basic block cloning idea, which replicates and transforms the
original code into multiple heterogeneous and interchange-
able code versions. The general idea has been explored in
prior work in different forms, using either static [33] or
dynamic [34] program instrumentation strategies. EDFI em-
braces a new static approach to implement an efficient and
flexible cloning strategy. Our transformation pass translates a
generic basic block in the original control flow graph (CFG)
of the program into the following basic blocks:

• The pristine basic block. This is the original basic
block found in the input CFG. This block is always
executed during normal execution at runtime when no
fault injection experiment is in progress.

• The fault-free basic block. This is a semantically-
equivalent copy of the pristine basic block, but with dif-
ferent predecessor and successor blocks. This basic block
emulates fault-free execution within the fault injection
window and can only be actively executed when a fault
injection experiment is in progress.



class StaticFaultHandler {
virtual void init ( Module &M, string & params ) {}
virtual bool canInject ( Value * faultLocation ,

double faultProb ) = 0;
virtual void inject ( Value * faultLocation ) = 0;

};

class StaticFaultAnalyzer {
static double getMaxSFIF ( void );
virtual void init ( Module &M, string & params ) {}
virtual double getSFIF ( Value * faultLocation ) = 0;

};

Listing 1: Static fault C++ programming interface.

• The faulty basic block. This is a transformed version
of the original basic block found in the input CFG,
instrumented with the faultload distribution defined by
the static fault model. This block emulates faulty execu-
tion within the fault injection window and can only be
executed when an experiment is in progress.

• The FDP basic block. This is a newly generated basic
block which implements the fault decision point (FDP)
for the benefit of the dynamic fault model. This block
determines the basic block to run next within the fault
injection window, allowing the experiment to seamlessly
switch between fault-free and faulty execution.

Figure 2 shows a simplified example of EDFI’s basic
block cloning strategy. The original CFG in the example was
generated from a simple function with a single loop summing
all the elements of an array. As exemplified in the figure,
the transformation preserves the basic structure of the original
CFG, but a number of pristine basic blocks are modified to
check the value of a special switch flag and redirect execution
to a different code version when necessary. To minimize the
runtime overhead, the flag is only checked at function entries
and loop back edges (not shown in the figure, for simplicity),
similar to [33]. While efficient, this approach provides only
coarse-grained control over the execution with no ability to
switch to a different code version at every basic block. To
address this challenge, EDFI only relies on the switch flag
to interrupt (and restore) normal execution at the beginning
(and at the end) of the fault injection window, but introduces
FDP blocks to support basic block-level switching granularity
during the experiment. Note that supporting instruction-level
switching granularity is also an option, but we found this
strategy to drastically increase the complexity of the CFG—
hindering optimizations and encouraging memory overhead—
without significantly improving the expressiveness of the
dynamic fault model. If more expressiveness is necessary,
our basic block cloning strategy could also be configured to
generate multiple faulty basic block versions rather than just
one for each pristine basic block, also providing the ability to
switch between different static fault models at runtime.

At the beginning of the fault injection experiment, the
control library sets the switch flag to allow the execution to
switch to a different code version at the next function entry or
loop back edge—the latter is necessary to support execution-
driven fault injection in face of long-running loops. From

that moment, the execution percolates through a network of
FDP blocks, which reflects the original CFG structure but can
selectively redirect the execution flow to faulty or fault-free
basic block versions according to the dynamic fault model.
When the switch flag is unset to terminate the experiment—as
dictated by the dynamic fault model or by the controller—the
FDP blocks channel the execution flow exclusively into fault-
free basic blocks, while allowing the system to restore normal
execution at the next function entry or loop back edge.

V. STATIC FAULT MODEL

The goal of the static fault model is to shape the fault-
load distribution adopted at runtime for the fault injection
experiments. In particular, the model should give the user the
ability to accurately specify what faults to inject and with
what distribution, according to the particular fault scenario
considered. For this purpose, EDFI relies on generic static
fault handlers (SFHs). A single SFH implements a particular
fault injection strategy, characterized by a static fault trigger
(SFT) (i.e., conditions that designate particular code locations
for fault injection) and fault type (i.e., actions to inject the fault
into the program). SFHs are implemented by pluggable objects
that adhere to a well-defined C++ programming interface,
shown in Listing 1.

The abstract C++ class StaticFaultHandler defines a
number of virtual methods for the benefit of the subclasses.
The optional init() method can be used to perform one-time
initialization operations. The inject() method is used to im-
plement the fault injection strategy. Finally, the canInject()
method is used to implement the static fault trigger. Our static
fault triggers are similar, in spirit, to generic fault triggers
proposed in prior work [4], [35]. Our SFTs, however, are
completely static—dynamic triggers are, in contrast, used in
our dynamic fault model (§VI).

At the end of the basic block cloning process, our pass
locates all the StaticFaultHandler implementations (built-
in or user-defined) scheduled for injection according to the
static fault model specified by the user. Next, the pass scans
the entire LLVM IR program to identify all the candidate fault
locations (e.g., store instruction). Our current implementation
supports fault locations at three different levels of granularity,
reflected in the Function, BasicBlock, and Instruction
LLVM IR objects. For each candidate fault location, the pass
invokes the canInject() method on all the designated SFH
objects. Our current StaticFaultHandler implementations
consider only instruction-level fault locations, but it is straight-
forward to implement more complex fault injection strategies
that operate at the function or basic block level.

The canInject() method accepts two arguments: the
current candidate fault location and the fault probability. The
latter determines the probability that a particular fault type will
be injected in a candidate fault location. The fault types (i.e.,
SFHs) to consider, their corresponding probabilities, and any
other optional parameters (i.e., params) are specified by the
user via command-line arguments to our transformation pass.
These arguments reflect our definition of faultload distribution,



which is fundamentally different from prior characterizations
adopted in the literature [15].

Traditional faultload characterizations describe the set of
fault types in terms of the fraction of the total faults each
fault type represents [15]. While convenient for location-based
approaches and single-fault injection strategies, this definition
often translates to a weak faultload characterization, which
ignores the structure and size of the program. Our probability-
based characterization, in contrast, is inherently code size-
agnostic and enables simultaneous fault injection [25]. The
former property is particularly important to compare fault
injection results across different programs, while also giving
strong guarantees that the given fault probabilities will be
reflected in the output at runtime—precision problems should
only be expected in cases of very limited coverage (§ VI).

As acknowledged in the analysis presented in [36], however,
there are many factors that may nontrivially increase the fault
density in particular code locations. For example, prior studies
have shown that the fault density is statistically correlated with
code complexity measures [37]. Other studies have presented
empirical evidence that imports and function calls correlate
with security vulnerabilities [38]. To alter the original faultload
distribution and express more sophisticated fault models that
consider these (and other) conditions, EDFI relies on generic
static fault impact factors (SFIFs). These factors can be used
to amplify or (reduce) the fault probabilities in particular code
locations, orthogonally to the original fault types considered.
The SFIFs are computed on a per-fault location basis by plug-
gable static fault analyzer (SFAs) objects, which also adhere
to a well-defined C++ programming interface (Listing 1).

In addition to the conventional init() method, the abstract
C++ class StaticFaultAnalyzer exposes two methods to
the transformation pass. The virtual method getSFIF() re-
turns the fault impact factor of the current candidate fault
location. The static method getMaxSFIF() returns the maxi-
mum fault impact factor possible across all the user-specified
SFAs. For each candidate fault location in the program, the
pass invokes the getSFIF() method on each designated SFA
and stops when the first valid SFIF for the current location is
found (if any). The priority of application of a particular SFA
is determined by the original order specified by the user. The
final fault probability given to the canInject() method of
each StaticFaultHandler object is the normalized version
of the original fault probability, which is simply computed as:

faultProb *= SFA.getSFIF()/SFA.getMaxSFIF()
Unlike SFIFs, static fault triggers are never evaluated in a

priority-based fashion. After calling the canInject() method
on all the designated SFHs, the pass selects only those that
have returned a positive answer and performs random selection
to resolve eventual collisions. This strategy is necessary to
avoid perturbing the faultload distribution specified by the
user and also eliminate duplicate faults that can introduce
representativeness problems. The selected SFH (if any) is
finally requested to inject the fault into the program (i.e., with
a call to the inject() method). At the end of the process,
the pass reports accurate statistics on the faultload distribution

injected. This is important to give the user a feedback on the
quality of the final static fault model applied (e.g., a high
fault collision rate may introduce discrepancies in the original
faultload distribution).

EDFI includes a number of built-in SFHs and SFAs that
users can combine (and extend) to express several different
static fault models. In particular, EDFI implements SFHs for
all the standard software fault types described in the literature
and commonly found in the field [15], [39], [40]. In addi-
tion, EDFI can specifically emulate several memory errors,
including buffer overflows, off-by-N errors, uninitialized reads,
memory leaks, invalid free() errors, and use-after-free errors.
Finally, EDFI can emulate interface errors similar to those
described in [3], [6] (although we have not yet implemented
LFI’s return code analysis [3]), while also generalizing these
strategies to generic function interfaces.

The built-in SFAs implemented in EDFI, in turn, can
be used and combined to emulate a number of sophisti-
cated fault injection scenarios. The most basic SFA (i.e.,
RandomFaultAnalyzer) allows the user to override the de-
fault fault impact factor for N basic blocks selected at random
in the program. This strategy can be used to mimic the
behavior of existing location-based fault injection strategies,
as also done in our evaluation. The FunctionFaultAnalyzer
and ModuleFaultAnalyzer SFAs, in turn, allow the user to
override the fault impact factors of a set of predetermined
functions or modules, respectively. This is useful, for example,
to emulate and analyze the impact of particularly faulty com-
ponents. Finally, the CallerFaultAnalyzer SFA allows the
user to override the fault impact factors of all the instructions
(or basic blocks) which call a particular set of functions. This
is useful, for example, to emulate interface-level fault injection
at the library interfaces [3].

Other than using the built-in SFHs and SFAs, users can
easily implement their own. Using the programming interface
introduced earlier, users can add new SFHs and SFAs directly
to the existing framework or include them in separate LLVM
plugins. The LLVM API provides several opportunities to im-
plement complex extensions with minimal effort. For example,
implementing a SFA that amplifies the SFIF according to the
number of lines of code in a module or the McCabe’s cyclo-
matic complexity computed over the current function (one of
the best fault predictors, according to [37]) is straightforward.

VI. DYNAMIC FAULT MODEL

The static fault model describes a systematic faultload
distribution for the fault injection experiment, but cannot alone
express more sophisticated dynamic conditions that affect the
runtime system behavior. This is the main goal of the dynamic
fault model. The users specify a dynamic fault model for fault
scenarios that need to alter or control the faultload distribution
during the experiment at runtime. In particular, the model can
be used to specify when to switch to faulty execution and what
to do when faults are injected into the execution. In addition,
the model defines all the actions to perform at the beginning
and at the end of the fault injection experiment. To meet these



void edfi_onstart ( edfi_context_t * context );
int edfi_onfdp ( edfi_context_t *context ,

const char *file , int line );
void edfi_onfault ( edfi_context_t *context ,

const char *file , int line ,
int num_fault_types , ...);

void edfi_onstop ( edfi_context_t * context );

Listing 2: Dynamic fault C programming interface.

goals, EDFI supports a convenient event-driven interface to
customize and control the runtime behavior of the experiment.

In detail, EDFI’s dynamic instrumentation model defines
four primary events: start event (triggered at the beginning
of the experiment, as dictated by the controller), fdp event
(triggered at every fault decision point encountered), fault
event (triggered when switching to faulty execution), stop
event (triggered at the end of the experiment). For each of
these events, EDFI defines a corresponding event handler in
the C programming interface exported by the dynamic fault
library. The four event handlers are shown in Listing 2.

Every event handler receives as an argument a pointer to
the fault injection context (i.e., edfi context t object).
The context includes all the fault injection variables that are
normally used to initialize, track, and influence the state of
the experiment. For example, the context holds the counters
to provide statistics on the faultload distribution observed at
runtime, as well as the policies to control the behavior of our
stock dynamic fault library. To prevent corruption of the fault
injection variables during the experiment, the control libraries
guarantee that the context is always mapped high in memory
and protected with guard pages.

The edfi onstart() handler, automatically called when
the controller signals the beginning of the experiment, ini-
tializes the fault injection context and other implementation-
specific data structures. The default implementation in the
stock dynamic fault library initializes the context with de-
fault values, while allowing the user to override these values
through the control interface. The edfi onstop() handler,
automatically called at the end of the experiment, performs
implementation-specific cleanup operations and outputs statis-
tics. Our default implementation logs the termination event
along with all the statistics on the faultload distribution
observed. The end of the experiment can be triggered by
any of the other event handlers or determined by the control
libraries—in response to a user event or when a termination
event is detected. To detect termination events, the current
implementation of the control server library (tailored to UNIX
applications) can register atexit() functions and abnormal
termination signal handlers (e.g., SIGSEGV, SIGABRT, etc.).

The edfi onfdp() handler, automatically called by our
instrumentation at fault decision points, implements EDFI’s
dynamic fault trigger (DFT). The DFT returns a nonzero
value to request switching to faulty execution in the next basic
block. The edfi onfault() handler, automatically called by
our instrumentation at the beginning of a faulty basic block,
implements EDFI’s dynamic fault logger (DFL). The DFL

receives as arguments the static callsite information and a
variable number of arguments that indicate the types and the
number of the faults injected in the current basic block. Our
default implementation simply updates faultload distribution
statistics in the fault injection context.

EDFI includes three main built-in DFT implementations:

• Time-based DFT. This DFT can be configured to ensure
a minimum predetermined time interval between faulty
execution blocks. The time interval is initialized in the
fault injection context and can be dynamically adjusted
to specify more complex time distributions. Albeit not
necessarily useful to represent realistic fault scenarios,
this DFT can be used to analyze the behavior of existing
time-based fault injection approaches.

• FDP-based DFT. This DFT can be configured to ensure
a minimum predetermined FDP interval between faulty
execution blocks. This is similar to the time-based DFT
above, but the time is measured in terms of number of
FDPs executed instead of microseconds. This DFT can
be used to accurately specify the timing of runtime faulty
behavior in an execution-driven fashion. Unlike time-
based DFTs, this strategy translates to reproducible and
unbiased fault injection experiments.

• Probability-based DFT. This DFT can be configured to
express a predetermined dynamic probability of switching
to faulty execution. As for the other DFTs, the probability
is initialized in the context and can be dynamically ad-
justed to specify complex distributions. This DFT can be
used to accurately specify the likelihood of runtime faulty
execution and emulate particular fault scenarios (e.g., bug
clustering effects). In addition, dynamic probabilities can
be used to adjust (or replace) the static probabilities given
for the static fault model in case of limited or highly
polarized code coverage—which may affect the precision
of the resulting output faultload distribution. For example,
a program executing only a few in-loop basic blocks may
result in poor precision and fault activation guarantees
with particular static fault models. A possible solution is
to instruct the static fault model to inject faults in every
fault location candidate and rely exclusively on dynamic
probabilities to shape the resulting faultload distribution.

The default DFT implementation in our stock dynamic
fault library evaluates all the built-in DFTs which have been
parametrized by the user (if any). Further, our default im-
plementation allows the user to specify conditions that can
automatically terminate the experiment. Termination can be
triggered basing on time, FDPs, and faults observed from the
beginning of the experiment. To parametrize the experiment,
users can, for example, rely on our stock controller:

edfi-ctl <start|stop> [options]
The optional [options] argument allows the user to configure
the fault injection context for the experiment and the dynamic
fault library to use. When no option is given, EDFI resorts to
the stock library implementation and systematically switches
to faulty execution with no restriction during the experiment.



Other than configuring and combining the built-in DFTs
and DFLs, users can easily implement their own dynamic
fault library. Our C programming interface provides convenient
access to the fault injection context and the entire program
state. For example, it would be straightforward to implement
a DFT that switches to faulty execution only when the program
reaches a particular state, similar to [4], [35]. Further, EDFI
exposes static fault IDs (derived by callsite information) and
dynamic fault IDs (derived by calltrace information) directly
to the DFTs and DFLs, generalizing failure IDs in [12]. Other
than supporting simple call stack-based or call count-based
triggers as in [4], this interface can be used to implement
more complex dynamic fault models, including:

• Emulate transient (or intermittent) faults. In this
scenario, the DFL implementation logs all the fault IDs
in memory, allowing the DFT to identify duplicate fault
IDs. To emulate transient (or intermittent) faults, the DFT
implementation discards (or selectively enables/disables)
duplicate fault IDs in a single run.

• Record/replay a fault injection experiment. In this
scenario, the DFL implementation logs all the fault IDs to
persistent storage. In subsequent fault injection runs, the
DFT implementation systematically replays a previously
logged run. If necessary, deterministic replay can be
enforced using third-party frameworks [41].

• Implement high-coverage fault exploration. In this
scenario, the DFL implementation logs all the fault IDs
to persistent storage. The DFT implementation, in turn,
discards duplicate fault IDs across different runs. More
advanced fault exploration strategies, such as those in [2],
[4], [11], [12] are also possible.

VII. EVALUATION

Our current EDFI implementation runs on standard UNIX
systems, being specifically designed to support fault injection
for user-space UNIX programs. Its portability, however, is only
subject to the platform-specific control libraries, which are
easy to retarget given their small size (234 LOC 1). The static
instrumentation, in turn, is implemented as an LLVM pass in
1150 LOC. The stock dynamic fault library and the command-
line controller, finally, are implemented in C in 259 and 55
LOC, respectively.

We evaluated EDFI on a workstation running Linux v2.6.32
and equipped with a 12-core 1.3Ghz AMD Opteron processor
and 4GB of RAM. For our evaluation, we considered MySQL
(v5.1.65) and Apache httpd (v2.2.23), a popular open-source
DBMS and web server, respectively. To directly compare our
results with recent fault injection techniques [3], we performed
our tests using the SysBench OLTP benchmark [42] (MySQL)
and the AB benchmark [43] (Apache httpd). We configured our
programs and benchmarks using the default settings. To obtain
unbiased results toward particular fault types, we allowed
EDFI to use the same static fault probability P = Φ (with

1Source lines of code reported by David Wheeler’s SLOCCount.

Test scenario Static HTML PHP

Normal execution 1.024 1.007
FDPs only 1.052 1.018
Default DFL only 2.091 1.138
Default DFT (nonparametrized) 2.416 1.185
FDP-based DFT 4.190 1.468
Time-based DFT 4.206 1.472
Probability-based DFT 4.464 1.521

TABLE I: Time to complete the Apache benchmark (AB)
normalized against the baseline.

Φ = 0.5, unless otherwise noted) in all our tests. We repeated
all our experiments 21 times and report the median.

Our evaluation answers four questions: (i) Performance:
Does EDFI yield low runtime overhead during normal ex-
ecution and reasonable slowdown during the experiment? (ii)
Memory usage: How much memory does EDFI use? (iii) Pre-
cision: Does EDFI yield more precise faultload distributions
than prior tools? (iv) Controllability: Does EDFI yield more
controllable experiments than prior tools?

Performance. We evaluated the runtime overhead imposed
by the fault injection mechanisms used in EDFI. To this
end, we evaluated our application benchmarks in a number
of test scenarios. In the first scenario, we instrumented the
applications and measured the overhead imposed on our
benchmarks during normal execution. The question we wish
to address is whether our instrumentation introduces minimal
impact on normal execution and the overhead of checking the
switch flag is effectively amortized by hardware caches and
branch prediction mechanisms. In the second scenario, we
measured the overhead imposed on our benchmarks during a
fault injection experiment with no DFTs and DFLs used. This
scenario isolates the overhead of basic block-level switching
introduced by the FDPs. The third and fourth scenarios, in
turn, add the default DFL and the default nonparametrized
DFT (respectively) to the previous configuration, isolating
their overheads for comparison. Finally, the last three sce-
narios measure the overhead of FDP-based, time-based, and
probability-based DFTs, respectively. In all the experiments,
EDFI’s instrumentation is configured to skip (only) the code
mutations that inject the actual faults. This is necessary to
allow our benchmarks to complete and obtain representative
and unbiased performance results.

We first evaluated our test scenarios with Apache httpd,
measuring the time to complete the AB benchmark compared
to the baseline. Similar to [3], we ran 1,000 requests—
designed to retrieve a 1 KB file—and two different workloads
(static HTML and PHP) with AB in each test scenario. For the
PHP workload, we did not instrument mod php to evaluate
the impact of uninstrumented shared libraries. Table I presents
our results. As shown in the table, the overhead introduced by
our instrumentation during normal execution is negligible for
the two workloads (2.4% and 0.7%), directly comparable, for
example, to LFI executing with 4 triggers [4]. The other test
scenarios, in turn, highlight the overhead of our FDPs, DFLs,



Test scenario Read-only Read-write

Normal execution 1.053 1.054
FDPs only 1.095 1.060
Default DFL only 1.161 1.070
Default DFT (nonparametrized) 1.213 1.116
FDP-based DFT 1.509 1.408
Time-based DFT 5.201 3.920
Probability-based DFT 7.448 5.638

TABLE II: MySQL throughput normalized against the baseline.

and DFTs during the fault injection experiment. Compared
to LFI, the overhead grows considerably when evaluating
additional triggers (and event handlers in general), reaching
maximum values of 346.4% and 52.1% with the stock DFL
and probability-based DFT enabled. This behavior is, however,
to be expected, given that LFI solely operates at the library
interfaces. EDFI’s execution-driven fault injection strategy, in
contrast, aims at full execution coverage. While nontrivial, this
overhead is strictly confined in the fault injection window and
always conditioned by the complexity of the dynamic fault
model adopted by the user. For example, the basic EDFI
configuration with no DFTs and no DFLs reported an overhead
of only 5.2% and 1.8%.

In our second run of experiments, we evaluated our test
scenarios with MySQL, measuring the throughput during the
execution of the SysBench OLTP benchmark compared to the
baseline. Similar to [3], we ran two different workloads (read-
only queries and read-write queries) in each test scenario.
Table II presents our findings. As shown in the table, the results
match the behavior of our earlier experiments performed on
Apache httpd, with negligible performance overhead reported
during normal execution (5.3% and 5.4%) and maximum
performance overhead (644.8% and 463.8%) with the stock
DFL and probability-based DFT enabled.

Memory usage. Our hybrid instrumentation leads to larger
binary sizes and larger runtime memory footprints. This stems
from our basic block cloning strategy and the libraries required
to support fault injection capabilities. To evaluate their im-
pact, we measured the memory overhead incurred by Apache
httpd and MySQL when instrumented with our stock EDFI
components in their default configuration. Table III presents
our results. The static memory overhead (91.9% and 41.8%,
respectively) measures the impact of our basic block cloning
strategy and our stock control server library on the binary size.
The runtime (idle) overhead (1.5% and 44.5%, respectively)
measures the impact of the same instrumentation on the virtual
memory size observed at runtime, right after initialization. The
next row in the table is similar, but shows the virtual memory
overhead at the beginning of the experiment, with our stock
dynamic fault library already loaded in memory and only
marginally impacting Apache httpd and MySQL’s memory
footprint. The last row, finally, shows the average virtual
memory overhead observed within the fault injection window
during the execution of our benchmarks (1.5% and 32.9%, re-

Type Apache httpd MySQL

Static 1.919 1.418
Runtime (idle) 1.015 1.445
Experiment initialization 1.015 1.445
Experiment in progress 1.015 1.329

TABLE III: Memory usage normalized against the baseline.

spectively). As expected, the memory overhead introduced by
EDFI is heavily influenced by the structure of the application.
For example, Apache httpd reports a very low virtual memory
overhead due to its large memory footprint—234MB after
initialization, compared to only 42MB for MySQL. Overall,
EDFI’s memory overhead is modest, confirming the realistic
and practical deployment of our techniques.

Precision. To assess the effectiveness of EDFI’s execution-
driven fault injection strategy, we evaluated the precision of the
faultload distribution observed in the output of a fault injection
experiment. For this purpose, we performed repeated experi-
ments with increasing values of the fault probability Φ. In each
experiment, we synchronized the fault injection window with
the execution of our benchmarks, while collecting statistics on
the faultload distribution observed in output. From the statis-
tics, we directly computed the output fault probabilities for
each fault type and compared their values with the input fault
probabilities statically applied by our instrumentation. From
the input and output probabilities collected, we computed—in
each test scenario—the faultload degradation, which we define
as the median relative error (MRE) across all the output fault
type probabilities observed in the experiment. The faultload
degradation gives an indication of the error the tool introduces
when representing the output faultload distribution starting
from the original input distribution specified by the user. We
selected faultload degradation as a measure of precision, since
it captures both (i) the ability of a tool to actually activate the
faults specified by the user without being affected by code
coverage problems and (ii) its ability to preserve the original
distribution of fault types considered.

To allow our benchmarks to complete correctly, we again
configured EDFI’s instrumentation to skip (only) the code
mutations that inject the actual faults. To compare EDFI’s
fault injection strategy with prior approaches, we also sim-
ulated location-based strategies and interface-level strategies
using our built-in SFAs. We did not consider runtime time-
based strategies in our evaluation, given that prior studies
have already demonstrated their serious representativeness
problems [21]. Using the CallerFaultAnalyzer SFA, we
simulated interface-level strategies by instructing EDFI to
inject faults only into basic blocks that contained library calls
into libc. We specifically selected libc as a reference library for
our experiments to obtain general and unbiased results. Using
the RandomFaultAnalyzer SFA, we simulated location-based
strategies by instructing EDFI to inject faults only into β
basic blocks selected at random at every run (averaging the
results over 201 runs). For comparability purposes, we selected
the value of β according to the number of basic blocks
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Fig. 3: Comparative faultload degradation for Apache httpd
(static HTML).

that contained at least one library call into libc (1689 and
1808 for Apache httpd and MySQL, respectively). Figure 3
presents our results for the Apache benchmark (AB) (static
HTML). We omit the results obtained for the PHP workload
and for MySQL (read-only queries and read-write queries),
since they matched the behavior observed for Apache httpd
(static HTML) with no significant difference.

As shown in the figure, EDFI generated a very precise
faultload distribution in output, with almost no faultload
degradation for any choice of the fault probability Φ. This
demonstrates the benefits of injecting faults over the entirety
of the program code. The other fault injection strategies, in
contrast, generated imprecise faultload distributions in out-
put, with much higher faultload degradation across all the
experiments. This behavior stems from the limited coverage
achieved by existing strategies. Interestingly, the location-
based strategy reported lower faultload degradation (30% on
average) compared to the interface-level strategy (57% on
average). We interpret this behavior as the ability of random
injection to achieve better coverage (on average) than injection
into predetermined interface-level locations.

Controllability. We also evaluated the controllability prop-
erties of EDFI when compared to prior approaches. In par-
ticular, the question we wish to address is how well EDFI
improves prior strategies in terms of user control over the
fault injection experiment. For this purpose, we evaluated
the number of spurious faults (i.e., faults activated before
starting the experiment) introduced by the different strategies
during the initialization of Apache httpd. The rationale is that
every reasonable fault injection strategy should allow the target
program to complete initialization before starting the fault
injection experiment under a user-specified test workload. If
spurious initialization-time faults are activated, however, the
target program may prematurely crash (or reach a tainted and
nonrepresentative state), thus compromising the validity of the
entire fault injection experiment.

As done earlier, we performed repeated experiments with
increasing values of the fault probability Φ. We also simulated
location-based and interface-level strategies using our built-
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Fig. 4: Comparative number of spurious faults activated
during Apache httpd initialization.

in SFAs and the same configuration adopted earlier. A word
of warning is in order for the interpretation of the results in
this particular test scenario. Our controllability analysis is only
applicable to static (location-based and interface-level) fault
injection strategies. Dynamic strategies—such as LFI [3]—
are not affected by controllability issues, given that faults are
always injected on demand and under direct control of the
user. Figure 4 presents our results.

As expected, EDFI reported no spurious faults during the
initialization of Apache httpd. For the other strategies, in
contrast, the number of spurious faults increases with the value
of the fault probability Φ. This behavior is expected, given the
higher chances of fault activation in various (and arbitrary)
parts of the program. As the figure shows, the interface-level
strategy reported a consistently higher number of spurious
faults compared to the location-based strategy, with 12120
and 5309 faults (respectively), for Φ = 100%. We interpret
this behavior as a result of the particularly high density of
libc calls during initialization.

This test scenario also highlights the precision-
controllability tradeoff for existing static fault injection
strategies. A larger number of faults injected results in better
precision but, at the same time, lower controllability. To
better investigate this tradeoff, we evaluated the impact of
varying the value of the number of faulty basic blocks β
in location-based strategies. This experiment was useful
to understand the impact of fault coverage on static fault
injection strategies, location-based approaches in particular.
Figure 5 presents our findings. For low fault coverage values
(e.g., around 10%), the number of spurious faults is more
limited (around 7550), but faultload degradation is high
(around 13%), thus resulting in poor precision. Conversely,
for high fault coverage values (e.g., around 90%), faultload
degradation is much lower (around 2%), but the number of
spurious faults observed is substantial (around 270850), thus
resulting in poor controllability. This experiment efficaciously
pinpoints important limitations in existing strategies, while
highlighting the better controllability and precision properties
of EDFI’s execution-driven fault injection strategy.
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Fig. 5: Impact of fault coverage on location-based strategies
(Apache httpd).

VIII. CONCLUSION

Fault injection experiments have been long proposed as
an answer to an important question in the dependability
community: “How can we thoroughly assess the dependability
of a software system?” Undoubtedly, another equally important
question is: “How can we thoroughly assess the dependability
of fault injection experiments?” We believe the answer lies in
building a new generation of general-purpose fault injection
tools that can support truly precise, controllable, and observ-
able fault injection experiments in a controlled setting. EDFI
represents an important step in this direction.

EDFI injects faults in a controlled way during the execution
to ensure a predetermined faultload distribution at runtime. Its
hybrid instrumentation strategy provides fine-grained control
over the experiment, while avoiding unnecessary perturbations
to the system—or its performance—during fault-free execu-
tion. Its portable and extensible LLVM-based architecture can
support several possible static and dynamic fault models, gen-
eralizing existing general-purpose fault injection tools while
providing the ability to adapt to different execution contexts.

Our ultimate goal is to foster the development of a common
fault injection framework for dependability researchers and
practitioners, in order to support dependable, reproducible, and
comparable experiments in fault injection campaigns.
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