
Transaction-based Process Crash Recovery
of File System Namespace Modules

David C. van Moolenbroek, Raja Appuswamy, Andrew S. Tanenbaum
Dept. of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

{dcvmoole, raja, ast}@cs.vu.nl

Abstract—In this paper, we describe the emerging concept
of namespace modules: operating system components that are
responsible for constructing a hierarchical file system namespace
based on one or more individual underlying file objects. We show
that the likely presence of software bugs in such modules calls
for the ability to recover from crashes, but that the current
state of the art falls short of the desired behavior. We then
introduce a crash recovery solution that is based on transactions,
and detail the requirements for a system to implement this
solution. We apply our solution to two different use cases:
the primary namespace module for a storage stack, and an
extension module that exposes the contents of scientific data
files. Our evaluation shows that the transaction system has
low overhead and significantly adds to the robustness of the
namespace modules.

Index Terms—Operating systems, File systems, Data storage
systems, Software reliability, Fault tolerance

I. INTRODUCTION

Relatively recent developments have brought about a new
concept in operating system storage stacks, namely namespace
modules: software components that construct and manage a
hierarchical file system namespace, using one or more file
objects managed by an object storage layer below. Tradition-
ally, namespace management has been an integral part of file
systems, but there are two developments that have resulted in
the isolation of such functionality into a separate module.

First, after the success of distributed storage stacks that
separate metadata (and thus namespace) management from
object storage for scalability [1], such architectures are now
being introduced on single-system storage stacks as well,
mainly to make up for inherent reliability problems with block-
level RAID in traditional storage stacks [2].

Second, with user space file system frameworks such as
FUSE [3], it has become relatively easy to write namespace
modules that expose the inner structure of individual files using
a hierarchical model. While such modules can be used for
internal maintenance of such files, a recent case study [4] has
shown by that current-day file formats can be highly complex,
and suggests that important information for the storage stack
is lost by storing these files as a single blob. Thus, there is
a case to be made for use these namespace modules as the
primary means of access to such complex individual files.

Due to the complexity resulting from (in particular) mul-
tithreading for high performance, and the large amount of
code typically required for proper parsing and manipulation
of complex file structures, both these types of namespace

modules are likely to contain software bugs. If triggered,
these bugs cause a runtime failure within the namespace
module, typically with severely damaging consequences for
both the running applications and the underlying storage.
While namespace modules are often already isolated in user
space processes (e.g., [5], [3]), this is only a first step toward
dealing with failures, and we claim that current situation leaves
several properties to be desired: 1) application-transparent
recovery from transient crashes, 2) fine-grained request failure
in the case of repeated failures, and 3) preservation of integrity
of the underlying file objects.

In this paper, we present a crash recovery solution for
namespace modules, based primarily on atomic transactions.
In particular, we show that by using transactions between the
namespace module and the object storage layer, we can not
only provide recovery from fail-stop crashes with the three
aforementioned properties, but also use semantic information
in the transactions to minimize the runtime overhead.

We implement the transaction framework in our own storage
stack, and apply it to two example namespace modules:
the stack’s primary POSIX namespace module, and a new
extension module that allows the internal namespace of HDF5
scientific data files [6] to be mounted into the standard file
system hierarchy. Our evaluation confirms that our prototype
implementation has relatively low runtime overhead and al-
lows for full recovery from large numbers of injected faults.

The rest of the paper is structured as follows. In Sec. II,
we describe the motivation for this work, elaborating on both
the emergence of namespace modules as a concept, and the
need to improve on the current situation with respect to crash
recovery of such modules. In Sec. III, we present the design
of our transaction-based solution. In Sec. IV, describe the
storage stack we use as test platform, the implementation of
the transaction framework on this platform, the changes made
to the original POSIX namespace module to make it recov-
erable, and the new HDF5 namespace module with recovery
support. Sec. V presents the evaluation of our implementation,
assessing both the resulting reliability improvement and the
performance impact. In Sec. VI, we list related work. Finally,
we conclude with future work in Sec. VII.

II. MOTIVATION

In this section, we describe the motivation of our work:
the emerging concept of namespace modules (Sec. II-A) and



the need for a better solution for recovery from bug-induced
crashes of such namespace modules (Sec. II-B).

A. Namespace modules as an emerging concept

Within the storage stack part of the operating system,
one layer of functionality that appears to be increasingly
common is what we call the namespace layer: a layer in the
storage stack that, based on one or more underlying individual
file objects and their contents, constructs a namespace view
for use by applications. This namespace layer can typically
be found directly under the operating system’s Virtual File
System (VFS) layer, where it exposes a hierarchical file system
namespace that is accessible through a standardized interface.
This interface is most commonly the POSIX application pro-
gramming interface (API) [7], and thus, the hierarchy is made
up of files, directories, links, and so on. Instances of the
namespace layer, which we call namespace modules, thus
translate file system requests coming from VFS, into individual
file object operations on the lower layers of the storage stack.
We identify two main types of namespace modules.

1) Primary namespace modules: The first type of names-
pace modules is emerging as a direct result of a shift in
storage stack architectures. The traditional storage stack has a
single file system layer which converts file system operations
to block operations. The lower layers thus operate on a
block basis, and this block interface mixes both file data
and namespace metadata. Redundant storage across devices
(RAID) is performed at the block level. This model is depicted
in Fig. 1a. More recently, storage architectures have started to
separate the management of the namespace and related file
metadata, from the storage of actual file data. In this model,
depicted in Fig. 1b, the lower layer exposes an abstraction
of individual file objects. We refer to this lower layer as the
object storage layer. It typically implements redundant storage
at the object level, making the translation to block operations

File
system

VFS

Namespace

VFS

Object
storage

Disk driverDisk driver

Software
RAID

(a) (b)

ApplicationApplication

(1)

(2)

(3)

Fig. 1. The figure shows the layers of (a) the traditional storage stack
and (b) the object-based storage arrangement. The dotted lines delineate
interface abstractions between layers: (1) the file system interface, (2) the
object interface, not found in the traditional stack, and (3) the block interface.

only at the lowest (device) level. On top of the object storage
layer, the namespace layer is responsible for constructing a file
system namespace out of the collection of individual objects.
We call instances of this layer primary namespace modules,
as they are the primary managers of the underlying storage.

This general concept was introduced in the distributed stor-
age world [1]. It has since been widely adopted in distributed
storage systems (e.g., [8], [9], [10]), and has sparked the de-
velopment and standardization of object-based storage devices
[11]. The main reason for this architecture is scalability, as the
decoupling management of metadata from the storage of data
allows the object storage layer to be distributed across a large
number of fully independent data storage nodes.

However, the object-based architecture is now also being
introduced in storage stack designs for single systems, both in
research (e.g., hFAD [12] and our own Loris storage stack [5])
and in the real world (e.g., ZFS [13]). Even though scalability
is not a major concern on a single system, there are several
other advantages of this new architecture. Most importantly,
since cross-device redundancy is now implemented at the
object level rather than the block level, this redundancy func-
tionality can now make use of object information. This allows
the storage stack to not only solve fundamental reliability
problems present in block-level RAID, but also recover more
files in case of a large number of concurrent device failures,
and even store individual files with user-specified levels of
redundancy [2]. In addition, the separation of the namespace
layer allows it to be replaced easily and without affecting
the underlying storage [14]. Furthermore, it allows for the
introduction of several additional namespace modules that
together manage the primary object storage space, thereby
offering a variety of rich interfaces to the application in
addition to the standard POSIX API [12].

Because of these advantages, we expect that the object-
based storage architecture will see even more widespread
adoption on single systems, and thus, that primary namespace
modules will become more prevalent as well.

2) Extension namespace modules: At the same time, new
user space file system frameworks such as FUSE [3] and
PUFFS [15] have resulted in the emergence of a second
type: extension namespace modules that expose the internal
structure of a single file, by mapping its contents to the
standard hierarchical file system model, allowing the file to
be mounted into the system’s file hierarchy. These modules
thus “break open” the underlying file in a way that makes the
file contents available to the end user and moreover, to any
tool that uses the standard POSIX API.

Such modules are additions to the normal file system hierar-
chy, and typically loaded on demand. They can be written for
any files of which the contents can be mapped to the standard
namespace interface; for example, archive files, document
files, and scientific data files. They can be used for inspection
and maintenance of files generated by other applications, but
also as the primary means of creation, manipulation, and usage
of those files. As such, these namespace modules can serve
to standardize access to these files between applications. In



addition, a recent case study of complex file formats [4]
suggests that storing complex files as binary blobs prevents the
application from expressing its desires to the storage stack, for
example to guarantee atomicity of operations on the file. This
then forces the application to perform relatively expensive file
system operations (such as full file copies and frequent fsync
calls) to maintain such guarantees. Exposing the internal
hierarchy of complex files through a namespace module would
allow applications to better express their intentions to the
operating system.

Even though stackable file systems [16] and Hurd translators
[17] have been around for a long time, the new frameworks
make development of namespace modules of this type ac-
cessible to a wide range of developers (and not just kernel
developers), also on commonly used operating systems. In
systems like FUSE however, the provider of the underlying file
object is the entire storage stack, and the POSIX API is used
for access to the file. We will show in Sec. IV that differently
structured storage stacks can allow extensions to talk directly
to the object storage layer.

3) Hybrid cases: However, we believe that the two afore-
mentioned types of namespace modules are in fact not so
different, especially when considering virtualization. We are
working toward a lightweight virtualization system that allows
multiple namespace modules–one per virtual environment–
to share a single object storage layer, thereby eliminating
much of the redundancy found in contemporary virtualization
systems [18]. These virtual environments contain individual
applications, and thus have private sets of files and are created
and destroyed on demand. The namespace modules in such
virtual environments can thus be classified as either type.

B. The reliability problem

All these namespace modules can represent a substantial
amount of error-prone code in the operating system layer.
The primary namespace modules make up a crucial part of
the storage stack. Unlike most parts of the object storage
layer, the namespace layer has to process many application
requests immediately, before any operation caching comes into
play. The desire for high performance typically translates into
extensive use of multithreading, which is a well-known source
of reliability problems, especially so in file system code [19].

In contrast, extension namespace modules are not crucial
to the storage stack itself, nor are they performance critical;
however, they are expected to interpret complex file formats.
Worse yet, since these namespace modules must be able to
handles files they have not created themselves, they have to
deal correctly with arbitrary contents in the underlying file.
This requires either substantial amounts of newly written code,
or the inclusion of an external parser library of which the
quality is not always known. Previous studies have suggested
that the number of bugs in a piece of software is largely a
function of its source code size, reporting numbers in the range
of 0.5–6 bugs per 1,000 lines of code [20], [21]. Thus, neither
type of namespace module can be expected to be bug free.

With the possibility that software bugs can cause namespace
modules to crash as a given, the first concern is then the
stability of the operating system in general. This issue can
be addressed by placing the namespace module in an isolated
user-space process, as is done in microkernel operating sys-
tems as well as by user space frameworks such as FUSE.
However, even in such systems, no attempts are made to
recover the namespace module after it has crashed. At best,
applications receive I/O errors for all requests that involve the
crashed module. While this protects the operating system from
damage extending beyond the boundaries of the module, we
believe that this is insufficient, for three reasons.

First, the application is always exposed to the crash, even
when the cause of the crash was transient. As indicated,
such crashes could be the result of race conditions in a
multithreaded environment. If the namespace module could
be restarted after a crash, and the calls could be reissued, the
transient crash would not occur again. This would allow for
crash recovery that is fully transparent to the applications.

Second, the entire namespace module is shut down after the
crash, even if the crash was the result of a software bug in
a specific code path of a request handler. For example, many
file system bugs are found in error handling code [19], which
triggers only exceptional conditions. In that case, repeating the
call after recovery would thus crash the namespace module in
the same way. However, if the system could recognize this
case and fail only the corresponding application call for that
particular request, all other request (and thus, applications) can
continue to make use of the namespace module.

Third, namespace modules typically translate single incom-
ing application requests into multiple related object operations
sent down to the object storage layer. For example, creation of
a new file typically involves two steps: the creation of the new
file object, and addition of the name record to its containing
directory object. To maintain consistency of the underlying
storage, such a set of operations is supposed to be atomic.
However, it is possible that a namespace module sends down
an incomplete subset of the operations, and then crashes. It
will then leave the underlying storage in an inconsistent state.
This also prevents subsequent recovery.

Thus, we argue that a proper crash recovery system for
namespace modules can and should 1) recover the modules
in an application-transparent way from transient failures, 2)
fail only specific system calls in the case of repeated failures,
and 3) never let fail-stop [22] crashes introduce corruption in
the underlying storage. At the same time, namespace modules
can be assumed to crash only in exceptional situations, and
thus, such a system should have low overhead during normal
runtime. In the rest of the paper, we will describe our approach
to meeting these requirements.

III. DESIGN

We will now present the design of a solution that is based
on transactions. We start by stating our assumptions about
the operating environment and failures (Sec. III-A). We then
show how transactions form the basis of our recovery system



(Sec. III-B), and the changes needed to the object storage layer
(Sec. III-C) and the VFS layer (Sec. III-D). Finally, we list the
requirements for namespace modules themselves (Sec. III-E).

A. Assumptions

We assume that the namespace layer is positioned below
the VFS layer and on top of an object storage layer, indeed as
depicted in Fig. 1b. As such, the main purpose of a namespace
module is to process typical requests coming in from the VFS
layer [23]. The module handles each request by performing a
number of operations on individual objects the storage layer
below. Typical object operations are creation and deletion of
an object; read, write, and truncate operations on the object;
and, retrieval and modification of attributes associated with
the object. While the namespace module may use input from
outside the storage stack (e.g., the current time of day), any
modifications it makes as a result of a VFS request must
involve stored objects only. In the case of extension namespace
modules, only one underlying object is involved, and thus,
no object creation or deletion will take place. We believe
that these assumptions are sufficiently generic that they cover
any single-system object-based storage architecture, as well as
namespace modules in frameworks such as FUSE.

Software bugs may cause arbitrary behavior, including un-
detected propagation of corrupted results to the application
or storage. Thus, we have to limit our solution to a subset
of all possible failures. For failure isolation, we assume that
the namespace module runs in a separate user space process,
and that a basic infrastructure is in place to restart this
process cleanly if it has crashed. Furthermore, we assume the
following failure model. First, all failures are detectable, either
by the module itself or the outside system. Previous research
has suggested that silent failures are rare [24]. Second, failures
are detected before corrupted results are propagated outside
the process. Similarly, previous studies suggest that fault
propagation is rare [24], [25]. This failure model covers more
cases than fail-stop [22], because it also allows for wild
memory overwrites as long as the overwritten memory is either
not accessed by another process or (for example) protected
by a checksum. In addition, the process isolation limits the
impact of resource leaks. The failure model matches that of
other contemporary work in this area [26], [27], [28], [29].

B. Transactions and recovery

Given these assumptions, it is easy to see how one can
introduce a system of atomic transactions. In the course of
processing a VFS request, all operations that modify underly-
ing objects can be bundled into a single transaction, which is
sent down to the object storage layer at the end of that request.
Thus, each VFS request that spawns any object modifications
at all, results in one such transaction. The request will only
finish once either the transaction has been fully committed in
the object storage layer, or it has been aborted due to an error,
with no changes made to the underlying storage.

Such a transaction system has two effects for crash recovery.
First, each transaction is atomic, and thus the object storage

layer commits either the entire transaction or no part of it.
In addition, each transaction makes a transition from one
consistent state to another. Thus, there is no possibility that
a crash of the namespace module causes inconsistency in the
underlying storage. This covers the third point from Sec. II-B,
and paves the way for covering the first two points. Note that
we do not discuss isolation between transactions in this work:
while it is crucial that proper isolation is provided if multiple
concurrent transactions can exist, a similar requirement exists
in the original situation, and we believe that solutions for this
are too implementation specific to be generalized.

Second, since the namespace layer must commit the trans-
action before the end of processing the VFS request, it can not
have any pending changes in its memory that do not pertain to
VFS requests that are currently ongoing. Thus, a crash of the
namespace module will at most result in loss of pending state
for the ongoing requests only. As a result, if the namespace
module crashes and is restarted, the underlying storage layer
is guaranteed to reflect all the changes made by previously
completed VFS requests. For each currently ongoing VFS
request, either none or all of its changes have been committed
already–after all, it is possible that the namespace module
crashes either before or after each corresponding transaction
has been committed. As we will show in the next subsections,
these conditions are sufficient to allow the namespace module
to guarantee correct recovery from a crash, as long as some
additional requirements are met.

C. Support in the object storage layer

The transactions are sent as atomic units to the layer below
the namespace module: the object storage layer. In general,
this layer is expected to provide a cache for object data
and operations. Thus, while it must process each transaction
right away, the transactions need not be persisted on a device
immediately–a successful transaction requires only that the
modifications have been taken in by the cache. In rare cases,
the transaction may result in a failure at the object storage
layer. For example, this layer may encounter a general out-of-
space condition, or an integrity problem with data that needs
to be read in to perform the transaction (e.g., for a partial write
to a block). In that case, the entire transaction must be aborted,
and an error must be returned to the namespace module.

We argue that due to the semantic information available in
the transactions, the object storage layer need not implement
full support for rollback of the operations in the transaction.
All actions required to guarantee the successful execution
of the transaction, such as checking available resources and
reading in data blocks for partial writes, can be done before the
actual transaction is executed. For example, write operations
need not make expensive memory copies for rollback after
a later failure. In multithreaded environments, some minimal
rollback support may be needed, such as reserving space
beforehand and canceling the reservation on failure. However,
the actual operations will be deferred for performance reasons
(e.g., delayed writes), and hence any device failure will be
detected long after the corresponding operation has been



acknowledged–this is the same in the traditional situation.
Thus, by avoiding the need for rollback, the transaction support
in the object storage layer has minimal overhead.

There is one exception to the above: the application may
request direct I/O, in which case the object storage layer
must complete the transaction only once the changes have
been persisted on a device. The transaction must then fail
atomically if any of its operations cannot be committed to
the device immediately. In that case, full rollback support
is required. However, the rollback overhead is likely to be
masked by the cost of the immediate device I/O. It should
be noted that abstractions within the object storage layer may
prevent rollback of some combinations of operations: while
object create, write, and set-attribute operations can be undone,
truncate and delete operations can not. For transactions that
contain only one operation of the latter category, this operation
can be performed last. We have not found any scenario where
multiple such operations would be sent down in a single
transaction by a namespace module.

D. Support in the VFS layer

The VFS layer must implement the necessary support for
recovery after a namespace module has crashed and restarted.
The first step is resynchronization of the namespace module
to the current state of VFS, which reflects the result of all
completed requests, and of none of the requests that were still
ongoing to that module at the time of the crash. As part of
this step, the recovery procedure in VFS must issue requests
to reopen any other previously opened files and restore any
mount points, for example.

As the second step, VFS must reissue all requests that were
ongoing at the time of the crash. In particular, VFS should
reissue them one by one, for two reasons: 1) for transient
failures caused by race conditions, serial execution prevents
such race conditions from happening again, and 2) for repeated
failures caused by a bad implementation of a request handler,
serial reexecution allows VFS to pinpoint the request that
causes another crash, and abort just that request. This cleanly
covers the first and second points from Sec. II-B.

Especially in multithreaded environments, for some re-
quests, the corresponding transaction may have already have
been committed in the object storage layer before the crash.
Thus, the namespace module needs a way to recognize whether
a request has already been completed or not. To this end, at the
very minimum, each VFS request must have a unique identifier
that stays the same upon repetition of the request.

E. Requirements for namespace modules

With this infrastructure in place, a namespace module can
recover from all failures in our failure model, as long as it
adheres to the following four requirements.

First, the namespace module may not defer any modi-
fications to objects until after finishing the corresponding
VFS request. All operations must be part of the request’s
transaction. We believe that for namespace modules, this is
not a prohibitive requirement. Unlike file systems, namespace

modules generally sit on top of the storage stack’s main cache,
and thus, this will incur little to no extra device I/O.

Second, the namespace module must deal correctly with
transaction failures reported by the object storage layer. In
particular, if the module maintains its own read caches (e.g.,
for file attributes or directory data), then either these caches
must be updated (pessimistically) only after the transaction
succeeds, or any (optimistic) modification before transaction
commit must be rolled back. Since transaction failures in the
object storage layer are expected to be highly exceptional (see
Sec. III-C), even more drastic approaches can be taken in this
case, as we will show in Sec. IV-D.

Third, the namespace module must not expect that its mod-
ifications are visible to the lower layers before the transaction
is committed. For example, it must not expect that an object
read operation will reflect changes made by an earlier object
write operation within the same request, as the write operation
will be deferred as part of the transaction. This requirement
can be fulfilled by the transaction framework, or by optimistic
modification of local caches.

Fourth, the namespace module must handle repeated re-
quests correctly. If a request’s transaction was committed
before a crash, but VFS never received the request’s reply,
then VFS will reissue the request after the restart. Idempotent
requests can simply be performed again, but the same does
not apply to nonidempotent requests. For example, a “create
file” request from VFS that succeeded the first time, would fail
with a file-exists error the second time. Thus, after a restart,
the namespace module must recognize any such requests for
which the transactions have already been committed. For
atomicity reasons, this information must be saved as part of
the transaction, and thus be maintained by the object storage
layer. In our case studies (Sec. IV) we present an approach
that requires no further extensions to the object storage layer.

In some cases, more than just the request identifier must be
saved. For example, any results that had not yet been copied
to VFS or the application, must be copied upon repeat. In
addition, recall that VFS will restore a restarted namespace
module to the state before the ongoing requests. Thus, any
internal state changes resulting from repeated requests (e.g.,
adjusting open counts of files) must be replayed as well.

IV. IMPLEMENTATION

We now describe the implementation of our design.
We introduce our previously developed Loris storage stack
(Sec. IV-A), the infrastructure changes we made to it to support
transactions (Sec. IV-B), the modifications we made to make
its primary namespace module restartable (Sec. IV-C), and a
new restartable extension namespace module developed for
this work (Sec. IV-D).

A. Background: the Loris storage stack

In previous work, we have come up with a new object-
based operating system storage stack [5], by applying two
modifications to the traditional storage stack. First, we split
up the traditional file system into three separate layers: a



namespace layer, a cache layer, and a device layout (physical)
layer. Second, we swapped the physical layer with the tradi-
tional RAID layer (now the logical layer). We call this new
arrangement the Loris storage stack; it is shown in Fig. 2b.
The VFS and device driver layers are unchanged. The four
new layers communicate in terms of objects, which are file-
like storage containers that consist of a unique identifier, a
variable amount of byte data, and a set of associated attributes.
The lower three layers can together be viewed as an object
store. We will now briefly describe the four layers.

Analogous to what we described in Sec. II-A, the names-
pace layer is responsible for the translation of VFS file system
requests to file object operations. We currently have a single
namespace module: the primary implementation of the POSIX
namespace for our storage stack. This module stores both
files and directories as objects; lower layers are not aware
of the concept of directories. It uses object attributes to store
POSIX attributes of files. It maintains two extra objects for its
metadata: a bitmap to track in-use object identifiers, and a list
of open deleted files needed for system crash recovery.

Below the namespace layer is the cache layer, where object
data and attributes are cached, and various operations are
deferred, for performance. This layer uses a large amount
of system memory for this purpose, staging and evicting
data as necessary. Below it, the logical layer implements the
equivalent of the traditional RAID layer, but on a per-object
basis. Each object has an associated policy that determines its
RAID-like policy. For example, an object can be mirrored or
striped across a number of devices. The logical layer constructs
single “logical” objects out of one or more “physical” objects
stored in the physical layer. This layer consists of physical
modules that each manage the layout of one underlying device,
thus translating object operations to block operations.

As we already sketched in Sec. II-A, the new arrangement
has several structural advantages, mainly for reliability and
flexibility, as a result of the logical layer now operating at the
object level. We have implemented our prototype of the Loris

Namespace

VFS

Object
storage

Disk driver

(a)

Namespace

VFS

Disk driver

(b)

Cache

Logical

Physical

Fig. 2. The figure shows (a) the generic object-based storage architecture
from Fig. 1b, and (b) the layers of the Loris storage stack.

stack on the MINIX 3 microkernel operating system. In this
environment, each module of each layer is a separate process
running in user space.

B. Infrastructure changes

We implemented the transaction infrastructure described in
Sec. III-C in the cache layer. Layers below the cache layer
need not be aware of transactions. The transaction is fully
maintained within the namespace module until it is committed,
at which point it is sent down to the cache layer in its entirety.
This saves on interprocess communication and hides local
transaction aborts from the lower layer. We added a new
“commit transaction” operation type to the communication
protocol between the namespace layer and the cache layer,
consisting of a set of one or more operations on objects. The
cache ensures atomic execution of the transaction. Since our
storage stack prototype does not yet support direct I/O, we did
not add rollback support.

We also implemented the necessary changes in the VFS
component, as per III-D. We added identifiers to all VFS
requests. Since VFS internally uses threads that block on re-
quests to file systems, these identifiers consist of the combina-
tion of a thread number and a per-thread counter. Furthermore,
MINIX 3 already supports crash detection and stateless restarts
of system operating processes [30]. Thus, we only had to
implement a recovery procedure in VFS: if it detects that a
namespace module has been restarted, it first issues a number
of requests that restore the previous state in the namespace
module with respect to open files and mount points. It then
instructs each thread waiting for a reply from that namespace
module, to resend its request. This is done serially; if a
repeated call triggers a new crash, VFS fails the corresponding
application call with an I/O error. After reissuing all requests,
normal operation resumes.

C. Case study: the POSIX namespace module

As our first case study, we modified the original POSIX
namespace module of the Loris stack to incorporate proper
transaction support. Internally, this namespace module consists
of three sublayers: 1) a dispatch sublayer, which receives
VFS requests, dispatches worker threads for them, and sends
replies; 2) a logic sublayer, which implements the handlers
for each of the VFS request types; and, 3) a caching sublayer,
which consists of caches for its stored metadata (directory
data, file attributes, in-use object identifiers, open deleted
files). The adaptation of this module to the transaction system
allowed us to assess the development effort of applying the
transaction system to a module that has not been designed
with transactions in mind. In particular, we wanted to know
to which extent the “heart” of the module was affected: the
logic sublayer. In addition, this use case allowed us to measure
the performance impact on a primary namespace module.

We started by adding basic support for transactions. Each
worker thread now starts a transaction before invoking a
request handler. All object modification operations performed
by the handler are added to the current thread’s transaction.



Upon return from the handler, the transaction is committed,
unless the request failed or the transaction is empty. The POSIX
namespace module will never make any changes to objects as
the result of a failing VFS request, and thus, if the request
failed, the transaction is aborted.

We then changed the module to meet the additional require-
ments listed in Sec. III-E. To satisfy the first requirement,
we made the caching sublayer write-through, thus making its
caches flush their changes immediately as part of the current
transaction. To cover the second and third requirements, we
decided to update these caches optimistically during the ex-
ecution of request handlers. This way, we avoided changing
the request handlers to track their own uncommitted changes.
The only code change to the logic sublayer here was to
allow rollback of changes to file attributes, since these were
simply assignments to fields in a structure. We wrapped such
assignments in macros that create a shadow record of the
original value upon the first assignment in each request.

For the fourth requirement, we changed the namespace
module to maintain records that contain the necessary infor-
mation to skip repeated requests. We call such records request
recovery records. Each record corresponds to a particular VFS
request, and contains the request identifier, the reply fields
expected by VFS for the request (e.g., an updated file size in
the case of a “file write” request), and any file open count
change that resulted from the request. We had to add a small
number of calls to the logic sublayer to track the latter.

In order to store these records across requests, we changed
the namespace module to create an extra object in the object
store whenever it is started. The object is destroyed upon
clean shutdown. Each request writes the corresponding request
recovery record to this object as part of its transaction.

After a crash, the namespace module is restarted, and it
will find that the object still exists. It then reloads the records
from the object. Subsequently, while processing VFS requests,
it compares each incoming request identifier to its records in
memory. If there is match, the request is skipped: any file open
count change in the record is reapplied, and a success code
is sent back to VFS along with the stored reply fields in the
record. Any memory copies to VFS or the application (e.g.,
the data for a “file read” request) are performed before the
transaction is committed1; these need not be saved or repeated.

Maintaining request recovery records incurs little extra
overhead. By using the VFS thread number embedded in the
request identifier, we can aggressively recycle record entries in
the object. As a result, the object is small in size and updated
frequently, and thus expected to remain in the cache layer’s
(RAM) cache at all times. Therefore, updating a record as
part of an existing transaction is cheap. Requests that end
up in failure will not commit their transaction, and read-only
operations will not create a transaction at all. Thus, no record
needs to be saved in these two cases: the requests can safely be
repeated. Therefore, maintaining these records never requires

1The transaction may still fail, but the POSIX standard does not require that
application memory buffer contents be preserved upon call failure.

extra transactions.
In summary, fulfilling the first three requirements required

changes to the caching sublayer only, except for small changes
in the logic sublayer to be able to roll back updates. Fulfill-
ing the fourth requirement required changes to the dispatch
sublayer only, except for a few added calls to track file open
count changes in the logic sublayer. Overall we did indeed not
have to make substantial changes to the logic sublayer.

D. Case study: the HDF5 namespace module

For the second case study, we developed a new extension
namespace module from scratch. This namespace module
allows one to explore and manage the contents of a scientific
data file, by mounting a representation of its internal hierarchy
in the local system’s general file hierarchy. While we do not
expect our implementation to be used for the generation of
such files, we believe that offering access to the contents of
such a file through the normal POSIX API will help users in
maintenance of such files, allowing them to use existing and
familiar POSIX tools to not only explore the file, but also to
make corrections to the file’s internal organization.

For this module, we chose HDF5, a commonly used file
format for scientific data [6]. HDF5 files are internally struc-
tured as filesystem-like hierarchies, with support for regular
data files (data spaces), directories (groups), soft and hard
links, an object attribute system much like POSIX extended
attributes, and so on. The contents of the data spaces do not
always map well to the standard byte-oriented POSIX read
and write calls, but we expect such an extension module to
be used for managing the hierarchy rather than the actual data.

We based our implementation on the official HDF5 open-
source library implementation [6]. This library is single
threaded, and thus, so is our namespace module. We added
a relatively thin layer that maps the VFS requests to HDF5
operations. In addition, the namespace module intercepts all
I/O calls made by the library, and converts them into Loris
operations on the underlying object. The namespace module
can be mounted by specifying a HDF5 file and a mount point,
and then operates below VFS and on top of the cache layer,
next to any other namespace module in the namespace layer.

After completing an initial version, we added basic trans-
action support, and made the module recoverable by imple-
menting the requirements from Sec. III-E. Satisfying the first
requirement was not as straightforward as we hoped. While the
library provides a function to flush its caches to the underlying
file (H5Fflush), as it turned out, this function does not
guarantee that the file can be reopened in read-write mode
afterwards. Thus, we had to resort to making the library close
and reopen the underlying file between each two requests.
To lessen the performance impact of the library’s resulting
constant file data reloads, we added a small read cache to
the I/O handling sublayer of the namespace module. Again,
optimistic updating of this cache fulfills the third requirement.

Meeting the second requirement was problematic at a more
fundamental level. Since all intercepted I/O calls have to be
deferred until transaction commit time, the I/O interception



code has to report preliminary success to the library. If the
transaction then fails in the cache layer, there is no longer a
way to revert internal state changes in the library that resulted
from the earlier perceived success. Given that transaction
failures in the cache layer are rare and hard to deal with
sensibly, we opted for a drastic solution that works in all
cases: upon getting a transaction failure from the cache layer,
the namespace module sends an error back to VFS, and then
purposely crashes. As a result, the library will reload the pre-
request state from the underlying object upon restart, and VFS
will not repeat the request; operation can then continue.

We covered the fourth requirement with a similar request
recovery record system as for the POSIX namespace module.
We avoid creating a separate object in the lower storage layer,
instead storing the information in a temporary data space
within the HDF5 file. For this namespace module, the records
contain some additional information. For example, the library
may make changes to the underlying file even when it fails
a particular call. Therefore, we also have to create a request
recovery record for failing requests, and thus, each record has
to contain the resulting error code as well.

In summary, this case study shows that it is feasible for
an extension namespace module to meet the requirements
for recovery, even when embedding a library of which the
internals are largely unknown. We expect that our approach
can be reused in many other extension namespace modules.

V. EVALUATION

In this section, we evaluate our work. In Sec. V-A, we
evaluate the performance of both the the POSIX namespace
module and the HDF5 module. In Sec. V-B, we perform
fault injection experiments to evaluate the robustness of both
modules.

A. Performance

1) The POSIX namespace module: We started by subjecting
the POSIX namespace module to microbenchmarks (omitted
due to lack of space). Initial performance results were not
impressive; this turned out to be the effect of file access time
updates. These updates resulted in generation of a transaction
for each (otherwise read-only) “file read” request, and this
caused high interprocess communication (IPC) overheads. We
believe that maintaining accurate access times is not essential
in most environments, and in all experiments we turned file ac-
cess times updates off. With this change, all microbenchmarks
showed low overheads.

We then ran a number of macrobenchmarks, on four dif-
ferent versions of the POSIX namespace module. First, the
unmodified version forms our baseline for the benchmarks
(Original). Second, we changed the module’s caching sublayer
to flush all object modifications down to the cache layer within
the scope of the request (No writeback). Thus, this version
shows the overhead of the extra operations resulting from
the immediate flushing. Third, we added transaction tracking
and rollback support to the namespace module (Transactions).
These changes are expected to add some more overhead.

However, the transaction system now bundles all modifying
operations of each request into a single transaction, which
is sent down as a unit to the cache layer. As a result, this
version should have reduced IPC overhead. Fourth and finally,
we added support for request recovery records, thus fulfilling
all requirements to allow for crash recovery (Recoverable).

We used the following benchmarks and configurations: a
MINIX 3 source compilation in a chroot environment; an
OpenSSH build test which unpacks, configures, and builds
OpenSSH, also in a chroot environment; PostMark, with 80K
transactions on 40K files in 10 directories, 4–28KB file sizes,
and 4K I/O sizes; FileBench File Server, with its default
configuration, run for 30 minutes at once; and, FileBench Web
Server, modified to access its files using a Zipf distribution in
order to be more realistic, also run for 30 minutes.

The experiments were conducted on an Intel Core 2 Duo
E8600 PC, with 4GB of RAM, and a 500GB 7200RPM
Western Digital Caviar Blue (WD5000AKS) SATA hard drive,
running MINIX 3.2.1. The tests were run with 1GB of cache
memory in the cache layer, and on the first 32GB of the disk.
For the PostMark and File Bench tests, we consider the run
phase only. We report the average of at least ten runs.

The results are shown in Table I. Compared to the original
namespace module, the recoverable version has an overhead
of 0–2% across the benchmarks, with some benchmarks
even showing a small performance improvement. Removing
writeback caching had the biggest impact on PostMark, but
the transactions effectively canceled this out by reducing
IPC overhead. Reduced IPC overheads also explain the other
small performance improvements; MINIX 3 is not particularly
optimized in this regard. As predicted, maintenance of request
recovery records added no significant overhead in any of the
benchmarks. Overall, we believe that the runtime overheads
are sufficiently low for a process crash recovery system for
the primary namespace module of storage stack.

2) The HDF5 namespace module: The HDF5 namespace
module was written from scratch and primarily intended for
human-driven maintenance. However, our basic support for
reading and writing data spaces proved sufficient to run
PostMark on it. Thus, we were able to get some performance
measurements here as well. We tested five versions: the initial
version (Original); a version that calls H5Fflush to flush
the library caches to the underlying file after each request
(Flush), which as we noted is not sufficient to retain read-
write consistency; a version that reopens the underlying file
between requests to flush all changes (Reopen); a version that
adds transaction support to that (Transactions), and the final
version that also adds request recovery records (Recoverable).

The results are shown in Table II. As can be seen, constantly
reopening the underlying file results in a serious performance
penalty. Our tests show that almost all this time is spent by
the library on creating and destroying internal data structures–
it is simply not optimized for this kind of usage. If calling
H5Fflush had been sufficient, this overhead would have
been limited to about 17%. Thus, we conclude that while
it is possible to meet recovery requirements in an extension



TABLE I
Macrobenchmark performance of the POSIX namespace module, comparing four
versions using five benchmarks, and showing both absolute and relative numbers.

Benchmark Unit Better if.. Original No writeback Transactions Recoverable
MINIX 3 build seconds lower 703 (1.00) 701 (1.00) 698 (0.99) 698 (0.99)
OpenSSH build seconds lower 532 (1.00) 536 (1.01) 541 (1.02) 545 (1.02)
PostMark trans./sec. higher 825 (1.00) 776 (0.94) 823 (1.00) 825 (1.00)
File Server IOPS higher 1265 (1.00) 1244 (0.98) 1243 (0.98) 1279 (1.01)
Web Server (Zipf) IOPS higher 12915 (1.00) 12973 (1.00) 13044 (1.01) 13067 (1.01)

namespace module even if it uses a preexisting library as is,
if this library has not been optimized for these requirements,
the resulting performance may suffer. We maintain that per-
formance is not critical for an extension namespace module,
unless it is intended as primary means of access to the file–in
that case, it is worth optimizing any included library as well.

B. Reliability

We assessed the reliability of our implementation by per-
forming a number of fault injection experiments on the POSIX
and the HDF5 namespace modules. We injected faults in each
module while a benchmark was running in a continuous loop.

For the POSIX namespace module, we used two bench-
marks. The first is PostMark, which we modified to verify
the results of all its calls. As part of this, we made it write
known patterns in its write calls, and verify the data returned
from its read calls accordingly. The second is the OpenSSH
benchmark, with an added verification step for the compiled
binaries at the end. For the HDF5 module, we used the
same modified version of PostMark. In addition, since the
OpenSSH benchmark expects more from the file system than
the HDF5 module can offer (e.g., device nodes), we instead
wrote and used a custom benchmark which performs a number
of hierarchy manipulation operations in a loop.

We limited ourselves to fail-stop fault injection, as there
is no easy way to inject faults that match exactly the failure
model from Sec. III-A. In order to maximize fault injection
coverage, we injected fail-stop faults into the namespace
module process in two different ways: 1) killing the process
at random times by sending it a fatal signal (“kill”); 2) using
a software fault injection tool to overwrite a limited, random
set of CPU instructions in the process with instructions that
generate an exception (“swifi”). While the latter eliminates
skew introduced by process scheduling, the former adds more
multithreading-like coverage of these (single-threaded) bench-
mark runs, as the module may now also be killed while it
is in the middle of performing an operation. We note that
without our changes, all fail-stop failures would be fatal to
the namespace module.

TABLE II
Macrobenchmark performance of the HDF5 namespace module, comparing

five version using PostMark, showing both absolute and relative
transactions-per-second numbers.

Original Flush Reopen Transactions Recoverable
631 (1.00) 530 (0.83) 38 (0.06) 37 (0.06) 36 (0.06)

For each of the combinations, we injected faults 1500 times.
For the “swifi” fault injection, we injected 100 faults each
time. The results are shown in Table III. In all cases, all
injections caused the namespace module to crash. More impor-
tantly, all crashes were followed by successful recovery, and
none of the benchmarks were affected by the fault injection
in any way. We believe that this is a good indication that our
implementation works and can indeed achieve the intended
reliability improvement.

VI. RELATED WORK

The closest to our work is Re-FUSE [29], which provides
recovery from fail-stop process crashes in FUSE file systems.
It logs the system calls (and their results) made by the FUSE
file system while processing each file system request. After a
crash, the file system is restarted and the pending request is
repeated. The file system is then expected to perform exactly
the same system calls, for which Re-FUSE replays the original
results–after completion, normal operation can resume. Like
our solution, Re-FUSE requires that the file system defer
no operations across requests. In contrast to our work, Re-
FUSE also allows use of nonstorage resources like network
connections. However, it requires strict determinism from the
file system, and offers no guarantees in multithreaded environ-
ments. As stated, we believe that multithreading in particular
is not only a requirement for high performance, but also one
of the main sources of transient failures. In addition, Re-FUSE
can not cleanly recover the underlying resources in the case
of a repeating crash; under the same failure assumptions, our
system prevents inconsistencies. Compared to both our work
and Re-FUSE, other process recovery solutions for file systems
either require more resources and processing (e.g., Membrane
[31]), or provide more invasive recovery (e.g., CuriOS [26]).

The use of transactions as the basis for recovery from
operating system failures is not new (e.g., [27], [28]). While
these approaches can recover from failures in larger parts

TABLE III
Fault injection results, showing for each namespace module, benchmark, and

types of fault injection, the number of times fault injection took place (I),
the number of crashes (C), and the number of successful recoveries (R).

Module Benchm. “kill” injection “swifi” injection
I C R I C R

POSIX PostMark 1500 1500 1500 1500 1500 1500
POSIX OpenSSH 1500 1500 1500 1500 1500 1500
HDF5 PostMark 1500 1500 1500 1500 1500 1500
HDF5 Custom 1500 1500 1500 1500 1500 1500



of the operating system, we believe they have two main
disadvantages: 1) they require extensive changes to the entire
operating system, and 2) the generality of the solution makes
it harder to apply domain-specific optimizations. For example,
we stipulate that the high overheads on file write operations
in Akeso [27] are due to extra memory copies necessary for
its rollback system. Our system can mostly avoid this.

Other work has explored exposing transactions to applica-
tions (e.g., [32], [33]). While such systems add more overhead,
it should be possible to combine them with our solution.

Previous work suggested microrebooting of isolated compo-
nents to recover from fail-stop crashes [34]. Our work could
be seen as an instance of this concept, although by focusing on
the storage stack, we address different aspects of the problem.

ZFS implements a namespace module in the form of its ZFS
Posix Layer (ZPL) [13]. It uses per-request transactions from
this layer to ensure atomicity of its modifications in the lower
layers. However, the ZPL is not a separate process, and we
are not aware of work on process crash recovery of ZFS.

VII. CONCLUSION AND FUTURE WORK

In this work, we have described and evaluated a way to
improve the reliability of a key component in the next gen-
eration of operating system storage stacks. There is however
more work to be done in this context.

So far, we have taken the POSIX interface and thus the
presence of a VFS layer as a given. In future work, we
intend to focus on namespace modules that bypass VFS and
expose an API directly to user applications, exploring the
requirements for making such modules recoverable as well.

As sketched in Sec. II-A, another future goal is to have
multiple primary namespace modules in virtual environments,
on top of a single shared object storage layer. In order to
deal with hostile modules, we intend to implement on-the-
fly verification that transactions retain the overall integrity
of the storage system. This is similar to other recent work
[35]. However, by working at the object level, we have more
semantic information available to achieve this.

ACKNOWLEDGMENT

This research was supported in part by European Research
Council Advanced Grant 227874.

REFERENCES

[1] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff,
C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka, “A cost-effective,
high-bandwidth storage architecture,” in ASPLOS, 1998, pp. 92–103.

[2] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum, “Block-
level RAID is dead,” in HotStorage, 2010.

[3] “FUSE: Filesystem in Userspace,” http://fuse.sourceforge.net/.
[4] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “A file is not a file: understanding the I/O behavior of
Apple desktop applications,” in SOSP, 2011.

[5] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum, “Loris
- A Dependable, Modular File-Based Storage Stack,” in PRDC, 2010.

[6] The HDF Group, “Hierarchical data format version 5, 2000–2010,”
http://www.hdfgroup.org/HDF5.

[7] System Application Program Interface (API) [C Language]: IEEE Std
1003.1-1990 (Revision of IEEE Std 1003.1-1988), ser. Information
Technology - Portable Operating System Interface. IEEE, 1990.

[8] Cluster File Systems, Inc., “Lustre: A Scalable, High Performance File
System,” 2002.

[9] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky,
O. Rodeh, J. Satran, A. Tavory, and L. Yerushalmi, “Towards an Object
Store,” in MSST, 2003, pp. 165–176.

[10] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable performance of the Panasas parallel
file system,” in FAST, 2008, pp. 1–17.

[11] “Object-Based Storage Device Commands, ANSI standard INCITS 400-
2004,” 2004.

[12] M. Seltzer and N. Murphy, “Hierarchical file systems are dead,” in
HotOS, 2009.

[13] “Sun Microsystems, Solaris ZFS file storage solution. Solaris 10 Data
Sheets,” 2004.

[14] R. van Heuven van Staereling, R. Appuswamy, D. C. van Moolenbroek,
and A. S. Tanenbaum, “Efficient, Modular Metadata Management with
Loris,” in NAS, 2011, pp. 278–287.

[15] “Filesystems in userspace: puffs, refuse, FUSE, and more,”
http://www.netbsd.org/docs/puffs/.

[16] J. S. Heidemann and G. J. Popek, “File-system development with
stackable layers,” ACM Trans. Comput. Syst., vol. 12, no. 1, pp. 58–
89, 1994.

[17] T. Bushnell, “Towards a New Strategy of OS Design,” GNU’s Bulletin,
vol. 1, no. 16, 1994.

[18] D. C. van Moolenbroek, R. Appuswamy, and A. S. Tanenbaum, “Inte-
grated End-to-End Dependability in the Loris Storage Stack,” in HotDep,
2011.

[19] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A
study of linux file system evolution,” in FAST, 2013.

[20] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large
industrial software system,” in ISSTA, 2002.

[21] L. Hatton, “Reexamining the Fault Density-Component Size Connec-
tion,” IEEE Software, vol. 14, no. 2, pp. 89–97, 1997.

[22] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE
Trans. Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[23] S. R. Kleiman, “Vnodes: An architecture for multiple file system types
in Sun UNIX,” in USENIX Summer, vol. 86, 1986, pp. 238–247.

[24] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang, “Characterization of
Linux Kernel Behavior under Errors,” in DSN, 2003.

[25] W.-L. Kao, R. K. Iyer, and D. Tang, “FINE: A Fault Injection and
Monitoring Environment for Tracing the UNIX System Behavior under
Faults,” IEEE Trans. Software Engineering, vol. 19, no. 11, pp. 1105–
1118, 1993.

[26] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell, “CuriOS:
Improving Reliability through Operating System Structure,” in OSDI,
2008.

[27] A. Lenharth, V. S. Adve, and S. T. King, “Recovery domains: an
organizing principle for recoverable operating systems,” in ASPLOS,
2009.

[28] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum, “We crashed, now
what?” in HotDep, 2010.

[29] S. Sundararaman, L. Visampalli, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Refuse to Crash with Re-FUSE,” in EuroSys, 2011.

[30] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Failure Resilience for Device Drivers,” in DSN, 2007, pp. 41–50.

[31] S. Sundararaman, S. Subramanian, A. Rajimwale, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and M. M. Swift, “Membrane: operating system
support for restartable file systems,” in FAST, 2010, pp. 21–21.

[32] R. P. Spillane, S. Gaikwad, M. Chinni, E. Zadok, and C. P. Wright,
“Enabling transactional file access via lightweight kernel extensions,” in
FAST, 2009, pp. 29–42.

[33] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel,
“Operating system transactions,” in SOSP, 2009, pp. 161–176.

[34] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Mi-
croreboot – A technique for cheap recovery,” in OSDI, 2004.

[35] D. Fryer, K. Sun, R. Mahmood, T. Cheng, S. Benjamin, A. Goel, and
A. D. Brown, “Recon: verifying file system consistency at runtime,” in
FAST, 2012.


