
The Architecture of a Reliable Operating System

Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanenbaum

Dept. of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
{jnherder, herbertb, beng, philip, ast}@cs.vu.nl

Keywords: Operating System Reliability, Design and Implementation, Multiserver Architecture, MINIX 3

Abstract

In this paper, we discuss the architecture of a fully
modular, self-healing operating system, which ex-
ploits the principle of least authority to provide re-
liability beyond that of most other operating systems.
The system can be characterized as a minimal kernel
with the entire operating system running as a set of
compartmentalized user-mode servers and drivers.

By moving most of the code to unprivileged user-
mode processes and restricting the powers of each
one, we gain proper fault isolation and limit the dam-
age bugs can do. Moreover, the system has been de-
signed to survive and automatically recover from fail-
ures in critical modules, such as device drivers, trans-
parent to applications and without user intervention.

We used this design to develop a highly reli-
able, open-source, POSIX-conformant member of the
UNIX family, which is freely available and has been
downloaded 50,000 times in the past 3 months.

1 INTRODUCTION

Operating systems are expected to function flaw-
lessly, but, unfortunately, most of today’s operating
systems frequently fail. As discussed in Sec. 2, many
problems stem from the monolithic design that un-
derlies most common systems. All operating system
functionality, for example, runs in kernel mode with-
out proper fault isolation, so that any bug can poten-
tially trash the entire system.

Like other groups, we believe that reducing the
operating system kernel is a first important step in
the direction of designing for reliability. In partic-
ular, running drivers and other core components in
user mode helps to minimize the damage that may be
caused by bugs in such code. However, our system
explores an extreme in the design space of UNIX-like
operating systems where the entire operating system
is run as a collection of independent, tightly restricted,
user-mode processes. This structure, combined with
several explicit mechanisms for transparent recovery

from crashes and other failures, results in a highly re-
liable, completely multiserver operating system that
still looks and feels like UNIX.

While some of the mechanisms are well-known,
and multiserver operating systems have been first pro-
posed years ago, to the best of our knowledge, we are
the first to explore such an extreme decomposition of
the operating system that is designed for reliability,
while providing reasonable performance. Quite a few
ideas and technologies have been around for a long
time, but were often abandoned for performance rea-
sons. We believe that the time has come to reconsider
the choices that were made in common operating sys-
tem design.

1.1 Contribution
The contribution of this work is the design and

implementation of an operating system that takes the
concept of multiserver to an extreme in order to pro-
vide a dependable computing platform. The concrete
goal of this research is to build a UNIX-like operat-
ing system that can transparently survive crashes of
critical components, such as device drivers.

As we mentioned earlier, the answer that we came
up with is to break the system into manageable units
and rigidly control the power of each unit. The ulti-
mate goal is that a fatal bug in, say, a device driver
should not crash the operating system; instead, the
failed component should be automatically and trans-
parently replaced by a fresh copy, and running user
processes should not be affected.

To achieve this goal, our system provides: simple,
yet efficient and reliable IPC; disentangling of inter-
rupt handling from user-mode device drivers; sepa-
ration of policies and mechanisms; flexible, run-time
operating system configuration; decoupling of servers
and drivers through a publish-subscribe system; and
error detection and transparent recovery for common
drivers failures. We will discuss these features in
more detail in the rest of the paper.

While microkernels, user-mode device drivers,
multiserver operating systems, fault tolerance, etc.

are not new, no one has put all pieces together. We
believe that we are the first to realize a fully mod-
ular, open-source, POSIX-conformant operating sys-
tem that is designed to be highly reliable. The system
is called MINIX 3. It has been released (with all the
source code) and 50,000 people have downloaded it
so far, as discussed later.

1.2 Paper Outline

We first introduce how operating system structures
have evolved over time (Sec. 2). Then we proceed
with a discussion of the kernel and the organization of
the user-mode servers on top of it (Sec. 3). We review
some implementation issues (Sec. 4) and briefly dis-
cuss the system’s reliability (Sec. 5) and performance
(Sec. 6). Finally, we draw conclusions (Sec. 7).

2 RELATED WORK

This section illustrates the operating system design
space with three typical structures and some variants
thereof. While most structures are probably familiar
to the reader, we introduce them explicitly to show
an overview of the design space that has monolithic
systems at one extreme and ours at the other.

It is sometimes said that virtual machines and ex-
okernels provide sufficient isolation and modularity
for making a system safe. However, these technolo-
gies provide an interface to an operating system, but
do not represent a complete system by themselves.
The operating system on top of a virtual machine or
exokernel can have any of the following structures.

2.1 Monolithic Systems

Monolithic kernels provide rich and powerful ab-
stractions. All operating system services are provided
by a single, monolithic program that runs in kernel
mode; applications run in user mode and can request
services directly from the kernel.

Monolithic designs have some inherent problems
that affect their reliability. All operating system code,
for example, runs at the highest privilege level with-
out proper fault isolation, so that any bug can poten-
tially trash the entire system. With millions of lines
of code (LoC) and 1-16 bugs per 1000 LOC [13, 14],
monolithic systems are likely to contain many bugs.
Running untrusted, third-party code in the kernel also
diminishes the system’s reliability, as evidenced by
the fact that 70% to 85% of all operating system
crashes are caused by device drivers [2, 11]

From a high-level reliability perspective, a mono-
lithic kernel is unstructured. The kernel may be parti-
tioned into domains but there are no protection barri-
ers enforced between the components. Two simplified
examples, Linux and MacOS X, are given in Fig. 1.

User User User User User User User User

UNIX server

Microkernel

U
se

r

VFS Inet

K
er

ne
l s

pa
ce

(a)

Linux

(b)

Mac OS X

PagingDrivers

Figure 1: Two typical monolithic systems discussed in
Sec. 2.1: (a) Vanilla Linux and (b) Mac OS X.

2.2 Single-Server Systems

A single-server system has a reduced kernel, and
runs a large fraction of the operating system as a sin-
gle, monolithic user-mode server. In terms of reliabil-
ity, this setup adds little over monolithic systems, as
there still is a single point of failure. The only gain in
case of an operating system crash is a faster reboot.

An advantage of this setup is that it preserves a
UNIX environment while one may experiment with a
microkernel approach. The combination of legacy ap-
plications and real-time or secure modules allows for
a smooth transition to a new computing environment.

Mach-UX [1] was one of the first systems to run
BSD UNIX in user-mode on top of the Mach 3 mi-
crokernel, as shown in Fig. 2(a). Another example,
shown in Fig. 2(b), is Perseus [9], running Linux and
some specialized components for secure digital signa-
tures on top of the L4 microkernel.

User User User User User User User User

GUI

Sign
Drivers Paging

U
se

r
sp

ac
e

L4 Linux

L4

(b)

Mach 3

(a)

K
er

ne
l s

pa
ce

BSD Unix

Drivers

Figure 2: Two typical single-server systems discussed in
Sec. 2.2: (a) Mach-UX and (b) Perseus.

2.3 Multiserver Systems

In a multiserver design, the operating system en-
vironment is formed by a set of cooperating servers.
Untrusted, third-party code such as device drivers
can be run in separate, user-mode modules to pre-
vent faults from spreading. High reliability can be
achieved by applying the principle of least author-
ity [10], and tightly controlling the powers of each.

A multiserver design also has other advantages.
The modular structure, for example, makes system
administration easier and provides a convenient pro-
gramming environment. A detailed discussion is out
of the scope of this paper.

Several multiserver operating systems exist. An
early system is MINIX [12], which distributed operat-
ing system functionality over two user-mode servers,
but still ran the device drivers in the kernel, as shown
in Fig. 3(a). More recently, IBM Research designed
SawMill Linux [3], a multiserver environment on top
of the L4 microkernel, as illustrated in Fig. 3(b).
While the goal was a full multiserver variant of Linux,
the project never passed the stage of a rudimentary
prototype, and was then abandoned when the people
working on it left IBM.

User User User User User User UserUser

Mem FS Net FS Mem

DriverDriver

L4

(b)

MINIX

DriverDriver

(a)

U
se

r
sp

ac
e

K
er

ne
l s

pa
ce

Name

Figure 3: Two typical multiserver systems discussed in
Sec. 2.3: (a) MINIX and (b) SawMill Linux.

2.4 Designing for Reliability

Although several multiservers systems exist, ei-
ther in design or in prototype implementation, none
of them has high reliability as an explicit design goal.
In the rest of this paper, we present a new, highly re-
liable, open-source, POSIX-conformant multiserver
operating system that is freely available for download,
and has been widely tested.

Some commercial systems like Symbian OS and
QNX [7] are also based on multiserver designs. How-
ever, they are proprietary and distributed without
source code, so it is difficult to verify the claims. Still,
the fact that innovating companies use multiserver de-
signs, demonstrates the viability of the approach.

We will now discuss our multiserver architecture
in detail, and show why it is a reliable system and how
it can automatically recover from common failures.

3 THE ARCHITECTURE OF MINIX 3

The MINIX 3 operating system runs as a set a user-
mode servers on top of a small kernel of under 4000
lines of code (LoC). Most of the servers are relatively
small and simple. Their sizes approximately range
from 1000 to 3000 LoC per server, which makes them
easy to understand and maintain. The core compo-
nents of MINIX 3 are shown in Fig. 4.

The general design principle that led to the above
set of servers is that each process should be limited to
its core business. Having small, well-defined services
helps to keep the implementation simple and under-
standable. As in the original UNIX philosophy, each
server has limited responsibility and power.

Before we continue with the discussion of the com-
ponents of MINIX 3, we give some examples to illus-
trate how our multiserver operating system actually
works. Fig. 4 also shows some typical IPC interac-
tions initiated by user processes. Although the POSIX
operating system interface is implemented by multi-
ple servers, system calls are transparently targeted to
the right server by the system libraries. Four exam-
ples are given below:

(1) The application that wants to create a child pro-
cess calls the fork() library function, which sends a re-
quest message to the process manager (PM). PM veri-
fies that a process slot is available, asks the memory
manager (MM) to allocate memory, and instructs the
kernel to create a copy of the process. Finally, PM
sends the reply and the library function returns. All
message passing is hidden to the application.

(2) A read() or write() call to do disk I/O, in con-
trast, is sent to FS. If the requested block is available
in the buffer cache, FS asks the kernel to copy it to the
user. Otherwise it first sends a message to the disk
driver asking it to retrieve the block from disk. The
driver sets an alarm, commands the disk controller
through a device I/O request to the kernel, and awaits
the hardware interrupt or timeout notification.

(3) Additional servers and drivers can be started
on the fly by requesting the reincarnation server (RS).
RS then forks a new process, assigns all needed privi-
leges, and, finally, executes the given path in the child
process (not shown in the figure). Information about
the new system process is published in the data store
(DS), which allows parts of the operating system to
subscribe to updates in the system’s configuration.

(4) Although not a system call, it is interesting to
see what happens if a user or system process causes an
exception, for example, due to an invalid pointer. In
this event, the kernel’s exception handler notifies PM,
which transforms the exception into a signal or kills
the process when no handler is registered. Recovery
from operating system failures is discussed below.

OS
Interface

RSPMFS

driver

User User User

SYS CLK

K
E

R
N

E
L

U
se

r
sp

ac
e

DS

K
er

ne
l s

pa
ce

MM

Figure 4: The core components of the full multiserver op-
erating system, and some typical IPC paths. Top-down IPC
is blocking, whereas bottom-up IPC is nonblocking.

3.1 The MINIX 3 Kernel

The MINIX 3 kernel provides privileged operations
that cannot be done in user space in a portable way to
support the rest of the operating system. The kernel is
responsible for low-level interrupt handling, program-
ming the MMU, interprocess communication (IPC),
device I/O, and starting and stopping processes.

In addition, the kernel maintains several lists and
bitmaps to restrict the powers of all system processes,
for example, IPC primitives, IPC endpoints, I/O ports,
IRQ lines, and memory regions. The policies are set
by a trusted user-space server when a new system pro-
cess is started, and enforced by the kernel at run time.

The kernel runs two independently scheduled pro-
cesses called tasks (to distinguish them from the user-
mode servers). Although the tasks are in kernel ad-
dress space and run in kernel mode, they are treated
in the same manner as any other user processes. The
kernel tasks, for example, can be preempted, which
helps to achieve a low interrupt latency.

3.1.1 System Task (SYS)

SYS is the interface to the kernel for all user-mode
servers and drivers. All kernel calls in the system li-
brary are transformed into request messages that are
sent to SYS, which processes the requests, and sends
reply messages. SYS never takes initiative by itself,
but it is always blocked waiting for a new request.

A typical example of a kernel call is SYS FORK
that is called when a new process must be created.
The kernel calls handled by SYS can be grouped
into several categories, including process manage-
ment, memory management, copying data between
processes, device I/O and interrupt management, ac-
cess to kernel data structures, and clock services.

3.1.2 Clock Task (CLOCK)

CLOCK is responsible for accounting of CPU usage,
scheduling another process when a process’ quantum
expires, managing watchdog timers, and interacting
with the hardware clock. It does not have a publicly
accessible user interface like SYS.

When the system starts up, CLOCK programs the
hardware clock’s frequency and registers an interrupt
handler that is run on every clock tick. The han-
dler only increments a process’ CPU usage and decre-
ments the scheduling quantum. If the a new process
must be scheduled or an alarm is due, a notification is
sent to CLOCK to do the real work at the task level.

Although CLOCK has no direct interface from user
space, its services can be accessed through the ker-
nel calls handled by SYS. The most important call is
SYS ALARM that allows system processes to schedule
a synchronous alarm that causes a ‘timeout’ notifica-
tion upon expiration.

3.2 The User-Space Servers

On top of the kernel, we have implemented a mul-
tiserver operating system. The servers run in user
mode and are restricted in what they can do, just
like ordinary user applications. They can use the
kernel’s IPC primitives, however, to request services
from each other and the kernel. Below we will discuss
the core operating system servers shown in Fig. 4.

3.2.1 Process Manager (PM)

PM is responsible for process management such as
creating and removing processes, assigning process
IDs and priorities, and controlling the flow of execu-
tion. Furthermore, PM maintains relations between
processes, such as process groups and parent-child
blood lines. The latter, for example, has consequences
for exiting processes and accounting of CPU time.

Although the kernel provides mechanisms, for ex-
ample, to set up the CPU registers, PM implements
the process management policies. As far as the ker-
nel is concerned all processes are similar; all it does
is schedule the highest-priority ready process.

Signal Handling PM is also responsible for POSIX
signal handling. When a signal is to be delivered, by
default, PM either ignores it or kills the process. Or-
dinary user processes can register a signal handler to
catch signals. In this case, PM interrupts pending sys-
tem calls, and puts a signal frame on the stack of the
process to run the handler. This approach is not suit-
able for system processes, however, as it interferes
with IPC. Therefore, we implemented an extension
to the POSIX sigaction() call so that system processes
can request PM to transform signals into notification
messages. Since event notification messages have the
highest priority of all message types, signals are de-
livered promptly.

3.2.2 File Server (FS)

FS manages the file system. It is an ordinary file server
that handles standard POSIX calls such as open(),
read(), and write(). More advanced functionality in-
cludes support for symbolic links and the select() sys-
tem call. FS is also the interface to the network server.

For performance reasons, file system blocks are
buffered in FS’ buffer cache. To maintain file system
consistency, however, crucial file system data struc-
tures use write-through semantics, and the cache is
periodically written to disk.

Since the file server runs as an isolated process that
is fully IPC driven, it can be replaced with a different
one to serve other file systems, such as FAT. More-
over, it should be straightforward to transform FS into
a network file server that runs on a remote host.

Device Driver Handling Because device drivers
can be dynamically configured, FS maintains a ta-
ble with the mapping of major numbers onto specific
drivers. As discussed below, FS is automatically noti-
fied of changes in the operating system configuration
through a publish-subscribe system. This decouples
the file server and the drivers it depends on.

A goal of our research is to automatically re-
cover from common driver failures without interrupt-
ing processes and without human intervention. When
a disk driver failure is detected, the system can re-
cover transparently by replacing the driver and rewrit-
ing the blocks from FS’ buffer cache. For character
devices, transparent recovery sometimes is also pos-
sible. Such failures are pushed to user space, but may
be dealt with by the application if the I/O request can
be reissued. A print job, for example, can be reissued
by the print spooler system.

3.2.3 Memory Manager (MM)

To facilitate ports to different architectures, we use
a hardware-independent, segmented memory model.
Memory segments are contiguous, physical memory
areas. Each process has a text, stack, and data seg-
ment. System processes can be granted access to ad-
ditional memory segments, such as the video memory
or the RAM disk memory. Although the kernel is re-
sponsible for hiding the hardware-dependent details,
MM does the actual memory management.

MM maintains a list of free memory regions, and
can allocate or release memory segments for other
system services. Currently MM is integrated into PM
and provides support for Intel’s segmented memory
model, but work is in progress to split it out and offer
limited virtual memory capabilities.

We will not support demand paging, however, be-
cause we believe physical memory is no longer a lim-
ited resource in most domains. We strive to keep the
code simple and eliminate complexity whenever pos-
sible. Likewise we did not implement swapping seg-
ments to disk in the interest of simplicity.

3.2.4 Reincarnation Server (RS)

RS is the central component responsible for managing
all operating system servers and drivers. While PM is
responsible for general process management, RS deals
with only privileged processes. It acts as a guardian
and ensures liveness of the operating system.

Administration of system processes also goes
through RS. A utility program, service, provides the
user with a convenient interface to RS. It allows the
administrator to start and stop system services, (re)set
their policies, or gather statistics. For optimal flexi-
bility in specifying policies a shell script can be set to
run on certain events, including device driver crashes.

Fault Set The fault set that RS deals with are proto-
col errors, transient failures, and aging bugs. Protocol
errors mean that a system process does not adhere to
the multiserver protocol, for example, by failing to
respond to a request. Transient failures are problems
caused by specific configuration or timing issues that
are unlikely to happen. Aging bugs are implemen-
tation problems that cause a component to fail over
time, for example, when it runs out of buffers due to
memory leaks.

Logical errors where a server or driver perfectly
adheres to the specified system behavior but fails to
perform the actual request are excluded. An exam-
ple of a logical error is a printer driver that accepts a
print job and confirms that the printout was success-
fully done, but, in fact, prints garbage. Such bugs are
virtually impossible to catch in any system.

Fault Detection and Recovery During system ini-
tialization RS adopts all processes in the boot image
as its children. System processes that are started later,
also become children of RS. This ensures immediate
crash detection, because PM raises a SIGCHLD signal
that is delivered at RS when a system process exits.

In addition, RS can check the liveness of the sys-
tem. If the policy says so, RS does a periodic status
check, and expects a reply in the next period. Failure
to respond will cause the process to be killed. The sta-
tus requests and the consequent replies are sent using
a nonblocking event notification.

Whenever a problem is detected, RS can replace
the malfunctioning component with a fresh copy from
disk. The associated policy script, however, might not
restart the component, which is useful, for example,
for development purposes. Another policy might use
a binary exponential backoff protocol when restarting
components to prevent clogging the system due to re-
peated failures. In any event, the problems are logged
so that the system administrator can always find out
what happened. Optionally, an e-mail can be sent to a
remote administrator.

3.2.5 Data Store (DS)

DS is a small database server with publish-subscribe
functionality. It serves two purposes. First, system
processes can use it to store some data privately. This
redundancy is useful in the light of fault tolerance.
A restarting system service, for example, can request
state that it lost when it crashed. Such data is not pub-
licly accessible.

Second, the publish-subscribe mechanism is the
glue between operating system components. It pro-
vides a flexible interaction mechanism and elegantly
reduces dependencies by decoupling producers and
consumers. A producer can publish data with an as-
sociated identifier. A consumer can subscribe to se-

lected events by specifying the identifiers or regular
expressions it is interested in. Whenever a piece of
data is updated DS automatically broadcasts notifica-
tions to all dependent components.

Naming Service IPC endpoints are formed by the
process and generation numbers, which are controlled
and managed by the kernel. Because every process
has a unique IPC endpoint, system processes cannot
easily find each other. Therefore, we introduced sta-
ble identifiers that consist of a natural language name
plus an optional number. The identifiers are globally
known. Whenever a system process is (re)started RS
publishes its identifier and the associated IPC end-
point at DS for future lookup by other system services.

In contrast to earlier systems, such as Mach [1],
our naming service is a higher-level construction that
is realized in user space. Mach’s naming service re-
quired bookkeeping in the kernel and did not solve the
problems introduced by exiting and reappearing sys-
tem services. We have intentionally pushed all this
complexity to user space.

Error Handling Since fault tolerance is an explicit
design goal, DS is an integral part of the design. Its
publish-subscribe mechanism makes it very suitable
to inform other processes of changes in the operating
system. Moreover, recovery of, say, a driver is made
explicit to the services that depend on it.

For example, FS subscribes to the identifier for the
disk drivers. If a disk driver crashes and RS registers
a new one, DS notifies FS about the event. FS then
calls back to find out what happened, and takes further
action to recover from the failure.

3.2.6 Device Drivers

All operating systems hide the raw hardware under a
layer of device drivers. Consequently, we have im-
plemented drivers for ATA, S-ATA, floppy, and RAM
disks, keyboards, displays, audio, printers, serial line,
various Ethernet cards, etc.

Although device drivers can be very challenging,
technically, they are not very interesting in the oper-
ating system design space. What is important, though,
is each of ours runs as an independent user-mode pro-
cess to prevent faults from spreading outside its ad-
dress space and make it easy to replace a crashed or
looping driver without a reboot. While other peo-
ple have measured the performance of user-mode
drivers [8], no currently-available system is self heal-
ing like this.

We are obviously aware that not all bugs can be
eliminated by restarting a failed driver, but since the
bugs that make it past driver testing tend to be timing
bugs or memory leaks rather than algorithmic bugs, a
restart often does the job.

4 IMPLEMENTATION ISSUES

As a base for the prototype, we started with
MINIX 2 [12] due to its very small size and long his-
tory. We fully revised the system—moving all drivers
out of the kernel and adding various new servers such
as RS and DS—to arrive at MINIX 3. This approach
allowed us to implement a new, highly reliable multi-
server operating system, without having to write large
amounts of code not relevant to this project.

A detailed discussion of the problems that were en-
countered [5] is outside the scope of this paper. How-
ever, a brief discussion of the dependencies we found
when we moved device driver out of the kernel—and
the solution we chose to resolve them—might benefit
other operating systems developers.

Types of Interdependencies We analyzed the in-
terdependencies and were able to group them into
roughly five categories. These categories show who
depends on whom or what, and each the dependencies
in each category can be tackled in a different way.

(A) Many drivers directly call kernel functions or
touch kernel variables, for example, to copy data to
and from user-mode processes or set a watchdog timer
at CLOCK. The obvious solution is to add new kernel
calls to support the drivers in user space.

(B) Sometimes one driver calls another. For exam-
ple, drivers require services from the console driver to
output a message. Again, new new message types can
be defined to request services from each other.

(C) The kernel can depend on driver, for example,
when a timer expires and the watchdog function of a
driver is called. Such asynchronous events that orig-
inate in the kernel are communicated to higher-level
processes with nonblocking notification messages.

(D) Some interrupt handlers directly touched data
structures of the in-kernel device drivers. The solution
is to transform the hardware interrupt into a notifica-
tion and process it local to the driver in user space.

(E) Bad design, for example, local variables that
are globally declared. This is yet another example
why in-kernel drivers are not a good idea. Kernel de-
velopment is complex and does not enforce a proper
coding style, easily leading to mistakes. Fortunately,
these dependencies were easily fixed.

Functional Classification Several functional
classes could be formed by grouping similar de-
pendencies. This classification was helpful to find
general approaches to resolve entire classes of de-
pendencies, instead of ad hoc solutions for individual
dependencies.

The functional classes that we distinguished are:
device I/O, copying data, access to kernel informa-
tion, interrupt handling, system shutdown, clock ser-
vices, debug dumps, and assertions and panics.

5 RELIABILITY

One of the strengths of our system is that it moves
device drivers and other operating system functional-
ity out of the kernel into unprivileged user-mode pro-
cesses and introduces protection barriers between all
modules. Therefore, it is no longer required to trust
the entire operating system, but only the kernel and
the servers and drivers that are needed for a given task.
The small size of these parts—about 1000 to 4000
lines of code—makes it practical to verify the code
either manually or using formal verification tools.

Each process is encapsulated in a private address
space that is protected by the MMU hardware. In-
valid pointers or illegal access attempts are caught by
MMU, just like for ordinary applications. The use
of separate memory segments even protects against
buffer overrun exploits that are commonly used by
viruses and worms. Execution of injected code is no
longer possible because the text segment is read-only
and the stack and data segment are not executable.
While other types of attacks exist, for example, the
return-to-libc attack, they are harder to exploit.

Minimizing Privileges The user-mode operating
system components do not run with superuser priv-
ileges. Instead, they are given an unprivileged user
and group ID to restrict file system access and POSIX
calls. In addition, each user, server, and driver process
has a restriction policy, according to the principle of
least authority [10]. The kernel maintains various lists
and bitmaps that specify what each process can do and
enforces this policy at run time.

Driver access to I/O ports and IRQ lines are as-
signed when they are started. In this way, if, say, the
printer driver tries to write to the disk’s I/O ports, the
kernel can deny the access. Stopping rogue DMA is
not possible with current hardware, but as soon as an
I/O MMU is added, we can prevent that, too.

Furthermore, we tightly restrict the IPC capabili-
ties of each process. For each process we specify what
IPC primitives it may use and what IPC endpoints are
allowed. This mechanism is used to enforce a multi-
server protocol that specifies who can talk to whom.

We also restrict the kernel calls that are available
to each server and driver, depending on their needs.
Ordinary applications cannot request kernel services
at all, but need to contact the POSIX servers instead.

Protecting the System While we do not claim that
our system is free of bugs, in many cases we can re-
cover from crashes due to programming errors or at-
tempts to exploit vulnerabilities, transparent to appli-
cations and without user intervention. The RS server
automatically replaces a system process that unex-
pectedly crashes, exits or otherwise misbehaves with
a fresh copy, as discussed in Sec. 3.

6 PERFORMANCE

Multiserver systems based on microkernels have
been criticized for decades because of alleged perfor-
mance problems. To illustrate the case, BSD UNIX
on top of the early Mach microkernel was well over
50% slower than the normal version of BSD UNIX,
and led to the impression of microkernels being slow.

Modern multiserver systems, however, have
proven that competitive performance actually can be
realized. L4Linux on top of L4, for example, has a
performance loss of about 5% [4]. Another project re-
cently demonstrated that a user-mode gigabit Ethernet
can perform within 7% of a kernel-mode driver [8].

Performance Measurements We have done exten-
sive measurements of our system and presented the
results in a technical report [6]. We can summa-
rize these results (done on a 2.2 GHz Athlon) as fol-
lows. The simplest system call, getpid, takes 1.011
microseconds, which includes two messages and four
context switches. Rebuilding the full system, which
is heavily disk bound, has an overhead of 7%. Jobs
with mixed computing and I/O, such as sorting, sed-
ding, grepping, prepping, and uuencoding a 64-MB
file have overheads of 4%, 6%, 1%, 9%, and 8%, re-
spectively. The system can do a build of the kernel
and all user-mode servers and drivers in the boot im-
age within 6 sec. In that time it performs 112 compi-
lations and 11 links (about 50 msec per compilation).
Fast Ethernet easily runs at full speed, and initial tests
show that we can also drive gigabit Ethernet at full
speed. Finally, the time from exiting the multiboot
monitor to the login prompt is under 5 sec.

We have also measured the performance overhead
of our recovery mechanisms by simulating repeated
crashes during a transfer of a 512-MB file from the
Internet with crash intervals ranging from 1 to 15 sec.
The results are shown in Fig. 5. The transfer success-
fully completed in all cases, with a throughput degra-
dation ranging from 25% to only 1%. The mean re-
covery time was 0.36 sec.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

T
ra

ns
fe

r
R

at
e

(M
B

yt
e/

s)

Driver Kill Interval (s)

Uninterrupted Transfer
With Driver Recovery

Figure 5: Throughput while repeatedly killing the Ethernet
driver during a 512-MB transfer with various time intervals.

7 CONCLUSIONS

We have demonstrated that it is feasible to build
a highly reliable, multiserver operating system with
a performance loss of only 5% to 10%. We have
discussed the design and implementation of a seri-
ous, stable, prototype that currently runs hundreds of
standard UNIX applications, including two C compil-
ers, language processors, many editors, networking,
and all the standard shell, file, text manipulation, and
other UNIX utilities.

Our system represents a new data point in the spec-
trum from monolithic to fully modular structure. The
design of consists of a small kernel running the en-
tire operating system as a collection of independent,
isolated, user-mode processes. While people have
tried to produce a fully modular microkernel-based
UNIX clone with decent performance for years (such
as GNU Hurd), we have actually done it, tested it
heavily, and released it.

The kernel implements only the minimal mecha-
nisms required to build an operating system upon. It
provides interrupt handling, IPC, and scheduling, and
contains two kernel tasks (SYS and CLOCK) to sup-
port the user-mode operating system parts. The core
servers are the process manager (PM), memory man-
ager (MM), file server (FS), reincarnation server (RS),
and data store (DS). Since the size of the operating
system components ranges from about 1000 to 4000
lines of code, it may be practical to verify them either
manually or using formal verification tools.

Our multiserver architecture realizes a highly
reliable operating system. We moved most operating
system code to unprivileged user-mode processes
that are encapsulated in a private address space
protected by the MMU hardware. Each user, server,
and driver process has a restriction policy to limit
their capabilities according to the principle of least
authority. We do not claim we have removed all the
bugs, but the system is robust and self healing, so
that it can withstand and often recover from common
failures, transparent to applications and without user
intervention.

8 AVAILABILITY

MINIX 3 is free, open-source software, available
via the Internet. You can download MINIX 3 from the
official homepage at: http://www.minix3.org/, which
also contains the source code, documentation, news,
contributed software packages, and more. Over
50,000 people have downloaded the CD-ROM im-
age in the past 3 months, resulting in a large and
growing user community that communicates using the
USENET newgroup comp.os.minix. MINIX 3 is ac-
tively being developed, and your help and feedback
are much appreciated.

ACKNOWLEDGMENTS

Supported under grant 612-060-420 by the Dutch
Organization for Scientific Research (NWO).

REFERENCES
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,

A. Tevanian, and M. Young. Mach: A New Kernel Founda-
tion for UNIX Development. In Proc. of USENIX’86, pages
93–113, 1986.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
Empirical Study of Operating System Errors. In Proc. 18th
ACM Symp. on Oper. Syst. Prin., pages 73–88, 2001.

[3] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone,
V. Uhlig, J. Tidswell, L. Deller, and L. Reuther. The SawMill
Multiserver Approach. In ACM SIGOPS European Work-
shop, pages 109–114, Sept. 2000.

[4] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The Performance of -Kernel-Based Systems. In
Proc. 6th Symp. on Oper. Syst. Design and Impl., pages 66–
77, Oct. 1997.

[5] J. N. Herder. Towards a True Microkernel Operating System.
Master’s thesis, The Netherlands, Feb. 2005.

[6] J. N. Herder, H. Bos, and A. S. Tanenbaum. A Lightweight
Method for Building Reliable Operating Systems Despite
Unreliable Device Drivers. In Technical Report, Jan. 2006.

[7] D. Hildebrand. An Architectural Overview of QNX. In Proc.
USENIX Workshop in Microkernels and Other Kernel Archi-
tectures, pages 113–126, Apr. 1992.

[8] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz, C. Gray,
L. Macpherson, Y.-T. S. Daniel Potts, K. Elphinstone, and
G. Heiser. User-Level Device Drivers: Achieved Perfor-
mance. Journal of Computer Science and Technology, 20(5),
Sept. 2005.

[9] B. Pfitzmann and C. Stüble. Perseus: A Quick Open-source
Path to Secure Signatures. In 2nd Workshop on Microkernel-
based Systems, 2001.

[10] J. Saltzer and M. Schroeder. The Protection of Information
in Computer Systems. Proceedings of the IEEE, 63(9), Sept.
1975.

[11] M. Swift, B. Bershad, and H. Levy. Improving the Reliability
of Commodity Operating Systems. ACM Trans. on Comp.
Syst., 23(1):77–110, 2005.

[12] A. S. Tanenbaum and A. S. Woodhull. Operating Systems De-
sign and Implementation. Prentice-Hall, 2nd edition, 1997.

[13] T.J. Ostrand and E.J. Weyuker. The Distribution of Faults
in a Large Industrial Software System. In Proc. of the 2002
ACM SIGSOFT Int’l Symp. on Software Testing and Analysis,
pages 55–64. ACM, 2002.

[14] T.J. Ostrand and E.J. Weyuker and and R.M. Bell. Where the
Bugs Are. In Proc. of the 2004 ACM SIGSOFT Int’l Symp.
on Software Testing and Analysis, pages 86–96. ACM, 2004.

