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Abstract

Studies have shown that device drivers and exten-
sions contain 3–7 times more bugs than other operating
system code and thus are more likely to fail. Therefore,
we present a failure-resilient operating system design
that can recover from dead drivers and other critical
components—primarily through monitoring and replac-
ing malfunctioning components on the fly—transparent
to applications and without user intervention. This pa-
per focuses on the post-mortem recovery procedure. We
explain the working of our defect detection mechanism,
the policy-driven recovery procedure, and post-restart
reintegration of the components. Furthermore, we
discuss the concrete steps taken to recover from net-
work, block device, and character device driver failures.
Finally, we evaluate our design using performance
measurements, software fault-injection experiments,
and an analysis of the reengineering effort.

Keywords: Operating System Dependability, Fail-
ure Resilience, Device Driver Recovery.

1 INTRODUCTION

Perhaps someday software will be bugfree, but for the
moment all software contains bugs and we had better
learn to coexist with them. Nevertheless, a question we
have posed is: “Can we build dependable systems out
of unreliable, buggy components?” In particular, we ad-
dress the problem of failures in device drivers and other
operating system extensions. In most operating systems,
such failures can disrupt normal operation.

In many other areas, failure-resilient designs are
common. For example, RAIDs are disk arrays that con-
tinue functioning even in the face of drive failures. ECC
memories can detect and correct bit errors transparently
without affecting program execution. Disks, CD-ROMs,

and DVDs also contain error-correcting codes so that
read errors can be corrected on the fly. The TCP pro-
tocol provides reliable data transport, even in the face of
lost, misordered, or garbled packets. DNS can transpar-
ently deal with crashed root servers. Finally, init auto-
matically respawns crashed daemons in the application
layer of some UNIX variants. In all these cases, soft-
ware masks the underlying failures and allows the sys-
tem to continue as though no errors had occurred.

In this paper, we extend these ideas to the operating
system internals. In particular, we want to tolerate and
mask failures of device drivers and other extensions. Re-
covery from such failures is particularly important, since
extensions are generally written by third parties and tend
to be buggy [9, 39]. Unfortunately, recovering from
driver failures is also hard, primarily because drivers are
closely tied to the rest of the operating system. In addi-
tion, it is sometimes impossible to tell whether a driver
crash has led to data loss. Nevertheless, we have de-
signed an operating system consisting of multiple iso-
lated user-mode components that are structured in such
a way that the system can automatically detect and repair
a broad range of defects [10, 15, 30], without affecting
running processes or bothering the user. The architec-
ture of this system is shown in Fig. 1.
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Figure 1: Architecture of our failure-resilient operating sys-
tem that can recover from malfunctioning device drivers.



In this paper, we focus on the post-mortem recov-
ery procedure that allows the system to continue nor-
mal operation in the event of otherwise catastrophic fail-
ures. We rely on a stable set of servers to deal with un-
trusted components. The reincarnation server manages
all system processes and constantly monitors the sys-
tem’s health. When a problem is detected, it executes
a policy script associated with the malfunctioning com-
ponent to guide the recovery procedure. The data store
provides naming services and can be used to recover lost
state after a crash. Changes in the system are broad-
cast to dependent components through the data store’s
publish-subscribe mechanisms in order to initiate further
recovery and mask the problem to higher levels. This is
how failure resilience works: a failure is detected, the
defect is repaired, and the system continues running all
the time with minimum disturbance to other processes.

While our design can recover from failures in all
kinds of components, including the TCP stack and sim-
ple servers, the focus of our research is to deal with
buggy device drivers. Studies on software dependability
report fault densities of 2–75 bugs per 1000 lines of exe-
cutable code [4, 41], but drivers and other extensions—
which typically comprise 70% of the operating system
code—have a reported error rate that is 3 to 7 times
higher [9], and thus are relatively failure-prone. For ex-
ample, 85% of Windows XP crashes can be traced back
to driver failures [39]. Recovery of drivers thus is an ef-
fective way to improve operating system dependability.

1.1 Contribution

We have built a failure-resilient operating system
to improve operating system dependability. Our work
is based on MINIX 3 [28], which runs all servers and
drivers as isolated user-mode processes, but is also ap-
plicable to other operating systems. This architecture al-
lowed us to add mechanisms to detect and transparently
repair failures, resulting in the design shown in Fig. 1.
While several aspects of MINIX 3 have been published
before [19, 20, 18], this is the first time we discuss the
recovery of malfunctioning device drivers in detail.

The remainder of this paper is organized as follows.
We first survey related work in operating system de-
pendability (Sec. 2). Then we present our failure model
(Sec. 3), discuss our isolation architecture (Sec. 4), in-
troduce the defect detection mechanisms and policy-
driven recovery procedure (Sec. 5). We illustrate our
ideas with concrete recovery schemes for network, block
device, and character device drivers (Sec. 6). We also
evaluate our system using performance measurements,
software fault-injection, and an analysis of reengineer-
ing effort (Sec. 7). Finally, we conclude (Sec. 8).

2 DEPENDABILITY CONTEXT

This work needs to be placed in the context of operat-
ing system dependability. Our failure-resilient design
represents a special case of microreboots [7, 8], which
promote reducing the mean time to recover (MTTR) in
order to increase system availability. We apply this idea
to drivers and other operating system extensions.

Several failure-resilient designs exist in the context
of operating systems. Solaris 10 [38] provides tools
to manage UNIX services running in the application
layer and can automatically restart crashed daemons.
Nooks [39, 40] implements in-kernel wrapping of com-
ponents to isolate driver failures and supports recov-
ery through shadow drivers that monitor communica-
tion between the kernel and driver. SafeDrive [44] com-
bines wrapping of the system API with type safety for
extensions written in C and provides recovery similar
to Nooks. QNX [21] provides software watchdogs to
catch and recover from intermittent failures in memory-
protected subsystems. Paravirtualization [13, 26] sup-
ports driver isolation by running each driver in a dedi-
cated, paravirtualized operating system and can recover
by rebooting the failed virtual machine. In contrast to
these approaches, we take the UNIX model to its logical
conclusion by putting all servers and drivers in unprivi-
leged user-mode processes and support restarts through
a flexible, policy-driven recovery procedure.

Numerous other approaches attempt to increase
operating system dependability by isolating compo-
nents. Virtual machine approaches like VM/370 [35],
VMware [36], and Xen [3] are powerful tools for run-
ning multiple services in isolation, but cannot prevent a
bug in a device driver from crashing the hosted operating
system. User-mode drivers have been used before, but,
for example, Mach [12] leaves lots of code in the ker-
nel, whereas L4Linux [16] runs the operating system in
a single server on top of L4 [24]. Other designs compart-
mentalize the entire operating system, including GNU
Hurd [6], SawMill Linux [14], and NIZZA [17]. Re-
cently, user-mode drivers also made their way into com-
modity systems such as Linux [25] and Windows [27].
These systems differ from our work in that we combine
proper isolation in user space with driver recovery.

Finally, language-based protection and formal veri-
fication can also be used to build dependable systems.
OKE [5] uses instrumented object code to load safely
kernel extensions. VFiasco [22] is an attempt at for-
mal verification of the L4 microkernel. Singularity [23]
uses type safety to provide software isolated processes.
These techniques are complementary to our approach,
since our user-mode servers and drivers can be imple-
mented in a programming language of choice.



3 FAILURE MODEL

In our work, we are interested in the notion of a failure,
that is, a deviation from the specified service [31], such
as a driver crash. We are less interested in erroneous sys-
tem states or the exact underlying faults. Once a failure
has been detected, as described in Sec. 5.1, we perform a
microreboot [7] of the failing or failed component in an
attempt to repair the system. The underlying idea is that
a large fraction of software failures are cured by reboot-
ing, even when the exact failure causes are unknown.

Our system is designed to deal with intermittent
and transient failures in device drivers. We believe
that this focus has great potential to improve operat-
ing system dependability, because (1) transient failures
represent a main source of downtime in software sys-
tems [10, 15, 30] and (2) device drivers are relatively
failure-prone [9, 39]. Failures that can be handled by
our design include failstop and crash failures, such as
exceptions triggered by unexpected input; panics due to
internal inconsistencies; race conditions caused by un-
expected hardware timing issues; and aging bugs that
cause a component to fail over time, for example, due
to memory leaks. While hard to track down, these kinds
of problems tend to go away after a restart and can be
cured by replacing the malfunctioning component with
a fresh copy. In fact, our design can deal with a some-
what broader range of failures, since we can also start a
newer or patched version of the driver, if available.

Of course, there are limits to the failures our de-
sign can deal with. To start with, we cannot deal with
Byzantine failures, including random or malicious be-
havior. For example, consider a disk driver that ac-
cepts a write request and responds normally, but, in fact,
writes garbage to the disk or nothing at all. Such bugs
are virtually impossible to catch in any system. In gen-
eral, end-to-end checksums are required to prevent silent
data corruption [33]. Furthermore, algorithmic and de-
terministic failures that repeat after a restart cannot be
cured, but these can be found more easily through test-
ing. Our design also cannot deal with performance fail-
ures where timing specifications are not met, although
the use of heartbeat messages helps to detect unrespon-
sive components. Finally, our system cannot recover
when the hardware is broken or cannot be reinitialized
by a restarted driver. It may be possible, however, to
perform a hardware test and switch to a redundant hard-
ware interface, if available. More research in this area is
needed, though.

In the remainder of this paper we focus on the re-
covery from transient driver failures, which, as argued
above, represent an important area where our design
helps to improve system dependability.

4 ISOLATION ARCHITECTURE

Strict isolation of components is a crucial prerequisite
to enable recovery, since it prevents problems in one
server or driver from spreading to a different one, in
the same way that a bug in a compiler process cannot
normally affect a browser process. Taking this notion
to our compartmentalized operating system design, for
example, a user-mode sound driver that dereferences an
invalid pointer is killed by the process manager, causing
the sound to stop, but leaving the rest of the system un-
affected. Although the precise mechanisms are outside
the scope of this paper, a brief summary of MINIX 3’s
isolation architecture is in place.

To start with, each server and driver is encapsulated
in a private, hardware-protected address space to pre-
vent memory corruption through bad pointers and unau-
thorized access attempts, just like for normal applica-
tions. Because the memory management unit (MMU)
denies access to other address spaces, the kernel pro-
vides a virtual copy call that enables processes to copy
data between address spaces in a capability-protected
manner. A process that wants to grant selective access
to its memory needs to create a capability describing the
precise memory area and access rights and pass an index
to it to the other party.

Direct memory access (DMA) is a powerful I/O
mechanisms that potentially can be used to bypass the
memory protection offered by our system. On com-
modity hardware, we can deny access to the DMA con-
troller’s I/O ports, and have a trusted driver mediate all
access attempts. However, this requires manual check-
ing of each device to see if it uses DMA. Modern hard-
ware provides effective protection in the form of an I/O
MMU [1]. To perform DMA safely a driver should first
request the kernel to set up the I/O MMU by passing
an index to a memory capability similar to the one de-
scribed above. The overhead of this protection is a few
microseconds to perform the kernel call, which is gen-
erally amortized over the costs of the I/O operation.

In addition, we have reduced the privileges of each
component to a minimum according to the principle of
least authority [34]. The privileges are passed to the
trusted reincarnation server when a component is loaded
through the service utility, which, in turn, informs the
other servers, drivers, and microkernel so that the re-
strictions can be enforced at run-time. System processes
are given an unprivileged user and group ID to restrict
among other things file system access. For servers, we
restrict the use of IPC primitives, system calls, and ker-
nel calls. For device drivers, the same restrictions ap-
ply, and in addition, we restrict access to I/O ports, IRQ
lines, and device memory such as the video memory.



5 RECOVERY PROCEDURE

In this section, we describe the general recovery proce-
dure in the event of failures. The ability of our system
to deal with dead drivers implies that we can dynami-
cally start and stop drivers while the operating system is
running. Starting a new device driver is done through the
service utility, which forwards the request to the reincar-
nation server. The following arguments are passed along
with the request: the driver’s binary, a stable name, the
process’ precise privileges, a heartbeat period, and, op-
tionally, a parametrized policy script—a shell script that
is called after a driver failure to manage the recovery
procedure. If all arguments make sense, the reincarna-
tion server forks a new process, sets the process’ privi-
leges, and executes the driver’s binary. From that point
on, the driver will be constantly guarded to ensure con-
tinuous operation—even in the event of a failure. How
the reincarnation server can detect defects and how the
recovery procedure works is described below.

5.1 Defect Detection

While a human user observes driver defects when
the system crashes, becomes unresponsive, or starts to
behave in strange ways, the operating system needs
other ways to detect failures. Therefore, the reincar-
nation server monitors the system at run-time to find
defects. The various inputs that can cause the recovery
procedure to be initiated are:

1. Process exit or panic.
2. Crashed by CPU or MMU exception.
3. Killed by user.
4. Heartbeat message missing.
5. Complaint by other component.
6. Dynamic update by user.

At any point in time the reincarnation server has ac-
curate information about the presence of all servers and
drivers, since it is the parent of all system processes.
When a server or driver crashes, panics or exits for an-
other reason, the process manager will notify the rein-
carnation server with a SIGCHLD signal, according to
the POSIX specification. At that point it collects and
inspects the exit status of the exitee, which leads to the
first three defect classes. Since a process exit is directly
reported by the process manager, immediate action can
be taken by the reincarnation server.

In addition, the reincarnation server can proactively
check the system’s state. Depending on the configura-
tion passed upon loading, the reincarnation server can
periodically request drivers to send a heartbeat message.

Failing to respond N consecutive times causes recov-
ery to be initiated. Heartbeats help to detect processes
that are ‘stuck,’ for example, in an infinite loop, but
do not protect against malicious code. To prevent bog-
ging down the system status requests and the consequent
replies are sent using nonblocking messages.

Furthermore, the reincarnation server can be used
as an arbiter in case of conflicts, allowing authorized
servers to report malfunctioning components. How a
malfunction is precisely defined depends on the com-
ponents at hand, but in general has to do with protocol
violations. For example, the file server can request re-
placement of a disk driver that sends unexpected request
messages or fails to respond to a request. The authority
to replace other components is part of the protection file
that specifies a process’ privileges.

Finally, faulty behavior also can be noticed by the
user, for example, if the audio sounds weird. In such
a case, the user can explicitly instruct the reincarnation
server to restart a driver or replace it with a newly com-
piled one. As another example, latent bugs or vulnera-
bilities may lead to a dynamic update as soon as a patch
is available. Since about a quarter of downtime is caused
by reboots due to maintenance [42], such dynamic up-
dates that allow patching the system on the fly can sig-
nificantly increase system availability.

5.2 Policy-Driven Recovery

By default, the reincarnation server directly restarts
a crashed component, but if more flexibility is wanted,
the administrator can instruct it to use a parametrized
policy script that governs the actions to be taken after a
failure. Policy scripts can be shared, but dedicated re-
covery scripts can be associated with individual servers
and drivers as well. When a malfunctioning component
is detected, the reincarnation server looks up the associ-
ated policy script and executes it. Input arguments are
which component failed, the kind of failure as indicated
in Sec. 5.1, the current failure count, and the parameters
passed along with the script. The primary goal of the
policy script is to decide when to restart the malfunction-
ing component, but other actions can be taken as well.
Restarting is always done by requesting the reincarna-
tion server to do so, since that is the only process with
the privileges to create new servers and drivers.

The simplest policy script immediately tries to restart
the failed component, but the policy-driven recovery
procedure can use the information passed by the rein-
carnation server to make decisions about the precise re-
covery steps taken. For example, consider the generic
policy script in Fig. 2. Lines 1–4 process the arguments
passed by the reincarnation server. Then, lines 6–10



a generic recovery script

1 component=$1 # component name
2 reason=$2 # numbers as in Sec. 3.1
3 repetition=$3 # current failure count
4 shift 3 # get to script parameters
5

6 if [ ! $reason -eq 6 ]; then
7 sleep $((1 << ($repetition - 1)))
8 fi
9 service restart $component

10 status=$?
11

12 while getopts a: option; do
13 case $option in
14 a)
15 cat << END | mail -s ”Failure Alert” ”$OPTARG”
16 failure: $component, $reason, $repetition
17 restart status: $status
18 END
19 ;;
20 esac
21 done

Figure 2: A parametrized, generic recovery script. Binary ex-
ponential backoff is used before restarting, except for dynamic
updates. Optionally, a failure alert is sent.

restart the component, possibly after an exponentially
increasing delay to prevent bogging down the system in
the event of repeated failures. The backoff protocol is
not used for dynamic updates that are requested explic-
itly. Finally, lines 12–21 optionally send an e-mail alert
if the parameter ’-a’ and an e-mail address are passed.

Using shell scripts provides a lot of flexibility and
power for expressing policies. For example, a dedicated
policy script can help the administrator recover from
failures in the network server. Such a failure closes all
open network connections, including the sockets used
by the X Window System. Among other things, recov-
ery requires restarting the DHCP client and X Window
System, which can be specified in a dedicated policy
script. As another example, when a required component
cannot be recovered or fails too often, the policy script
may reboot the entire system, which clearly is better
than leaving the system in an unusable state. At the very
least, the policy script can log the failing component and
its execution environment for future inspection. As an
aside, the ability of our system to pinpoint precisely the
responsible components might have legal consequences
for software vendors (since it can help determine liabil-
ity for damage caused by a crash), which may help in
building more dependable systems [43].

5.3 Post-Restart Reintegration

A restart of an operating system process is similar to
the steps taken when a new component is started through
the service utility, although the details differ. Some extra
work needs to be done, mainly because the capabilities
of processes that refer to the restarted component need
to be reset. In general, simple update requests suffice,
but these issues illustrate that interprocess dependencies
complicate the recovery. For example, our design uses
temporarily unique IPC endpoints, so that messages can-
not be delivered to the wrong process during a failure.
As a consequence, a component’s endpoint changes with
each restart, and the IPC capabilities of dependent pro-
cesses must be updated accordingly. Such updates are
done by the reincarnation server before the dependent
components learn about the restart, as discussed next.

Once a component has been restarted, it needs to be
reintegrated into the system. Two steps need to be dis-
tinguished here. First, changes in the operating sys-
tem configuration need to be communicated to depen-
dent components in order to initiate further recovery and
mask the problem to higher levels. This information
is disseminated through the data store, a simple name
server that stores stable component names along with
the component’s current IPC endpoint. The reincarna-
tion server is responsible for keeping this naming infor-
mation up to date. The data store implements a publish-
subscribe mechanism, so that components can subscribe
to naming information of components they depend on.
This design decouples producers and consumers and
prevents intricate interaction patterns of components
that need to inform each other. For example, the network
server subscribes to updates about the configuration of
Ethernet drivers by registering the expression ‘eth.∗’.

Second, a restarted component may need to retrieve
state that is lost when it crashed. The data store also
serves as a database server that can be used by system
processes to privately store a backup copy of certain
data. By using the data store, lost state can be retrieved
after a restart. Authentication of restarted components
is done with help of the naming information that is also
kept in the data store. When private data is stored, a
reference to the stable name is included in the record,
so that authentication of the owner is possible even if
its endpoint changes. In our prototype implementation,
state management turns out to be a minor problem for
device drivers, but is crucial for more complex services.
In fact, none of our device drivers currently uses the data
store to backup internal state. However, all mechanisms
needed to recover from failures in stateful components,
such as servers, are present. Transparent recovery of
servers is part of our future work.



6 DRIVER RECOVERY SCHEMES

Although in principle our design can handle both server
and driver failures, our current focus is to reincar-
nate dead drivers, since such failures are more com-
mon [9, 39]. If a driver failure cannot be handled at
the server level, it will be reported to the application
that made the I/O request, which notifies the user of the
problem, if need be. Different recovery schemes exist
depending on the type of driver, as summarized in Fig. 3.
Full, transparent recovery without bothering the user is
possible for both network and block device drivers.

Driver Recovery Where Section
Network Yes Network server Sec. 6.1
Block Yes File server Sec. 6.2
Character Maybe Application Sec. 6.3

Figure 3: Driver recovery schemes. Only network and block
device drivers allow transparently recovery.

The recovery schemes discussed here pertain not only
to failures, but also allows the administrator to dynami-
cally update drivers—even if I/O is in progress. In this
case, the reincarnation server first requests the driver
to exit by sending it a SIGTERM signal, followed by a
SIGKILL signal, if the driver does not comply. The steps
that are taken after the reincarnation server caused the
driver to exit are similar to those for a failure. Most
other operating system cannot dynamically replace ac-
tive drivers on the fly like we do.

6.1 Recovering Network Drivers

If a network driver fails, full recovery transparent to
the application is possible. We have implemented sup-
port for Ethernet driver recovery in MINIX 3’s network
server, INET. If the application uses a reliable transport
protocol, such as TCP, the protocol handles part of the
recovery. If data is lost or corrupted, the network server
(or its peer at the other end of the connection) will notice
and reinsert the missing packets in the data stream. If an
unreliable protocol, such as UDP, is used, loss of data
is explicitly tolerated, but if need be, application-level
recovery is possible, as illustrated in Fig. 4.

The recovery procedure starts when the process man-
ager informs the reincarnation server about the exit of
one of its children, as discussed in Sec. 5.1. The reincar-
nation server looks up the details about the failed driver
in its internal tables and runs the associated policy script
to restart it. Because the network server subscribes to
information about Ethernet drivers, it is automatically
notified by the data store if the configuration changes. If
the network server tries to send data in the short period

recovery
UDPftp rsyncwget

Error

I/O Realtek IntelPro 3COM

resend

Applications

End User

Network Server INET

Network Drivers

packet

VFSVirtual File System

Figure 4: Network driver recovery is done by the network
server or application, transparent to the user.

between the driver crash and the consequent restart, the
request fails and is postponed until the driver is back.
Upon notification by the data store, the network server
checks its tables to find out if the driver update concerns
a new driver or a recovered one, and in the latter case,
starts its internal recovery procedure. This procedure
closely mimics the steps that are taken when the driver
is first started. The Ethernet driver is reinitialized to put
it in promiscuous mode and told to resume I/O. The Eth-
ernet driver is stateless and does not need to retrieve lost
state from the data store—although it could do so, were
that necessary.

6.2 Recovering Block Drivers

We now zoom in on block device driver crashes and
describe the recovery procedure as implemented by the
native MINIX 3 file server, MFS. If a disk driver (such
as the hard disk, RAM disk, CD-ROM, or floppy driver)
crashes, transparent recovery without loss of data is pos-
sible, since disk block I/O is idempotent. If I/O was in
progress at the time of the failure, the IPC rendezvous
will be aborted by the kernel, and the file server marks
the request as pending. Then, the file server blocks and
waits until the disk driver has been restarted and pending
I/O requests can be retried, as illustrated in Fig. 5.

In contrast to other drivers, disk driver recovery is
currently not policy driven, since that would require
reading the recovery script from disk. Instead, the rein-
carnation server directly restarts failed disk drivers from
a copy in RAM.1 Like the other drivers in our system,
disk drivers are stateless and do not need to retrieve lost
state from the data store, although they could were that
necessary. Once the driver has been restarted, the rein-
carnation server publishes the new IPC endpoint in the
data store and the file server is notified. At this point,
the file server updates its device–driver mappings, and

1If policy-driven recovery is needed for disk drivers, the system can
be configured with a dedicated RAM disk to provide trusted storage for
crucial data, such as the driver binaries, the shell, and policy scripts.
We have written a small 450-line RAM disk driver for this purpose.
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Figure 5: Block device driver recovery is done by the file
server, transparent to applications and users.

reinitializes the disk driver by reopening minor devices,
if needed. Finally, the file server checks whether there
are any pending I/O requests, and if so, it reissues the
failed disk operations. At this point the file server re-
sumes normal operation and continues to handle pend-
ing I/O requests from other user applications.

As an aside, our design is meant to provide recov-
ery in the event of driver crashes, but is not designed
to detect silent data corruption, as discussed in Sec. 3.
While the TCP protocol automatically eliminates this
problem for network driver crashes, disk driver crashes
can potentially corrupt the data on disk. However, our
design may be combined with end-to-end checksums,
as in IRON file systems [33], to prevent data corruption.

6.3 Recovering Character Drivers

Character device drivers cannot be transparently re-
covered, since it is impossible to tell whether data was
lost. Deciding which part of the data stream was suc-
cessfully processed and which data is missing is an un-
decidable problem. If an input stream is interrupted due
to a device driver crash, input might be lost because it
can only be read from the controller once. Likewise, if
an output stream is interrupted, there is no way to tell
how much data has been output to the controller, and
full recovery is also not possible. Therefore, such fail-
ures are reported to the application layer where further
recovery might be possible, as illustrated in Fig. 6.

cdr lpdmp3
job

redo

Error

I/O 

failed
cd burn

VFSVirtual File System

Applications

End User

Character Drivers

retry

Audio SCSI Printer

hiccups

Figure 6: Recovery for character device drivers. Errors are
always pushed up, but need to be reported the user only if the
application cannot recover.

For historical reasons, most applications assume that
a driver failure is fatal and immediately give up, but our
prototype in fact supports continuous operation when
applications are made recovery-aware. For example, it
may be possible to modify the printer daemon such that
it automatically reissues failed print requests (without
bothering the user). While transparent recovery is not
possible—duplicate printouts may result in this case—
the user benefits from this approach. As another exam-
ple, an MP3 player could continue playing a song after a
driver recovery at the risk of small hiccups. Only when
the application layer cannot handle the failure, the user
needs to be informed. For example, continuing the CD
or DVD burn process if the SCSI driver fails will most
certainly produce a corrupted disc, so the error must be
reported to the user.

7 EXPERIMENTAL EVALUATION

We have evaluated our recovery mechanisms in various
ways. First, we discuss the performance overhead intro-
duced by our recovery mechanisms. Then, we report on
the results of software fault-injection. Finally, we quan-
tify the reengineering effort needed to prototype our re-
covery mechanisms in MINIX 3.

7.1 Performance Overhead

To determine the performance overhead introduced
by our recovery mechanisms we simulated driver
crashes while I/O was in progress and compared the
performance to the performance of an uninterrupted I/O
transfer. We performed this test for both block device
and network drivers. The crash simulation was done us-
ing a tiny shell script that first initiates the I/O transfer,
and then repeatedly looks up the driver’s process ID and
kills the driver using a SIGKILL signal. The test was run
with varying intervals between the simulated crashes.
The recovery policy that was used for these tests directly
restarts the driver without introducing delays. After the
transfer we verified that no data corruption took place.
In all cases, full recovery transparent to the application
and without user intervention was possible.

We first measured the overhead for the recovery of
network drivers using the RealTek 8139 Ethernet driver.
In this case, we initiated a TCP transfer using the wget
utility to retrieve a 512-MB file from the Internet. We
ran multiple tests with the period between the simulated
crashes ranging from 1 to 15 seconds. In all cases, wget
successfully completed, with the only noticeable differ-
ence being a small performance degradation as shown
in Fig. 7. To verify that the data integrity was preserved,
we compared the MD5 checksums of the received data



the original file. The mean recovery time for the Real-
Tek 8139 driver failures is 0.48 sec, which is, in part,
due to the TCP retransmission timeout. The uninter-
rupted transfer time is 47.41 sec with a throughput of
10.8 MB/s. The interrupted transfer times range from
47.85 sec to 62.98 sec with a throughput of 10.7 MB/s
and 8.1 MB/s, respectively. The loss in throughput due
to Ethernet driver failures ranges from 25% to just 1%
in the best case.
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Figure 7: Networking throughput when using wget retrieve
a 512-MB file from the Internet while repeatedly killing an
Ethernet driver with various time intervals.

We also measured the overhead of disk driver recov-
ery by repeatedly sending a SIGKILL signal to the SATA
hard disk driver while reading a 1-GB file filled with
random data using dd. The input was immediately redi-
rected to sha1sum to calculate the SHA-1 checksum.
Again, we killed the driver with varying intervals be-
tween the simulated crashes. The data transfer success-
fully completed in all cases with the same SHA-1 check-
sum. The transfer rates are shown in Fig. 8. The un-
interrupted disk transfer completed in 31.33 sec with
a throughput of 32.7 MB/sec. The interrupted trans-
fer shows a transmission time ranging from 83.06 sec
to 34.73 sec, with a throughput of 12.3 MB/s and 30.5
MB/s, for simulated crashes every 1 and 15 sec, respec-
tively. The performance overhead of disk driver recov-
ery ranges from 62% to about 7% in this test. The higher
recovery overhead compared to the previous experiment
is due to the much higher I/O transfer rates.
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Figure 8: Throughput of uninterrupted disk transfers and
throughput in case of repeated disk driver failures while read-
ing a 1-GB file using dd.

7.2 Fault-Injection Testing

To test the capability of our system to withstand and
recover from driver failures, we also simulated failures
in our drivers by means of software fault-injection. We
based our experiments on two existing fault injectors
that mutate binary code [32, 39, 40]. This kind of fault
injection was shown to be most representative for real
failures [29]. We used the following seven fault types:
(1) change source register, (2) change destination reg-
ister, (3) garble pointer, (4) use current register value
instead of paramater passed, (5) invert termination con-
dition of a loop, (6) flip a bit in an instruction, or (7)
elide an instruction. These faults emulate programming
errors common to operating system code [11, 37].

The fault-injection experiments demonstrated that
our design can successfully recover from common, tran-
sient failures and provide continuous operation. One ex-
periment run inside the Bochs PC emulator 2.2.6 tar-
geted the DP8390 Ethernet driver and repeatedly in-
jected 1 randomly selected fault into the running driver
until it crashed. In total, we injected over 12,500 faults,
which led to 347 detectable crashes: 226 exits due to an
internal panic (65%), 109 kill signals due to CPU and
MMU exceptions (31%), and 12 restarts due to missing
heartbeat messages (4%). The subsequent recovery was
successful in 100% of the induced failures.

Preliminary tests on the real hardware showed suc-
cess for more than 99% of the detectable failures. In
a very small number of cases (less than 5) the network
card was confused by the faulty driver and could not be
reininitialized by the restarted driver. Instead a low-level
BIOS reset was needed. If the card had a ’master reset’
command the problem could be solved by our driver, but
our card did not have this. Further testing with different
kinds of drivers and hardware configurations is needed,
however, in order to get more insight in possible hard-
ware limitations. This will be part of our future work.

7.3 Reengineering Effort

An important lesson that we have learned during our
prototype implementation is that the recovery proce-
dure requires an integrated approach for optimal results,
meaning that certain components need to be recovery-
aware. As a metric for the reengineering effort we
counted the number of lines of executable code (LoC)
that is needed to support recovery. Blank lines, com-
ments, and definitions in header files do not add to the
code complexity, so these were omitted in the counting
process. Line counting was done using the sclc.pl Perl
script [2]. Fig. 9 summarizes the results.

Fortunately, the changes required to deal with driver



failures are both very limited and local. The reincarna-
tion server and service utility’s logic to dynamically start
servers and drivers is reused to support recovery. Most
of the new code relates to defect detection and execution
of the recovery scripts. The virtual file system and file
server stay mostly the same, with changes centralized in
the device I/O routines. Furthermore, the recovery code
in the network server represents a minimal extension to
the code needed to start a new driver. Finally, the pro-
cess manager and microkernel are not affected at all.

Most importantly, the device drivers in our system are
hardly affected. In general, only a minimal change to
reply to heartbeat and shutdown requests from the rein-
carnation server is needed. For most drivers this change
comprises exactly 5 lines of code in the shared driver li-
brary to handle the new request types. Device-specific
driver code almost never needs to be changed. For a few
drivers, however, the code to initialize the hardware had
to be modified in order to support reinitialization. Over-
all, the changes are negligible compared to the amount
of driver code that can be guarded by our design.

7.4 General Applicability

The ideas put forward in this paper are generally ap-
plicable, and may, for example, be used in commodity
operating systems. While the degree of isolation pro-
vided by our prototype platform, MINIX 3, enabled us to
implement and test our ideas with relatively little effort,
we believe that other systems can also benefit from our
ideas. Especially, since there is a trend towards isola-
tion of untrusted extensions on other operating systems.
For example, user-mode drivers have been successfully
tested on Linux [25] and adopted by Windows [27].
If the drivers are properly isolated, these systems can
build on the principles presented here in order to pro-
vide policy-driven recovery services like we do.

Component Total LoC Recovery LoC %
Reinc. Server 2,002 593 30%
Data Store 384 59 15%
VFS Server 5,464 274 5%
File Server 3,356 22 <1%
SATA Driver 2,443 5 <1%
RAM Disk 454 0 0%
Network Server 20,019 124 <1%
RTL8139 Driver 2,398 5 <1%
DP8390 Driver 2,769 5 <1%
Process Manager 2,954 0 0%
Microkernel 4,832 0 0%
Total 39,011 1,072 -

Figure 9: Source code statistics on the total code base and
reengineering effort specific to recovery expressed in lines of
executable code (LoC).

8 CONCLUSION

Our research explores whether it is possible to build a
dependable operating system out of unreliable, buggy
components. We have been inspired by other hardware
and software failure-resilient designs that mask failures
so that the system can continue as though no errors had
occurred, and attempted to extend this idea to device
driver failures. Recovery from such failures is partic-
ularly important, since device drivers form a large frac-
tion of the operating system code and tend to be buggy.

In this paper, we presented an operating system ar-
chitecture in which common failures in drivers and
other critical extensions can be transparently repaired.
The system is constantly monitored by the reincarnation
server and malfunctioning components may be replaced
in a policy-driven recovery procedure to masks failures
for both users and applications. We illustrated our ideas
with concrete recovery schemes for failures in network,
block device, and character device drivers.

We also evaluated our design in various ways. We
measured the performance overhead due to our recovery
mechanisms, which can be as low as 1%. Fault-injection
experiments demonstrated that our design can recover
from realistic failures and provide continuous operation
in more than 99% of the detectable failures. Source code
analysis showed that the reengineering effort needed is
both limited and local. All in all, we believe that our
work on failure resilience for device drivers represents a
small step towards more dependable operating systems.

9 AVAILABILITY

MINIX 3 is free, open-source software, available via the
Internet. You can download MINIX 3 from the official
homepage at: http://www.minix3.org/, which also contains
the source code, documentation, news, and more.
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