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~26% of Windows XP crashes
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Even if OS were correct ...

● Device drivers OS base functionality
 provided by untrusted third parties 
 comprise up to 70% of entire OS
 3-7x more bugs than other OS code
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Even if OS were correct ...

● Device drivers OS base functionality
 provided by untrusted third parties 
 comprise up to 70% of entire OS
 3-7x more bugs than other OS code

● Still, drivers run in kernel
 all powers of the system
 no proper fault isolation
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Bug fixing is infeasible

● Continuously changing configuration 
● Maintainability of drivers is very hard
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Consequences

● Downtime mainly due to faulty software
 over 25,000 kernel bugs in Linux/Windows 

 with 5 MLoC kernel and 5 bugs/KLoC
 not all the code is in use all the time

 still, any kernel bug is potentially fatal

● Windows crash dump analysis confirms:
 extensions cause 65-83% of all crashes
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Isolation architecture

● Goal is to enforce least authority
 only grant access needed to do job

 e.g., disk driver can access only disk controller

● This is realized using a combination of 

1) structural constraints 

2) per-driver isolation policies

3) run-time memory granting
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 Structural constraints

● Multiserver design compartmentalizes OS 
● Only microkernel has full CPU privileges

 manageable due to small size < 5,000 LoC
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User-level drivers

● Drivers encapsulated in user processes
 unprivileged CPU mode

 cannot change page tables, halt CPU, etc.
 strict address-space separation

 memory corruption causes 27% of OS crashes

● Kernel mediates privileged operations
 e.g., DEVIO kernel call mediates device I/O
 e.g., SAFECOPY mediates memory copies
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Per-driver isolation policies

driver rtl8139 { # isolation policy

pci device 10ec/8139; # RTL8139 PCI card

ipc kernel # Kernel task

 ...; # ...

ipc kernel DEVIO # Device I/O

 SAFECOPY # Memory copying

 ...; # ...

};

● Note: MINIX 3 provides only mechanisms 
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Policy enforcement

● Driver manager installs isolation policy

1) driver manager forks a new process

2) OS servers are informed about policy

3) driver binary can be executed safely

● Policy enforcement done by OS
 run-time checks for privileged requests 
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Run-time memory granting

● Address-space separation too strict
 drivers typically need to exchange data

● Static policies not suitable for memory
 buffers often are dynamically allocated

● Therefore, run-time memory granting
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Memory grants

● Grants are capabilities
 grant defines precise memory access rights
 grantor sends grant ID to grantee
 grant validated by SAFECOPY kernel call
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Direct memory access (DMA)

● DMA-capable devices can access memory
● Protection based on IOMMU hardware

 IOMMU verifies requests from device
 just like MMU verifies requests from driver

● Trusted driver grants DMA access
 IOMMU driver programs IOMMU hardware

 DMA allowed into only driver's address space
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Self-repairing properties

● Isolation prevents fault propagation
 cannot prevent buggy driver from failing

● Improve availability through recovery
 driver manager monitor drivers at run-time 
 driver is restarted if a failure is detected

 often transparent to application and users
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How does this work?

● Many faults tend to go away after restart 
 For example:

 transient hardware faults
 race condition due to timing issues
 aging bugs due to memory leaks

● Details of recovery described elsewhere
 “Failure Resilience for Device Drivers,” 

Proc. 37th DSN, pp. 41-50, June 2007
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Dependability testing

● Goal: “Show that errors occurring in an 
isolated device driver cannot propagate 
and damage the rest of the OS.”

● Method: “Use software-implemented fault 
injection (SWIFI) to induce driver failures, 
and observe how the OS is affected.”
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SWIFI setup

● Faults representative for common errors
 bad pointers, infinite loops, etc.

● Inject fault into text segment at run-time 
 based on variant of UNIX process tracing

● Workload may cause fault activation
 triggered faults may cause driver failures
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Observed robustness

● One experiment injected 3,200,000 faults
 4 network driver configurations

 ISA and PCI bus, programmed I/O and DMA
 8 fault types * 1000 trials * 100 faults/trial

 induced driver failure with high probability
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Observed robustness

● One experiment injected 3,200,000 faults
 4 network driver configurations

 ISA and PCI bus, programmed I/O and DMA
 8 fault types * 1000 trials * 100 faults/trial

 induced driver failure with high probability

● Results indicate success!
 SWIFI caused 24,883 detectable errors

 driver failed, but the OS was never affected
 transparent recovery in all 24,883 cases
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Distribution of fatal errors

● See paper for explanation of fault types
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Unauthorized accesses

● RTL8139 displayed 5887 fatal errors
 detected and repaired by driver manager

 CPU & MMU exceptions
 exit due to internal panic
 missing driver heartbeat

● 3 orders of magnitude more other errors
 access attempt denied and logged by kernel

 unauthorized device I/O (1,754,886 x)
 unauthorized kernel call    (322,005 x)
 unauthorized IPC request      (66,375 x)
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Hardware limitations

● Sometimes hardware could not be reset
 device lacked master-reset command

 <0.1% of all NE2000 ISA driver crashes

● Sometimes the entire system froze 
 misbehaving device caused PCI bus hang

 had to give up on RTL8029 PCI card



“Fault Isolation for Device Drivers”                                                Jorrit N. Herder <jnherder@cs.vu.nl>

Hardware limitations

● Sometimes hardware could not be reset
 device lacked master-reset command

 <0.1% of all NE2000 ISA driver crashes

● Sometimes the entire system froze 
 misbehaving device caused PCI bus hang

 had to give up on RTL8029 PCI card

● Note: not a shortcoming of our design
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Conclusion (1/2)

● Drivers threaten OS dependability
● Fault isolation prevents global failure

 structural constraints
 per-driver isolation policy
 run-time memory granting

● Failure resilience repairs local damage
 monitor driver failures at run-time
 automated, transparent recovery
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Conclusion (2/2)

● Fault-injection testing proves viability
 first-ever to inject millions of faults

 needed to find the nasty bugs as well

● Observed few hardware limitations 
 not dramatic, but not fixable in software

 hardware dependability must also improve

● Demonstrated effectiveness of design
 achieved 100% transparent recovery

 for 3,200,000 faults injected into 4 drivers
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Thank you!

● Co-authors
 Herbert Bos
 Ben Gras
 Philip Homburg
 Andrew S. Tanenbaum

● Try it yourself!
 download MINIX 3

 www.minix3.org
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