
“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Fault Isolation for
Device Drivers

39th International Conference on

Dependable Systems and Networks,

30 June 2009, Estoril–Lisbon, Portugal

Jorrit N. Herder

Vrije Universiteit Amsterdam

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

~26% of Windows XP crashes

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Talk outline

● Driver dependability threats
● MINIX 3 isolation architecture
● MINIX 3 self-repairing properties
● Experimental evaluation
● Summary and conclusion

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Talk outline

● Driver dependability threats
● MINIX 3 isolation architecture
● MINIX 3 self-repairing properties
● Experimental evaluation
● Summary and conclusion

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Even if OS were correct ...

● Device drivers OS base functionality
 provided by untrusted third parties
 comprise up to 70% of entire OS
 3-7x more bugs than other OS code

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Even if OS were correct ...

● Device drivers OS base functionality
 provided by untrusted third parties
 comprise up to 70% of entire OS
 3-7x more bugs than other OS code

● Still, drivers run in kernel
 all powers of the system
 no proper fault isolation

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Bug fixing is infeasible

● Continuously changing configuration
● Maintainability of drivers is very hard

Dec
03

Jun
04

Dec
04

Jul
05

Jan
06

Jul
06

Jan
07

Jul
07

Jan
08

0

1,000

2,000

3,000

4,000

5,000

other
fs
net
drivers
arch

Linux 2.6 Release Date

K
Lo

C

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Consequences

● Downtime mainly due to faulty software
 over 25,000 kernel bugs in Linux/Windows

 with 5 MLoC kernel and 5 bugs/KLoC
 not all the code is in use all the time

 still, any kernel bug is potentially fatal

● Windows crash dump analysis confirms:
 extensions cause 65-83% of all crashes

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Talk outline

● Driver dependability threats
● MINIX 3 isolation architecture
● MINIX 3 self-repairing properties
● Experimental evaluation
● Summary and conclusion

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Isolation architecture

● Goal is to enforce least authority
 only grant access needed to do job

 e.g., disk driver can access only disk controller

● This is realized using a combination of

1) structural constraints

2) per-driver isolation policies

3) run-time memory granting

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

 Structural constraints

● Multiserver design compartmentalizes OS
● Only microkernel has full CPU privileges

 manageable due to small size < 5,000 LoC

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

User-level drivers

● Drivers encapsulated in user processes
 unprivileged CPU mode

 cannot change page tables, halt CPU, etc.
 strict address-space separation

 memory corruption causes 27% of OS crashes

● Kernel mediates privileged operations
 e.g., DEVIO kernel call mediates device I/O
 e.g., SAFECOPY mediates memory copies

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Per-driver isolation policies

driver rtl8139 { # isolation policy

pci device 10ec/8139; # RTL8139 PCI card

ipc kernel # Kernel task

 ...; # ...

ipc kernel DEVIO # Device I/O

 SAFECOPY # Memory copying

 ...; # ...

};

● Note: MINIX 3 provides only mechanisms

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Policy enforcement

● Driver manager installs isolation policy

1) driver manager forks a new process

2) OS servers are informed about policy

3) driver binary can be executed safely

● Policy enforcement done by OS
 run-time checks for privileged requests

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Run-time memory granting

● Address-space separation too strict
 drivers typically need to exchange data

● Static policies not suitable for memory
 buffers often are dynamically allocated

● Therefore, run-time memory granting

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Memory grants

● Grants are capabilities
 grant defines precise memory access rights
 grantor sends grant ID to grantee
 grant validated by SAFECOPY kernel call

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Direct memory access (DMA)

● DMA-capable devices can access memory
● Protection based on IOMMU hardware

 IOMMU verifies requests from device
 just like MMU verifies requests from driver

● Trusted driver grants DMA access
 IOMMU driver programs IOMMU hardware

 DMA allowed into only driver's address space

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Talk outline

● Driver dependability threats
● MINIX 3 isolation architecture
● MINIX 3 self-repairing properties
● Experimental evaluation
● Summary and conclusion

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Self-repairing properties

● Isolation prevents fault propagation
 cannot prevent buggy driver from failing

● Improve availability through recovery
 driver manager monitor drivers at run-time
 driver is restarted if a failure is detected

 often transparent to application and users

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

How does this work?

● Many faults tend to go away after restart
 For example:

 transient hardware faults
 race condition due to timing issues
 aging bugs due to memory leaks

● Details of recovery described elsewhere
 “Failure Resilience for Device Drivers,”

Proc. 37th DSN, pp. 41-50, June 2007

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Talk outline

● Driver dependability threats
● MINIX 3 isolation architecture
● MINIX 3 self-repairing properties
● Experimental evaluation
● Summary and conclusion

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Dependability testing

● Goal: “Show that errors occurring in an
isolated device driver cannot propagate
and damage the rest of the OS.”

● Method: “Use software-implemented fault
injection (SWIFI) to induce driver failures,
and observe how the OS is affected.”

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

SWIFI setup

● Faults representative for common errors
 bad pointers, infinite loops, etc.

● Inject fault into text segment at run-time
 based on variant of UNIX process tracing

● Workload may cause fault activation
 triggered faults may cause driver failures

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Observed robustness

● One experiment injected 3,200,000 faults
 4 network driver configurations

 ISA and PCI bus, programmed I/O and DMA
 8 fault types * 1000 trials * 100 faults/trial

 induced driver failure with high probability

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Observed robustness

● One experiment injected 3,200,000 faults
 4 network driver configurations

 ISA and PCI bus, programmed I/O and DMA
 8 fault types * 1000 trials * 100 faults/trial

 induced driver failure with high probability

● Results indicate success!
 SWIFI caused 24,883 detectable errors

 driver failed, but the OS was never affected
 transparent recovery in all 24,883 cases

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Distribution of fatal errors

● See paper for explanation of fault types

Source

Desti
natio

n

Pointer

Parameter

Contro
l

Binary

Omiss
ion

Random
0

200

400

600

800

1,000

Bochs NE2000 ISA NE2000 PCI RTL8139 PCI PRO/100

Fault Type Injected (1000 x 100 each)

D
ri

v
e
r

Fa
ilu

re
s

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Unauthorized accesses

● RTL8139 displayed 5887 fatal errors
 detected and repaired by driver manager

 CPU & MMU exceptions
 exit due to internal panic
 missing driver heartbeat

● 3 orders of magnitude more other errors
 access attempt denied and logged by kernel

 unauthorized device I/O (1,754,886 x)
 unauthorized kernel call (322,005 x)
 unauthorized IPC request (66,375 x)

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Hardware limitations

● Sometimes hardware could not be reset
 device lacked master-reset command

 <0.1% of all NE2000 ISA driver crashes

● Sometimes the entire system froze
 misbehaving device caused PCI bus hang

 had to give up on RTL8029 PCI card

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Hardware limitations

● Sometimes hardware could not be reset
 device lacked master-reset command

 <0.1% of all NE2000 ISA driver crashes

● Sometimes the entire system froze
 misbehaving device caused PCI bus hang

 had to give up on RTL8029 PCI card

● Note: not a shortcoming of our design

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Talk outline

● Driver dependability threats
● MINIX 3 isolation architecture
● MINIX 3 self-repairing properties
● Experimental evaluation
● Summary and conclusion

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Conclusion (1/2)

● Drivers threaten OS dependability
● Fault isolation prevents global failure

 structural constraints
 per-driver isolation policy
 run-time memory granting

● Failure resilience repairs local damage
 monitor driver failures at run-time
 automated, transparent recovery

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Conclusion (2/2)

● Fault-injection testing proves viability
 first-ever to inject millions of faults

 needed to find the nasty bugs as well

● Observed few hardware limitations
 not dramatic, but not fixable in software

 hardware dependability must also improve

● Demonstrated effectiveness of design
 achieved 100% transparent recovery

 for 3,200,000 faults injected into 4 drivers

“Fault Isolation for Device Drivers” Jorrit N. Herder <jnherder@cs.vu.nl>

Thank you!

● Co-authors
 Herbert Bos
 Ben Gras
 Philip Homburg
 Andrew S. Tanenbaum

● Try it yourself!
 download MINIX 3

 www.minix3.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

