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Abstract

It has been well established that most operating sys-
tem crashes are due to bugs in device drivers. Be-
cause drivers are normally linked into the kernel address
space, a buggy driver can wipe out kernel tables and
bring the system crashing to a grinding halt.

We have greatly mitigated this problem by reducing
the kernel to an absolute minimum and running each
driver as a separate, unprivileged user-mode process. In
addition, we implemented a POSIX-conformant operat-
ing system, MINIX 3, as multiple user-mode servers. In
this design, a server or driver failure no longer is fatal
and does not require rebooting the computer.

This paper discusses how we designed and imple-
mented the system, which problems we encountered, and
how we solved these problems. We also discuss the per-
formance effects of our changes and evaluate how our
multiserver design improves operating system depend-
ability over monolithic designs.

’Perfection is not achieved when there is nothing left
to add, but when there is nothing left to take away.’

– Antoine de Saint-Exupéry [2]

1. Introduction

For the vast majority of computer users, the biggest
perceived problem with using PCs is that they are not de-
pendable and frequently fail. For example, think of the
scenario where you buy a new peripheral device, say,
an Ethernet card, plug it in, and install the driver. The
network connection seems to work fine, but not much
later your computer suddenly crashes while download-
ing a file. Crashes reoccur at seemingly random times,
and you start to wonder whether your computer upgrade
has anything to do with it.

In our research, we try to address this situation and
prevent serious bugs in the operating system, such as a
device driver dereferencing an invalid pointer, winding
up in an infinite loop, or executing an illegal instruction,
from crashing or hanging the computer.

1.1. Why do Systems Crash?

Today’s commodity operating systems use a stan-
dard monolithic design, in which the kernel contains
the entire operating system linked in a single address
space and running in privileged mode. The kernel may
consists of different kernel modules, but nothing pre-
vents one module from corrupting another. The lack
of proper fault containment allows local problems to
spread throughout the kernel and take down the entire
system. This property is not caused by a bad implemen-
tation, but is inherent to the use of a monolithic design.

As it turns out, many dependability problems in
monolithic operating systems are due to simple pro-
gramming bugs causing fatal exceptions. Fault distri-
bution studies [18, 19, 20] show that code contains 6-16
bugs per 1000 lines of executable code (LoC). Trans-
lated to multimillion-line monolithic kernels and using a
conservative estimate of 10 bugs per 1000 LoC, the 2.5-
million-line Linux kernel probably has at least 25,000
bugs; Windows has as at least double that.

A related problem is the frequent use of untrusted,
third-party code, such as device drivers and other exten-
sions, in the kernel—the most sensitive part of the op-
erating system. Still, device drivers typically comprise
about 70% of the operating system code, while they have
a reported error rate of 3 to 7 times higher than ordinary
code [1]. Not surprisingly, the majority of crashes are
caused by drivers. For example, in Windows XP they
are responsible for 85% of all crashes [15].

1.2. The Solution: Proper Fault Isolation

One of the key observations of the research reported
in this paper is that a powerful technique for increasing
system reliability is to run each device driver as a sep-
arate user-mode process, encapsulated in a private ad-
dress space protected by the MMU hardware—just like
for ordinary application programs. In this way, faulty
code is isolated, so a bug in say, the printer driver, may
cause printing to cease, but it cannot write garbage all
over key kernel data structures and bring the system



down. In some cases, a faulty user-mode driver can even
be killed and replaced without restarting other parts of
the operating system.

We do not believe that bug-free code is likely to ap-
pear soon, certainly not in operating systems, which are
usually written in C or C++. Unfortunately, programs
written in these languages make heavy use of pointers,
a rich source of bugs. Our approach is therefore based
on the ideas of modularity and fault isolation. To keep
faults from spreading we have compartmentalized the
system by running all servers and drivers as isolated
user-mode processes and reducing the part that runs in
kernel mode to a bare minimum. Making the kernel
small, in our case, under 4000 lines of code, greatly re-
duces the number of bugs it is likely to contain, since
the small size also reduces its complexity and makes it
easier to understand. In other words, our approach to
reliability is to follow Saint-Exupéry’s dictum and make
the kernel as small as humanly possible. How that was
done and what problems were encountered is described
later in this paper.

1.3. Our Contribution

The concrete contribution of the research report here
is the design and implementation of a fully compartmen-
talized operating system, MINIX 3. To properly isolate
faults, we have removed all drivers from the kernel and
run them as separate, unprivileged user-mode processes,
protected by the MMU hardware. Since all servers also
run in user mode in our design, only a tiny microker-
nel that does not contain any foreign, untrusted code is
left in kernel mode. Each component has only the mini-
mum privileges it needs in order to prevent failures from
spreading. In our design, driver failures are no longer
fatal and do not require rebooting the computer.
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Figure 1: The design of our operating system is fully com-
partmentalized to properly isolate faults and enable recovery.

The loosely layered structure of our revitalized op-
erating system is illustrated in Fig. 1. All applications,
servers, and drivers run as isolated, user-mode programs

on top of a tiny microkernel. The microkernel is respon-
sible for low-level operations such as interrupt handling,
scheduling, and programming the MMU and CPU. On
top of the microkernel, we implemented user-mode de-
vice drivers to manage the hardware, including drivers
for hard disk, printer, video, and audio. The user-mode
drivers are managed by the reincarnation server, whereas
the file server, network server and process manager pro-
vide operating system services to the application layer.

To the best of our knowledge no one before has put
all the pieces together to build a fully modular, open-
source, POSIX-conformant UNIX clone that is far more
fault tolerant than normal UNIX systems, with a perfor-
mance loss of only 5% to 10% compared to our base
system with drivers in the kernel. In addition, our ap-
proach differs from related efforts as we do not focus
on commodity operating systems. Rather than patching
legacy systems, we use a new, lightweight design that
can make future operating systems more dependable.

1.4. Paper Outline

We start out by surveying related work in improving
operating system dependability (Sec. 2). Then we in-
troduce the base system with in-kernel drivers and ana-
lyze the kernel-driver dependencies that we encountered
(Sec. 3); we discuss the solutions we came up with and
how we operationally moved all device drivers out of
the kernel (Sec. 4); and we mention some other im-
provements that we made to the system (Sec. 5). We
also give some performance considerations (Sec. 6) and
briefly evaluate the system’s main dependability features
(Sec. 7). Finally, we present our conclusions (Sec. 8).

2. Overview of Related Work

This project is about building a more dependable op-
erating system by removing device drivers from the ker-
nel. Before describing our design in detail, we briefly
discuss what others have done to improve operating sys-
tem dependability.

2.1. Patching Commodity Systems

An important project to improve the dependability of
commodity systems such as Linux is Nooks [15, 16].
Nooks keeps device drivers in the kernel but encloses
them in a lightweight protective wrapper so that driver
bugs cannot propagate to other parts of the operating
system. All traffic between the driver and the rest of
the kernel is inspected by the reliability layer.

Another project uses a kind of virtual machine to
isolate device drivers from the rest of the system [10].



When a driver is called, it is run on a different vir-
tual machine than the main system so that a crash or
other fault does not pollute the main system. In ad-
dition to isolation, this technique enables unmodified
reuse of drivers when experimenting with new operat-
ing systems.

A recent project ran Linux device drivers in user
mode with small changes to the Linux kernel [12]. This
work shows that drivers can be isolated in user-mode
processes without significant performance degradation.

While isolating device drivers helps to improve the
dependability of legacy operating systems, we believe
that a proper, fully modular design from scratch gives
more dependability. This includes encapsulating all op-
erating system servers and drivers in independent, user-
mode processes.

2.2. Architecting New Modular Designs

The opposite of a monolithic kernel is the microker-
nel, which contains only the barest mechanisms, but no
policies. A microkernel provides interrupt handlers, a
mechanism for starting and stopping processes, a sched-
uler, and interprocess communication, but ideally noth-
ing else. Standard operating system functionality that is
present in a monolithic kernel is moved to user space,
and no longer runs at the highest privilege level.

Different operating system organizations are possi-
ble on top of a microkernel. A first step is running
the operating system in a single user-mode server on
top of a microkernel, for example, L4Linux on top of
the L4 microkernel [4]. This structure is often com-
bined with specialized components as in DROPS [5] and
Perseus [13]. In terms of dependability, this setup adds
little over monolithic systems, since a single driver bug
can still crash Linux.

In more modular designs, the operating system is
split into a set of cooperating servers. Untrusted code
such as third-party device drivers can be run in indepen-
dent, user-mode modules to prevent faults from spread-
ing. In principle, modular designs have great potential
to increase dependability as each module can be tightly
controlled.

SawMill Linux [3] would have been a more sophisti-
cated approach to split the operating system into pieces
and run each one in its own protection domain. How-
ever, the project was abruptly terminated in 2001 when
many of the principals left IBM, and the only outcome
was a rudimentary, unfinished prototype.

The GNU Hurd is a collection of servers that serves
as a replacement for the UNIX kernel. Although the
project’s goal is similar to our, the distribution of func-
tionality over the various servers is different. The cur-

rent status seems to be that the multiserver system did
not work as intended on top of either Mach or L4, and
the project currently seeks another microkernel.

A recent multiserver system developed by Microsoft
Research is Singularity [9]. In contrast to other systems,
Singularity uses language protection and can run with-
out the hardware protection offered by the MMU. The
system can be characterized as a microkernel running a
set of verifiably-safe, software-isolated servers. While
language safety might be a viable approach to build reli-
able systems, Singularity means a paradigm shift for the
programmer and is not backwards compatible with any
existing applications.

3. Analysis of Drivers in the Base System

As the base for our work we started with an existing
hybrid microkernel-based operating system, MINIX 2,
which we then heavily modified. This approach allowed
us to focus on mechanisms for improving dependabil-
ity without having to write large amounts of code not
relevant to this project. In MINIX 2, the file system,
memory manager, and networking were already running
as separate user-mode processes called servers. Drivers
ran in kernel address space but were scheduled as sepa-
rate processes, each with its own process table entry and
stack. Nevertheless, a bug in a driver could wipe out the
kernel and take down the entire system. Our goal was
to ensure that a driver bug could not damage any code
except the driver itself.

To determine what needed to be done, we first ana-
lyzed how drivers and the kernel depend on each other.
A dependency means that a symbol, that is, a variable or
function, can no longer be directly referenced by a de-
vice driver that is compiled as a separate program. The
dependencies were found by copying all files of a given
driver to a separate directory, trying to compile the driver
isolated from the kernel, and inspecting the compiler and
linker’s errors. In the remainder of this section, we will
discuss the dependencies that we found.

3.1. Who Depends on What?

We analyzed the interdependencies and were able to
group them into roughly five categories based on who
depends on whom or what. Each of the categories re-
quired a different approach to remove the dependencies:

A. Driver depends on kernel symbol.
B. One driver calls another.
C. Kernel task depends on driver.
D. Interrupt handler uses driver data.
E. Driver uses I/O hardware.



For each category, a different approach in removing the
dependencies was needed.

(A) Many drivers directly call kernel functions or
touch kernel variables, for example, to copy data to and
from user-mode processes. The obvious solution is to
add new kernel calls to support the drivers in user space.

(B) Sometimes one driver calls another. For exam-
ple, drivers require services from the console driver to
output a message. Like above, new message types can
be defined to request services from each other.

(C) The kernel can depend on a driver, for example,
when a timer expires and the watchdog function of a
driver is called by the clock task. Events that originate
in the kernel are now communicated to user space using
nonblocking messages.

(D) Some interrupt handlers directly touched data
structures of the in-kernel device drivers. The solution
is to transform the hardware interrupt into a notification
which is processed local to the driver in user space.

(E) All drivers interact with the I/O hardware, which
they cannot not do in user space; attempts to read or
write I/O ports result in an exception. Since only the
kernel is allowed to do I/O, several kernel calls relating
to I/O were added.

3.2. Functional Classification

In addition to looking at who depends on what, it
is possible to ask: Why? What kinds of procedures
are drivers calling, etc.? We analyzed the reasons that
drivers were interacting with other parts of the system
and found the main classes of dependencies as follows:

1. Actual device I/O.
2. Copying data.
3. Access to kernel information.
4. Enabling and disabling interrupts.
5. System shutdown.
6. Using the clock.
7. Debug dumps.
8. Assertions and panics.
9. Bad design.

This classification was helpful to find general ap-
proaches to resolve entire classes of dependencies,
instead of ad hoc solutions for individual dependencies.

Class 1 dependencies occur because device drivers
do I/O. With the exception of the RAM disk driver, all
drivers do actual I/O, which requires reading and writing
I/O device registers. On most machines, doing I/O is not
possible in user mode. On some machines there may
be a way to map a page containing I/O registers to user
space or map some of the I/O ports to user space, but

this is not always possible and should not be relied on.
Class 2 dependencies are due to drivers needing a

way to copy data to or from user processes. When a
driver is in the kernel, it can copy data anywhere it wants
to, but when the driver is moved to user mode, it can no
longer directly access other processes’ address spaces.

Class 3 dependencies relate to some drivers’ need to
access the process table and other kernel data structures,
from absolute memory to environment variables. None
of these are available in user mode.

Class 4 dependencies exist because drivers often need
to enable, disable, and manage interrupts on the devices
they control. From inside the kernel, doing this is easy;
from user mode it is impossible without help.

Class 5 dependencies arise because system shut-
down is a peculiar business, with various idiosyncracies.
Drivers play a role here shutting down their respective
devices and cooperating when the servers shut down.

Class 6 dependencies relate to managing timers.
Many drivers need to deal with time, for example, set-
ting watchdog timers. In-kernel drivers have easy access
to the clock and its functions. Outside the kernel, an ex-
plicit interface to the clock driver is needed.

Class 7 dependencies have to do with the debugging
displays produced when a function key is struck. This
used to be handled by the keyboard driver on behalf of
other drivers, but with all the drivers in different user-
mode processes, some other solution is needed.

Class 8 dependencies are caused by the presence of
assertion statements in the code that are verified at run
time. They previously caused panics, forcing a system
shutdown. When they occur in user-mode processes,
they need to be treated differently, for example, causing
just the faulty component to be killed and restarted.

Class 9 dependencies were caused by bad design, for
example, when variables that were really local were de-
clared global. This is yet another example why in-kernel
drivers are a bad idea. Kernel development is complex
and does not enforce a proper coding style, easily lead-
ing to mistakes. Fortunately, these dependencies were
easily fixed by moving them to the right file and declar-
ing them static.

4. Moving Drivers out of the Kernel

The goal of the new system, MINIX 3, is to remove
all device driver from the kernel and produce a true
microkernel-based operating system, as shown in Fig. 1.
Each driver will run in a separate user-mode process
with its own private address space. One exception is
the clock driver, which is very simple and remains in the
kernel to facilitate process scheduling. Since each server
also runs in user mode (in its own address space), only a



tiny microkernel is left in kernel mode. All that this mi-
crokernel does is catch interrupts and convert each one
to a message, select the next process to run, load the se-
lected process registers and MMU entries, and handle
the transport of fixed-size message between processes
using the rendezvous principle. Everything else is done
by user-space processes.

In this section, we describe what was needed to re-
solve the driver dependencies discussed in Sec. 3. We
also discuss how we operationally removed all drivers
from the kernel and how we transformed them into iso-
lated, user-mode processes.

4.1. New System Calls

Some of the problems were solved by adding new
kernel calls that drivers can make. The major ones are
listed in Fig. 2. Below, we will briefly discuss the most
important calls of interest to drivers.

Kernel Call Purpose
SYS VDEVIO Read or write a vector of I/O ports
SYS VIRCOPY Safe copy between address spaces
SYS IRQCTL Set or reset an interrupt policy
SYS GETINFO Get a copy of kernel information
SYS SETALARM Set or reset a synchronous alarm
SYS PRIVCTL Restrict a process’ privileges

Figure 2: A selection of common kernel calls. All calls re-
quire privileged operations and are handled by SYS.

The SYS VDEVIO call is used to read or write (a set
of) I/O ports. By specifying a vector of ports, a single
call can return the values of multiple I/O ports. Simi-
larly, a single call can write values to multiple I/O ports
to start an I/O operation.

The SYS IRQCTL call allows drivers to enable, dis-
able, and manage interrupt handlers in several ways. In-
terrupts are still caught by the kernel, but are immedi-
ately converted into a nonblocking notification message
that is sent to the associated user-mode driver, as dis-
cussed below.

The SYS VIRCOPY call is used to copy data between
two address spaces. Copying is only possible when the
other party explicitly granted access to a region of its
memory. The memory grant contains the process that is
allowed to use it, read-write permission bits, the virtual
base address, and the number of bytes to transfer. The
kernel is responsible for validating the memory grant
and performing the actual copy.

The SYS GETINFO call provides a way for drivers to
acquire kernel information they once could access di-
rectly by just reading memory. For example, drivers

need access to environment variables that contain in-
formation about the system’s hardware configuration or
user-specific settings passed through the boot monitor.

The SYS SETALARM call replaces the old method of
handling watchdog timers—having each driver call in-
ternal clock routines to schedule a future call of one of
its own internal functions. Instead, they now call the
clock driver asking for a notification to be sent when the
timer goes off. In the old system, the watchdog proce-
dure ran as part of the clock process. Now it runs as part
of the caller’s process, a much cleaner design.

The SYS PRIVCTL call can be used to set the privi-
leges of each process in the system. The call can only
be used by a privileged user-mode server, and is used,
for example, to restrict the I/O ports that can be used by
individual drivers. Other resources that can be restricted
are discussed in Sec. 5.

In addition to the new calls listed above, another
dozen low-level kernel calls exist, some carried over un-
modified from the base system and some modified for
the new system. They include process management,
memory management, copying data between processes,
device I/O and interrupt management, access to kernel
data structures, and clock services.

4.2. Disentangling Interrupt Handlers

When the drivers and the interrupt handlers were
in kernel mode, programmers were sometimes sloppy
about which functionality went where. There was a ten-
dency to put functionality that logically belongs in the
driver in the interrupt handler. For the printer driver, for
example, practically the entire logic of printing was in
the interrupt handler.

When the drivers were moved out of the kernel, the
issue of where the boundary between the driver and the
handler should be became acute, since it was no longer
possible to blithely slosh functionality back and forth.
In a much more consistent way than was previously
the case, interrupt handlers were stripped to their bare
essentials—catching interrupts and sending messages to
their respective drivers to unblock them. The logic of
what to do next was put back in the drivers because we
believe that interrupt handlers are so critical with re-
spect to time and reliability that they should perform
only those functions that simply cannot be done any-
where else.

Drivers can instruct the kernel to transform spe-
cific interrupts into notification messages using the new
SYS IRQCTL kernel call. After registration, drivers can
tell the kernel to enable and disable hardware interrupts.
The kernel catches all hardware interrupts with a generic
interrupt handler that looks up which drivers are asso-



ciated with the IRQ line, and sends a nonblocking no-
tification message to each of them. Drivers that control
multiple IRQ lines, such as our serial line driver, can
specify an identifier for each IRQ line that is returned
in the notification message. This way the driver can di-
rectly tell different interrupt requests apart.

4.3. Shared Code

In the old system, code was sometimes shared among
drivers, for example, the main loop. In the new sys-
tem this sharing is difficult because each driver is in a
private address space. We considered inventing a com-
plex mechanism for allowing shared code, but decided
this violated the entire spirit of keeping the code simple
and such a complex addition would have no doubt intro-
duced new bugs. Furthermore, given the limited amount
of sharing present (about 4300 bytes), it is entirely possi-
ble that the code to allow sharing would have cost more
memory than the redundant code itself.

While a technically small issue, it is an important
philosophical difference with existing systems. Perfor-
mance can be grafted on later but dependability cannot.
We strongly believe that what is needed is making sys-
tems more reliable and where simplicity and code reduc-
tion can be bought by wasting CPU time, memory, or
disk space, within reason, designers should do so. For
most programmers, wasting any resource just to have
simpler code is anathema. This attitude needs to be up-
graded.

Emphasizing simplicity and reliability is even true
for consumer appliances that are under tight price con-
straints because the cost of a product recall to fix buggy
code will dwarf the pennies saved by shaving off a few
kilobytes of ROM.

4.4. Testing the Drivers

Operationally, after the dependencies were duly
noted by compiling each driver in its own directory, the
drivers were put back into the kernel. Then the problems
were solved one by one as described above, for exam-
ple, by replacing dependencies with kernel calls one at a
time. By keeping each driver in the kernel until the last
of its problems was solved, it was possible to maintain a
working system during the process of removing the de-
pendencies. When a driver was finally fully independent
of the kernel, only then was it moved to user mode and
the process repeated with the next driver. In theory, any
driver could be easily reinserted into the kernel.

With these changes, it was possible to successfully
move drivers for the hard disk, floppy disk, printer, key-
board, display, serial line, RAM disk, and various fast

Ethernet boards to user mode. Work is currently in
progress to develop new user-space drivers, including a
driver for gigabit Ethernet, from scratch. All in all, we
believe MINIX 3 provides a complete set of user-mode
drivers, demonstrating that it is possible to build a fully
compartmentalized system that is useful for real tasks.

It is worth noting that it is much easier to develop,
test, and debug user-mode drivers than kernel-mode
drivers as they are just ordinary user programs [6]. For
example, drivers can be modified and tested without a
reboot, which speeds up the debug cycle considerably.

5. Other System Improvements

Moving the drivers to user mode is the most impor-
tant change we made, but there were also a few other
changes to the operating system that are worth mention-
ing and may be applicable to other systems.

5.1. Improved IPC

While synchronous message passing using fixed-size
messages is simple, fast, and requires very little code,it
does have a downside—one that is increasingly appar-
ent as more servers and drivers migrate to user mode.
The problem is that if a user-mode process does a send
but no subsequent receive, the receiver (which in some
cases can be the kernel itself or the clock driver) will
block when it tries to send a reply. This is unacceptable.
Also, the proliferation of parts of the system in user
mode makes it necessary to protect these processes from
unexpected messages from other processes that have no
business communicating with them at all.

To solve these problems, three additions were made
to the IPC mechanism:

1. Possible IPC target were highly restricted.
2. In most situations, a rendezvous is enforced.
3. Nonblocking, asynchronous IPC was added.

First, each process has been given a bitmap telling
which processes it may send to. The allowed receivers
may include the drivers, the servers, the kernel, and
users, all of whom are lumped together so a process can
either send to users or it cannot. No distinction is made
between user process i and user process j.

Second, with few exceptions, drivers and servers
are required to use rendezvous message passing, which
combines sending and receiving in one call. The caller
will be blocked until the entire operation completes. En-
forcing this rule eliminates the situation of a driver send-
ing the kernel a message and not doing a receive to ac-
cept the reply, thus hanging the kernel.



Third, for those few cases where a server or driver
cannot afford to block if the receiver is busy, a non-
blocking option has been added. For example, a driver
that cannot directly deliver the requested data to the file
server can send a preliminary reply, and later wake up
the file server using a nonblocking notification.

5.2. Restriction Policies

While putting drivers in user space prevents them
from using privileged CPU instructions, such as I/O,
the use of other resources, such as kernel calls, is not
automatically restricted. Without further measures, a
malfunctioning user-mode driver could still cause sub-
stantial damage. Therefore, we have carefully restricted
the privileges of each server and driver according to the
principle of least authority [14].

Examples of privileges that can be restricted for each
server and driver in our system include the user ID and
group ID to control the use of POSIX system calls, IPC
primitives that can be used, who can request services
from whom, individual kernel calls, memory access,
IRQ lines controlled, and more. In addition, each driver
can be restricted to a range of I/O ports, with attempts to
access other ports refused.

These protection mechanisms are implemented by
means of bitmaps that are statically declared as part of
the process table. Each driver and server was given its
own bitmap with possibly distinct privileges. This is
space efficient, prevents resource exhaustion, and allows
for fast permission checks since only simple bit opera-
tions are required.

5.3. Run-Time Configuration

Since our servers and drivers are normal user pro-
cesses, we can control and manage them like ordinary
applications. For example, we can start and stop de-
vice drivers on the fly. A special server, called the rein-
carnation server, is used to coordinate this procedure; it
manages all servers and drivers in the system. The rein-
carnation server is also the only process that can use the
SYS PRIVCTL kernel call to control process privileges.
Whenever a new server or driver is started, the reincar-
nation server assigns its restriction policy.

Another important benefit is that failures in servers
and drivers can be easier detected, much like we can de-
tect a crashing user process, and potentially recovered.
Since drivers are now properly isolated, failures can no
longer affect the entire system. The reincarnation server
can detect defects and in some cases can recover the sys-
tem on the fly [7].

6. Performance Optimizations

Performance measurements comparing MINIX 2 and
MINIX 3 show that the average overhead introduced by
our changes is limited to 5–10% [8]. While user-mode
drivers introduce a performance hit, the overhead we
measured is also due to other changes, such as stricter
checks on all IPC. However, if performance is crucial,
there are other areas where gains are possible. In the
following subsections we will discuss some of them.

6.1. File System Block Size

One optimization is increasing the block size. It is
well known that large blocks amortize the costs of a
(slow) disk seek over more bytes. The disadvantage of
large blocks is the disk space wasted by internal frag-
mentation in the last block of a file. However, the real
loss depends on the file size distribution [17]. If most
files are small, this effect is deadly; if most are large, the
waste is acceptable.

We have experimented with different block sizes in
MINIX 3 [8]. In one experiment, we changed the disk
block size from 1 KB to 8 KB, reduced the number of
blocks in the file system buffer cache by 8 (so it contains
the same number of MB) and called the old and new
system MINIX 3.0.0 and MINIX 3.0.1, respectively. We
then ran tests writing a file in different size units ranging
from 1 KB to 64 MB. The results are shown in Fig. 3.
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The curve for MINIX 3.0.1 exhibits four performance
regimes. For sizes from 1 KB to 8 KB, write times de-
crease as the transfer size increases since there are fewer
calls to the kernel for copying data and each kernel call
adds overhead. For sizes from 8 KB to 512 KB, the per-
formance is constant and almost three times as good as
MINIX 2.0.4 with its 1-KB blocks. At 1 MB, the data
no longer fits in the CPU’s level 2 cache, so there is a
substantial increase in write time because the file server
is no longer being fed from the L2 cache. This effect
is present in all versions of MINIX , but is more notice-
able here due to the higher throughput of MINIX 3.0.1,
which makes the slower memory accesses a larger per-
centage of the total execution time. At 16 MB, the 12-
MB file server cache is exceeded and actual disk I/O
occurs, with MINIX 3.0.1 outperforming MINIX 2.0.4
by about 7%, despite its use of user-mode drivers. Be-
tween the effects of the CPU’s L2 cache, the file system
cache, and the disk controller’s track-at-a-time cache, it
is difficult to interpret the measurements, but we believe
Fig. 3 gives an impression of what is happening. In any
case, the point here is a hit of 8% due to the user-mode
drivers can be won back by adjusting other parameters,
such as the block size.

6.2. Use of the RAM Disk

As another example, MINIX 3 can be configured to
operate with the root device (which holds /bin, /lib, and
other top-level directories) on the RAM disk. With 16-
MB devoted to the RAM disk, the system is extremely
responsive, since all the standard programs (shell utili-
ties, compilers, etc.) load instantly. MINIX 3 also has
a standard LRU file system buffer cache, but this tends
to be full of data rather than programs. As mentioned
above, the normal configuration of MINIX 3 in a devel-
opment environment is to keep the entire source tree on
the RAM disk, in which case a full system build takes
about 5 seconds. Despite the use of a 16-MB RAM
disk that must be copied from the hard disk at boot time,
MINIX 3 boots in less than 10 seconds.

6.3. Future Optimizations

One thing that we have learned from our research is
that with nearly all of the system outside the kernel, the
precise interface between the user-mode servers and the
kernel is very important. The aim has to be to reduce the
number of kernel calls made.

For example, one area where we did it right was hav-
ing a kernel call to read or write a vector of I/O ports in a
single kernel call, thus eliminating unnecessary context
switches. An area where we did it wrong was having

the call from the file server to the kernel to move data
from its cache to the caller’s address space not use the
same principle. If a process asks for n blocks worth of
data, the file server should give the kernel a list of blocks
and say: “Move all of these.” Currently, the file server
makes a separate kernel call for each block.

Although we have not looked carefully yet, we sus-
pect that there are other trade-offs to be made that
win back some performance. For example, the base
system, MINIX 2, was never optimized for perfor-
mance. Instead, the source code was setup to be
well-structured and readable, even if better—but more
complex—algorithms were available. The same holds
for MINIX 3. While the system probably can be opti-
mized in various ways to boost its performance, we are
careful not to introduce unnecessary complexity.

7. Qualitative Dependability Evaluation

The evaluation criterion that we used is that in our
system, no bug, no matter how bad, in a driver, should
crash the computer, in exactly the same way that no bug
in, say, a browser should crash the computer. The worst
a bug in, say, the printer driver should be able to do is
stop printing, print garbage, or hang the printer. It also
should be possible to bring up a new printer driver with-
out rebooting the operating system.

We believe that we have succeeded in designing and
implementing a system that fullfills these goals, and that
this system improves dependability over other operating
systems in three important ways:

1. It reduces the number of fatal errors.
2. It limits the consequences of bugs.
3. It can recover from common failures.

We will now explain why. We will also compare
how certain bugs affect MINIX 3 versus how they
affect monolithic systems such as Windows, Linux, and
FreeBSD.

7.1. Eliminating Fatal Errors

Our first line of defense is a very small kernel. We
have been very strict and moved every driver (except for
the clock driver) to user space. We could have made all
kinds of exceptions for performance reasons, but have
chosen for the best design from a dependability perspec-
tive, which is an important philosophical difference with
existing systems.

It is well understood that more code means more
bugs, so having a small kernel means fewer (potentially
fatal) kernel bugs. Using an estimate of 10 bugs per



1000 LoC, (also see Sec. 1.1), there are less than 50 bugs
in the kernel. With under 4000 lines of executable code
(LoC) the size of our kernel is much smaller than most
other microkernels. For example, L4 [11] contains over
10,000 LoC. While this difference is partly due to differ-
ences in functionality, we explicitly strive for simplicity.
A small and simple kernel means the people can actually
understand its full working, which also helps to get the
implementation correct over time.

In contrast, a monolithic system such as Linux with
2.5 million lines of executable code in the kernel is
likely to have at least 10 x 2500 = 25,000 bugs. For
Windows XP, which has about 5 million lines of ker-
nel code, the problem is twice as bad. Moreover, with
multimillion-line systems, no person will ever read the
complete code and fully understand its working, which
can lead to servers and drivers interacting in poorly un-
derstood ways.

7.2. Reducing Bug Power

Another dependability improvement comes from the
fact that we have placed the majority of the operating
system code in isolated user-mode processes. While the
total amount of code—and thus the number of bugs—
has not changed, bugs are tamed, because when a bug is
triggered, the effects will be less devastating by convert-
ing it from a kernel-mode bug to a user-mode bug.

All servers and drivers are normal user processes,
each with its own address space protected by the MMU
hardware and completely disjoint from the address
spaces of the kernel and other servers, drivers, and user
processes. In addition, we have tightly restricted the
powers of each server and driver to an absolute mini-
mum, as discussed in Sec. 5.2.

These points are crucial to the dependability as it pre-
vents faults in one server or driver from spreading to a
different one, in exactly the same way that a bug in a
compilation going on in one process cannot affect what
a browser in a different process is doing. For example,
a user-mode sound driver that tries to dereference a bad
pointer is killed by the process server, causing the sound
to stop, but leaving the rest of the system unaffected.
An infinite loop in a driver is also detected and sim-
ply causes the offending process’ priority to be lowered,
again affecting only a single I/O device.

In contrast, consider a bug in a kernel-mode sound
driver that inadvertently overwrites the stacked return
address of its procedure and then makes a wild jump
when it returns. It might land on the memory manage-
ment code and start corrupting key data structures such
as the page tables. In general, monolithic systems tend
to collapse when a bug is triggered.

7.3. Recovering from Failures

As described in Sec. 5.3, our new operating system
design has potential to recover from many driver failures
by simply restarting the driver. We can currently deal
with transient failures, such as exceptions caused by rare
hardware timing or unexpected boundary cases. Idem-
potent I/O can simply be retried by the file server with-
out affecting applications. Some of the simpler servers
can be recovered as well, but a crash of a core server is
usually fatal because too much state is lost.

The defect detection mechanisms and recovery pro-
cedure are outside the scope of this paper, but are pub-
lished elsewhere [7]. What is important, however, is
that failures can often be repaired by restarting the failed
component rather than rebooting the computer.

8. Conclusions

The primary achievement of the work reported here
is that we have actually built a highly dependable, open-
source, POSIX-conformant, multiserver operating sys-
tem, MINIX 3, that can be freely downloaded for in-
spection. The fully modular structure of our system is
shown in Fig. 1. We have discussed the implementation
process and the resulting design in detail and evaluated
its dependability and performance.

Our system is based on a microkernel whose com-
plete source is under 4000 lines of executable code. This
code represents the total amount of code that runs in
kernel mode. To the best of our knowledge, this is by
far the smallest microkernel in existence that supports a
POSIX-conformant multiserver operating system in user
mode. It is also the only one that has each server and
each device driver running as a separate user-mode pro-
cess, with many encapsulation facilities, and the ability
to withstand and often recover from failures that nor-
mally would be fatal.

We make no claim that we can catch every bug, but
we greatly improve the operating system’s dependability
by structurally eliminating many different types of fail-
ures. A small and understandable kernel means fewer
fatal bugs and thus fewer crashes. Furthermore, while
shifting code to user space does not eliminate bugs,
it makes the consequences of failures less devastating
since they are encapsulated in highly restricted user-
mode processes. Moreover, most servers and all device
drivers of the operating system are monitored and often
can be automatically revived if a problem is detected.

Concluding, we have shown how we moved device
drivers to user space and minimized the amount of code
that runs in kernel mode in order to improve operating
system dependability.



9. Availability

The system is called MINIX 3 because we started
with MINIX 2 as a base and then modified it very heav-
ily. It is free, open-source software, available via the
Internet. You can download MINIX 3 from the of-
ficial homepage at: http://www.minix3.org/, which also
contains the source code, documentation, news, con-
tributed software packages, and more. Over 75,000
people have downloaded the CD-ROM image in the
past few months, resulting in a large and growing user
community that communicates using the USENET new-
group comp.os.minix. MINIX 3 is actively being devel-
oped, and your help and feedback are much appreciated.
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