“REINCARNATION OF
DEAD DEVICE DRIVERS”

Paper Proposal

1% EuroSys Authoring Workshop
April 2006 — Leuven, Belgium

Jorrit N. Herder
Dept. of Computer Science
Vrije Universiteit Amsterdam

BETTER TITLE:

“TOWARDS A FAULT-RESILIENT
OPERATING SYSTEM”

Fault resilience: ability to quickly recover from a failure

Sec. 1: INTRODUCTION

 Problem Statement

— Bug-induced failures in critical OS components are inevitable
* (etting all servers and drivers correct (or fault-resilient) is not practical
— A single failure is potentially fatal in a commodity systems

* Reboot is not always possible or wanted

e Sec. 1.1: Contribution

— Therefore, we have built a better OS that is fault resilient

e Approach

— Compartmentalize the OS to enable recovery

— Automatically detect and repair defects

ARCHITECTURE OF A FAULT-RESILIENT OS

4 * Reincarnation Server
Q” - Manage drivers
: — Monitor system

— Repair defects

Lsarspace

e Data Store

— Publish configuration

e |3

— Backup state

d
Ll
=
10
1]
=

Kernel space

=il

PAPER OUTLINE

Sec. 1: Introduction (done)
Sec. 2: Related work

Sec. 3: Fault isolation

Sec. 4: Defect detection
Sec. 5: Recovery procedure

Sec. 6: Examples and limitations

Sec. 7: Dependability evaluation
Sec. 8: Performance

Sec. 9: Discussion

Sec. 10: Conclusions

Sec. 11: Acknowledgements
Sec. 12: Availability

Sec. 2: RELATED WORK IN FAULT RESILIENCE

* Our work differs significantly from other approaches:

— Software-based isolation, interposition, and recovery of in-kernel drivers
* Kernel mode limits isolation and manually written wrappers required
— Run device drivers in dedicated user-mode virtual machines
* More complex resource and configuration management
— Minimal kernel designs running drivers in single-server OS
* Still single point of failure and recovery is not possible
- MMU-protected user-mode drivers without recovery mechanisms
* New and more effective recovery mechanisms are possible
— Language-based protection and formal code verification

 Complementary to our approach

Sec. 3: FAULT ISOLATION

* Limit consequences of faults to enable recovery

 All servers and drivers can fail independently

— Servers and drivers fully compartmentalized in user space

— Private address spaces protected by MMU

» Copies to/from applications require explicit permission
* Protection against DMA corruption requires 1/0 MMU

— Privileges of each process reduced according to POLA

* Unprivileged user and group ID
* |[PC primitives, possible IPC destinations, kernel calls
* |/O ports and IRQ lines allowed

Sec. 4: DEFECT DETECTION

e System's well-being is constantly monitored

— RS periodically checks drivers status using nonblocking IPC

* Queried driver must respond within next period

* Nonblocking notification messages prevent clogging the system
— RS immediately receives alert (SIGCHLD) from PM upon driver exit

* RS is parent of all servers and drivers

e Sec. 4.1: Fault model
— Crashes, panics, or unexpected exits
— Attack failures such as ping of death

— Byzantine or logical failures are excluded

Sec. 5: RECOVERY PROCEDURE (1/3)

* Fault-tolerant systems use redundancy to overcome failures

* QOur fault-resilient design tries to automatically repair defects

(1) Malfunctioning component is identified
(2) Associated policy script is run

(3) Component can be replaced with a fresh copy

* How to recover lost state?
* How to deal with dependant components?

Sec. 5: RECOVERY PROCEDURE (2/3)

* Sec. 5.1: Policy scripts

— Control recovery procedure

— Full flexibility, e.g.:

* Backup core dump and log error message
* Send e-mail to remote administrator
* Restart failed components

e Sec. 5.2: Restarting dead drivers
— Full restart through VFS
— Lightweight execution by RS to bypass VFS

* Disk drivers shadowed in RAM to allow recovery

Sec. 5: RECOVERY PROCEDURE (3/3)

* Sec. 5.3: Recovering state

— Drivers mostly stateless; server-level does reinitialization
— Some state can be privately stored at DS for local recovery

— Restarting servers is problematic as (too) much state is lost

e Sec. 5.4: Dependant components

— RS publishes changes in system configuration at DS
— IPC requests can fail, e.g., VFS request to driver

— Errors are pushed up:

* Recovery procedure starts at server level
* Errors pushed to application level when recovery is not possible

Sec. 6: EXAMPLES AND LIMITATIONS

* Focus in on device drivers (worst problem)

— Sec. 6.1: Ethernet driver recovery
- Sec. 6.2: Character driver recovery

— Sec. 6.3: Disk driver recovery

* Sec. 6.4: Recovery of failed servers

- Sometimes possible, depending on how much state is lost

* Anything from user-supported recovery to transparent recovery

* Sec. 6.5: Limitations of our system

— Failures in the core servers are fatal

Sec. 6.1: ETHERNET DRIVER RECOVERY

¥ User * Transparent recovery

1 e Hidden in network server
@ * Due to TCP/IP protocol

e
VFS

% ‘ Sewer\ * Recovery steps taken

20| T T 1) RS replaces dead driver

&

3 2) RS publishes update

EIhEE,lltek.:'é E'__InteIF’m_"; 3Com
i Drver ¢ { Drver | | Driver

4) INET reinitializes driver

(1)
(2)
________________ PSRN N (3) DS informs INET server
(4)
(5)

5) INET resends lost data

Sec. 6.2: CHARACTER DRIVER RECOVERY

Llser space

3 cd bin
jiter failed
i

* No transparent recovery

— Recovery at application level

— Error pushed back to user

 Data stream interrupted

* Recovery steps taken

(1) RS replaces dead driver
(2
(3
(4) VFS returns I/O error to app

RS publishes update

DS informs VFS server

)
)
)
)

Sec. 6.3: BLOCK DRIVER RECOVERY (work-in-progress)

¥ User * Transparent recovery

1 ~ Hidden in file server (FS)
@ @ * Keep I/O requests pending
% ‘;‘éff;\ * Recovery steps taken
7 A (1) RS replaces dead driver
% (2) RS publishes update
__ (3) DS informs FS server
Sn}ﬁgf‘ [Eirﬁﬂ F[:'.ﬂﬁﬁ? 5 (4) FS retries pending request
¥

Sec. 7: DEPENDABILITY EVALUTION

* Sec. 7.1: Fault-injection experiments
— To be done

e Sec. 7.2: Recovery-overhead measurements

— Ethernet driver recovery:

 Simulated repeated crashes with different time intervals
* Transparent recovery was succeeded in all cases
* Mean recovery time is 0.36 sec due to TCP retransmission timeout

— 25% overhead with 1 crash every 1 sec
— 8% overhead with 1 crash every 4 sec
— 1% overhead with 1 crash every 25 sec
— no overhead with no crashes

Sec. 8: PERFORMANCE

e Performance measurements

— Time from multiboot monitor to login is under 5 sec.
— The system can do a full build of itself within 4 sec.
— Run times for typical applications: 6% overhead

— File system and disk 1/0 performance: 9% overhead

— Networking performance: Ethernet at full speed
* Code size statistics

— Kernel is 3800 LOC; rest of the OS is in user space
— Minimal POSIX-conformant system is 18,000 LOC

Sec. 9: DISCUSSION

e | essons learned

— Recovering lost state is one of the key problems

— Integrated approach required for optimal results

* E.g., servers and applications need to do recovery as well

* General applicability

— User-mode drivers on Linux have been successtully tested
— Qur techniques can be applied to further improve dependability

— Performance overhead is not a real issue

Sec. 10: CONCLUSIONS

* We have built a fault-resilient OS

— Deals with an important problem, namely device driver failures

— Defects are no longer fatal and transparent recovery is often possible
* We have provided a concrete evaluation

— Fault-injection experiments and crash simulation prove viability

— Performance overhead of 5-10% compared to base system
* We have shown practicality of our approach

— QOur techniques can be applied to of other systems, such as Linux

— Limited costs make real-world adoption attractive

Sec. 11: ACKNOWLEDGEMENTS

e John Wilkes (shepherd)
e The MINIX 3 team

— Ben Gras
— Philip Homburg
— Herbert Bos

— Andy Tanenbaum

TIME FOR QUESTIONS & DISCUSSION

* Sec. 12: Availability
— On the spot: MINIX 3.1.2 CD-ROM

— Web: www.minix3.org

— News: comp.0s.minix

— E-mail: jnherder@cs.vu.nl

