RELIABLE OPERATING SYSTEMS

Research Summary

1st EuroSys Doctoral Workshop
October 23, 2005 – Brighton, UK

Jorrit N. Herder
Dept. of Computer Science
Vrije Universiteit Amsterdam
PERCEIVED PROBLEMS

• **Weak security and reliability**
 - Computer crashes
 - Digital pests (viruses, worms, etc.)

• **Complexity**
 - Hard to maintain and configure
 - Too large for embedded and mobile computing
TYPICAL OS STRUCTURES

(a) Monolithic kernel

(b) Multiserver Hybrid kernel

(c) Single-server Minimal kernel
INHERENT PROPERTIES

- **Fundamental design flaws in monolithic kernels**
 - All code runs at highest privilege level (breaches POLA)
 - No proper fault isolation (any bug can be fatal)
 - Huge amount of code in kernel (1-20 bugs per 1000 LOC)
 - Untrusted, 3rd party code in kernel (70% driver bugs)
 - Hard to maintain and configure (limited portability)

- **Lack of modularity causes problems**
 - Proper OS design can solve above problems
DESIGN OF A RELIABLE OS: MINIX 3

- Recent work
 - Design and implementation of the MINIX 3 operating system
 - Transformation into a minimal kernel design (< 3800 LOC)
 - All servers and drivers run in a separate user-mode process

- Current research
 - Additional reliability properties
MINIX 3: ACHIEVING RELIABILITY

● **Design principles**
 - Simplicity
 - Modularity
 - Least authorization
 - Fault tolerance

● **How this helps**
 - Number of fatal bugs is reduced
 - Damage that bugs can do is limited
 - Recovery from common failures is possible
MINIX 3: STRUCTURAL MEASURES

- Stable minimal kernel (< 3800 LOC) reduces # fatal bugs
- Isolated, user-mode processes in private address space
- Reliable IPC: small, fixed-size message passing
- Deadlock avoidance and deadlock detection
- Buffer overruns prevented and damage limited
- Bad pointers in OS are caught with MMU hardware
- Scheduler detects and tames infinite loops in OS
- Monitor and restart malfunctioning OS services
MINIX 3: PER-PROCESS POLICIES

- IPC only possible if type and target are allowed
- Only exported list of kernel calls can be called
- Access to individual I/O ports can be restricted
- Access to remote memory, e.g., video RAM
- Scheduling priority and quantum size
- Period for reincarnation server status checks
MINIX 3: REINCARNATION SERVER

- **Start servers and drivers**
 1. Encapsulate in new process
 2. Assign only needed privileges
 3. Start in controlled environment

- **Monitor services**
 a. Immediate crash detection
 b. Periodically check status

- **Fix problems**
 - Kill and restart fresh copy
SUMMARY & CONCLUSION

- Different OS structures and properties
 - Fundamental problems with monolithic systems
 - Inherent benefits of modular systems

- OS reliability *is* possible: **MINIX 3**
 - Multiserver OS with minimal kernel (< 3800 LOC)
 - Improvements over other operating systems
 - We reduce the number of fatal bugs
 - We limit the damage bugs can do
 - We can recover from common failures
QUESTIONS?

• The MINIX 3 team
 - Jorrit Herder
 - Ben Gras
 - Philip Homburg
 - Herbert Bos
 - Andy Tanenbaum

• More information
 - Web: www.minix3.org
 - As of tomorrow!
 - News: comp.os.minix
 - Mail: jnherder@cs.vu.nl
PERFORMANCE ISSUES

• **Historical fear: modularity incurs overhead**
 - Communication overhead
 - Copying of data

• **Times have changed ...**
 - New insights reduced performance penalty (only 5-10%)
 - Absolute performance penalty is minimal these days
 - *Users gladly sacrifice some performance for reliability*
MINIX 3: SOME NUMBERS

• Performance measurements
 – Time from multiboot monitor to login is under 5 sec.
 – The system can do a full build of itself within 4 sec.
 – Run times for typical applications: 6% overhead
 – File system and disk I/O performance: 9% overhead
 – Networking performance: Ethernet at full speed

• Code size statistics
 – Kernel is 3800 LOC; rest of the OS is in user space
 – Minimal POSIX-conformant system is 18,000 LOC