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Abstract

Although several UNIX techniques for sharing mem-
ory exist, such as System V IPC Shared Memory and
POSIX Shared Memory, these schemes are not suitable
for use internal to the operating system and cannot protect
against all threats posed by memory sharing. Therefore,
we propose a novel, flexible memory-protection scheme
for UNIX-like systems based on fine-grained, delegatable
memory grants. We have already applied our ideas to safe
memory copies and are currently investigating extensions
for direct memory access (DMA) and memory mapping.
Although memory grants originated in the MINIX 3 oper-
ating system, they is generally applicable and can be easily
ported to other platforms.

1 Introduction

This work presents a novel, flexible memory-protection
scheme for UNIX-like systems based on memory grants.
A memory grant is a mechanism for sharing memory, sim-
ilar to a capability in that it can be transferred to a an-
other party in order to grant fine-grained access. Once a
memory grant has been received, the access rights may be
delegated to third parties at the grantee’s discretion. The
proposed structure also supports immediate revocation of
memory grants at the grantor’s discretion.

We propose a generalized memory-protection model
based on memory grants. Grants originate from the
MINIX 3 operating system where they were used to en-
able safe memory copies from and to device drivers [2].
On top of this, we propose two new extensions that bring
memory grant-based protection for memory mappings and
direct memory access (DMA).

Memory grants are not tied to device drivers or
MINIX 3, but, in fact, represent a generally applicable
model. For example, memory grants also could be used to
achieve fine-grained protection for ordinary applications.
In addition, memory grants could be ported to other oper-
ating systems including Linux and Windows.

2 Contribution of Grants

While several memory-sharing schemes exist, none of the
existing models provides the same flexibility and degree of
protection as memory grants do. Current UNIX techniques
such as System V IPC and POSIX Shared Memory have
several problems that are addressed by memory grants:

• Protection is based on group ID and/or user ID and
cannot grant access to individual processes.
• Course granularity based on page size, even if only

small data structures are to be shared.
• Delegation of rights to access a given piece of mem-

ory is not supported.
• Access rights are not automatically invalidated if a

process sharing memory crashes.
• Not suitable for low-level drivers that cannot inter-

face with the high-level POSIX servers.
• Cannot be used for safe direct memory access (DMA)

because I/O-MMU integration is lacking.

In addition, a number of more specialized approaches
exists, including seL4’s frame capabilities [1]. Although
several parallels can be drawn in terms of functionality
offered, the naming scheme, usage, and implementation
techniques are different from memory grants.

3 Structure of Memory Grants

The structure of a memory grant is given in Fig. 1. The
flags field indicates whether the grant is in use, the grant’s
type, and the kind of access allowed. A direct grant means
that a process A grants another process B limited access
to a memory area in its own address space. The receiver
of a direct grant, say, B, is allowed to transfer its access
rights to a third process C by means of an indirect grant.
The memory area covered by an indirect grant is always
relative to the previous grant, which can either be a direct
grant or indirect grant. Finally, the R/W flags define the
access type that is granted: read, write or both.
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Figure 1: Structure of memory grants and grant flags.

A process that wants to grant another process access
to its address space must create a grant table to store the
memory grants. Memory grants can be made available to
another process by sending the grant’s index into the ta-
ble, known as a grant ID. This can be done using the sys-
tem’s normal (platform-dependent) IPC mechanisms. The
grant is uniquely identified by the process identifier of the
grantor and grant ID: (ID, #). Delegation of memory grants
is supported via indirect and results in a hierarchical struc-
ture as shown in Fig. 2. Since indirect grants contain the
grantor’s identifier, the kernel can follow to chain back to
the root to determine the precise access rights.
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Figure 2: Using memory grants. A directly grants B access to
part of its memory; B derives indirect grants for C.

4 Memory-grant Operations

When a process wants to access a memory area it has
been granted, it needs to call the kernel, which verifies the
grant’s validity and performs the operation requested. It is
important to realize that only the recipient of a grant—the
grantee—can use the grant to perform grant operations.
Forwarding a grant is useless since the grantee’s identi-
fier is listed in the grant. In addition, if indirect grants are
used, it is not possible to grant additional powers, since
each request is checked against the minimal access rights
found in the path to the direct grant. Any violations will
be detected by the kernel when a privileged operation is
requested.

Although we are still extending the memory grant
model and have not yet finalized the API, we envision
memory-grant operations in the following categories:

• Grant table management
• Grant creation and revocation
• Grant permission lookup
• Memory copying
• Memory mapping
• Direct memory access

These operations will be implemented in a system library.
The library code performs sanity checks on the grant table,
grant ID and memory grant and then determines which op-
eration is requested.

5 Performance Considerations

Memory grants do not come with an inherent performance
overhead. Most grant table management, such as grant
creation and revocation, can be done local to the caller.
Privileged operations will have to be mediated by the ker-
nel in order to enforce the protection, but setting up mem-
ory mappings and allowing DMA access can be done once
during initialization and are not in the critical path. While
this is the case for memory copies, the costs are limited to
a single context switch, since the kernel can directly ac-
cess all physical memory to read from the grant tables; no
context switching is needed to follow the chain. More-
over, resolving a memory grant will be limited to one or
two table lookups in typical usage scenarios.

6 Work in Progress

A prototype of the full memory-grant model is currently
a work in progress. Safe memory copies could be taken
over from our previous work [2], but memory mapping
and direct memory are still to be done. Since these opera-
tions separate the time of checking from the time when the
memory access takes place, several problems with respect
to grant revocation need to be solved. We have outlined a
possible solution and intend to implement it in the MINIX 3
operating system.
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System V IPC and POSIX Shared Memory 
lack flexibility and offer limited memory 
protection. Some shortcomings include:

- Coarse-grained, page-based protection
- Protection based on UID not process
- Access rights cannot be delegated
- No seamless integration for safe DMA

Process that wants to share memory 
creates a grant table, builds a memory
grant, and sends index to other party: 
(proc ID, grant ID) identifies the grant.

Recipient of a memory grant must call 
the kernel in order to perform privileged 
grant operations. Kernel validates the 
access rights and performs the request.

Definition of API and implementation
of operations are a work in progress:

- Grant creation and revocation
- Memory copying
- Memory mapping
- Direct memory access (DMA)
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Grant Tables and Delegation
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Take-home Messages

- Memory grants are a novel alternative
  to existing memory protection models.
- Precise per-proces access control for 
  byte-granularity memory regions. 
- Used in MINIX 3 to protect against 
  memory corruption by buggy drivers.


