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1. INTRODUCTION

Different kinds of people use computers now than sev-
eral decades ago, but operating systems have not fully
kept pace with this change. It is true that we have point-
and-click GUIs now instead of command line interfaces,
but the expectation of the average user is different from
what it used to be, because the user is different. Thirty
or 40 years ago, when operating systems began to so-
lidify into their current form, almost all computer users
were programmers, scientists, engineers, or similar pro-
fessionals doing heavy-duty computation, and they cared
a great deal about speed. Few teenagers and even fewer
grandmothers spent hours a day behind their terminal.
Early users expected the computer to crash often; reboots
came as naturally as waiting for the neighborhood TV re-
pairman to come replace the picture tube on their home
TVs. All that has changed and operating systems need to
change with the times.

Modern computer users are from a broad cross-
section of society. Most are not very technical and do not
have a clue how to program their video recorder. They
do use electronic devices, however, such as televisions,
digital still cameras, camcorders, cell phones, MP3
players, stereos, and DVD players. Most of them have a
set of mental expectations that we call The TV model. Tt
goes like this:

1. You buy the device.
2. You turn it on.
3. It works perfectly for the next 10 years.

Most electronic devices fit this model well, the one
exception being the personal computer. In addition
to mind-numbing complexity (e.g., even networking
experts have trouble configuring a wireless base station,
despite the 500-page manual), they are prone to crashes
and blue screens of death, issues unheard of with other
electronic devices.  Other problems include viruses,
worms, spyware, and spam, but in this article we focus
on operating system problems.

Most modern computer users want their systems to
work all the time and never crash, ever. In engineering
terms, this requires a mean time to failure (MTTF) appre-
ciably longer than the expected lifetime of the computer.
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The average user virtually never complains that the com-
puter itself is too slow (e.g., it cannot update a spread-
sheet fast enough), although complaints about the speed
of the Web are common. Over time, the relationship be-
tween speed and reliability has reversed. Most users now
consider the reliability of the computer to be far more im-
portant than its speed, the reverse of 40 years ago.

Yet operating system reliability is still poor. To make
the research challenge more explicit, consider a device
driver that contains a fatal bug such as a store through
an invalid pointer or an infinite loop. In commodity op-
erating systems, when this bug is triggered, it crashes or
hangs the entire system because the buggy code is run-
ning in kernel mode. All user programs that were run-
ning at the time the bug struck are killed, all user work is
lost, and all FTP, Web, and e-mail transfers are abruptly
aborted. This is the situation we are trying to address.

Since faults in software are a fact of life, our ap-
proach to reliability is to anticipate failures and design
a self-repairing operating system. Studies have shown
that software contains about 6-16 bugs per 1000 lines of
code [3, 29, 30]; it is simply infeasible to get all code to be
correct. Therefore, we have designed MINIX 3 in such a
way that certain major faults are properly isolated, defects
are detected, and failing components can be replaced on
the fly, often transparent to applications and without user
intervention or loss of data or work. For example, in our
view, a bug in a minor driver, such as a printer driver,
should not crash the system.

To avoid any confusion, we are focused on consumer
machines (desktop, notebook, PDA, etc.) and possibly
embedded systems, but not on high-end servers, multi-
core chips, multiprocessors, and clusters. And within
that category, we are somewhat more interested in ordi-
nary computers used by nonprofessionals and also low-
end machines (such as found in Third World countries),
rather than large state-of-the-art powerhouses.

2. THE WHEEL OF REINCARNATION

It should be obvious to anyone well versed in computer
technology that the problem of system crashes is due to
the software, not the hardware. While considering pos-
sible solutions, we were quickly confronted with the is-
sue of how operating systems came to be unreliable. We



believe the answer goes back 40 years, when computers
were slow and performance was king. By building the op-
erating system as a single monolithic program that ran in
kernel mode, it could be made faster, and that was all that
counted back then.

Before getting into our revitalized operating system
design, we wish to point out that there are cycles in com-
puter science, just as there are in other areas. Some-
times designs that are popular fade out and come back
decades later, when the times (technology, applications,
users, etc.) have changed. Let us now look briefly at some
of these cycles as motivation for our research.

Decades ago, there was a battle between people who
believed programs should be compiled versus those who
believed they should be interpreted. Compiled programs
ran faster, but used more memory and were harder to de-
bug, since run-time errors were not caught by the inter-
preter. In the 1960s, compilation was the dominant mode.
For example, programs in FORTRAN, COBOL and PL/I
were generally compiled. In the 1970s, especially in
academia, the wheel turned, and UCSD Pascal became
popular. The P-compiler compiled programs from Pascal
to the assembly language of an imaginary stack machine
called P-code and then interpreted the P-code programs.
Although interpretation cost a factor of 10 on machines
1000x slower than current ones, few people complained;
the ease of porting programs (by just writing a new P-code
interpreter) and the interpreter’s help in debugging them
were worth the cost. Interpretation was in. During the
1980s, interpretation largely fell out of favor with the rise
of C, but then in the 1990s, Java brought back the 1970s
model of compilation to an intermediate language, JVM,
followed by interpretation of the JVM program. Interpre-
tation was in again, at least for some applications.

As a second example, consider virtual machines [33].
In the mid-1960s, a group of programmers at IBM’s
Cambridge (MA) research lab who were not happy with
the operating system on the IBM 360, wrote their own,
wholly unlike IBM’s. It consisted of two layers: a lower
layer called CP-67, which ran in kernel mode and created
the illusion of multiple, virtual, IBM 360 model 67s, and
an upper layer, which ran in user mode and consisted of
a simple single-user operating system, CMS, that ran on
each virtual machine. The idea of a virtual machine sys-
tem can thus be traced back 40 years. Although IBM has
supported VM/370 and its successors for decades, outside
the world of IBM mainframes, it was largely forgotten un-
til the advent of VMware, which debuted in 1999, more
than 30 years after CP-67 was up and running. Later, the
development of Xen [10] caused this old warhorse to sud-
denly become popular again.

Another example that is relevant to our work is
the use of software-based versus hardware-based pro-
tection in operating systems. In the early 1960s, Bur-
roughs produced a popular computer called the B5000

81

that was based on having all software written in a type-
safe language, ALGOL. Hardware protection to distin-
guish kernel-mode and user-mode components was not
needed because the language provided complete protec-
tion. Later, CPU protection rings and MMU hardware
were developed and unsafe languages, such as C, could be
used, because the hardware isolated processes. Recently
though, Microsoft Research has developed a new operat-
ing system, called Singularity [23], which does not rely
on an MMU for isolation. Instead, it once again largely
uses a type-safe language (Sing#) to achieve a dependable
computing platform.

Our point in presenting these examples is to demon-
strate that ideas come and go in computer science. What
is hot in one decade may become cold in the next, but hot
again one or two decades later. One should not be afraid
to pick up old ideas that are quite sound but have fallen
out of favor for one reason or another and reexamine them
in light of the current situation.

3. MICROKERNELS

Another idea that has come and gone is that of the mi-
crokernel [38]. In the mid-1980s, various research groups
produced operating system kernels that were very small,
including Amoeba [28], Chorus [5], Mach [1], and V [7].
Unlike the virtual machine systems such as CP-67, the
programming interface offered by the microkernel was
not a clone of the hardware, but featured processes and an
interprocess communication facility, similar to, but much
simpler than, modern operating systems. In most cases,
a complete operating system ran as a single process in
user mode on top of the microkernel. User processes ob-
tained operating system services by using the microkernel
to send messages to the user-mode operating system pro-
cess. One popular example was Berkeley UNIX running
on top of the CMU Mach microkernel.

To make a long story short, the performance of these
microkernels left something to be desired so they never
became mainstream, although Mac OS X is basically a
modified version of Mach with Berkeley UNIX running
on top of it, albeit in kernel mode [39].

After this historical digression, we get back to our
main story. When we set out to produce a new operat-
ing system that could be self-organizing, (in the sense of
automatically detecting and repairing its own faults) we
started with the premise that kernel bugs are usually fatal,
whereas user-mode bugs often are not, and began won-
dering if microkernels might be the answer. If we could
reduce the size of the kernel from 5 million lines of C/C++
(the approximate size of the Windows XP kernel) or 2.5
million lines of C (the size of the Linux kernel) to, say,
5000 lines of code, we reasoned that we could reduce the
number of kernel bugs by roughly three orders of magni-
tude, clearly a vast improvement.



Of course moving code to user space does not elim-
inate any bugs, but we thought by no longer running the
operating system as a giant user process and instead split-
ting it into many small, tightly restricted processes, each
with limited functionality, we could perhaps build a self-
repairing system in which (1) bug-induced damage could
not propagate and affect the entire system, and (2) faulty
components could be replaced on the fly, during system
operation, thus greatly improving reliability.

While we had to consider the performance, work in
the 1990s had already shown that the carefully engi-
neered L4 microkernel [27] running in kernel mode plus
L*Linux running as a giant user process got the perfor-
mance loss due to the extra context switches down to un-
der 5-10% [18]. The research challenge was thus not im-
proving the performance; we already knew that could be
done with careful design. The hard part was to split the
operating system into many user-space processes to pre-
vent problems from spreading and make the system self-
repairing, something that had not been done before.

The result, MINIX 3, is a microkernel-based multi-
server operating system that provides fault isolation and
can automatically recover from many failures. The archi-
tecture of MINIX 3, its self-repairing property, and the
most important reliability features are discussed in the
following sections.

4. THE ARCHITECTURE OF MINIX 3

The goal of our design was to produce an operating Sys-
tem far more reliable than current ones. Our approach is
to run all servers and drivers as independent user-mode
processes on top of a tiny, trusted microkernel. Each
component is tightly restricted to prevent problems from
spreading. Furthermore, the operating system’s well-
being is constantly monitored by a special server, called
the reincarnation server. If a defect is detected, the system
automatically attempts to (transparently) replace the mal-
functioning component, or if that is not possible, at least
to shut down gracefully. In other words, we have made
our system self-repairing, a key characteristic of a self-
organizing system. The architecture of MINIX 3 is shown
in Fig. 1.

To avoid having to rewrite large amounts of straight-
forward but otherwise boring code, such as interrupt han-
dlers and keyboard drivers, we started with MINIX 2,
which, although the device drivers ran inside the kernel,
was a reasonable starting place. This system was then
very heavily modified to become an essentially new sys-
tem. For lack of a better name, we just incremented the
counter and called it MINIX 3. However, just as Windows
3.11 and Windows XP bear a common first name but are
very different systems, so are MINIX 2 and MINIX 3.

We have intentionally kept the design simple by us-
ing straightforward techniques rather than complex tech-
niques aimed at optimizing resource usage. We would
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Figure 1: The architecture of the MINIX 3 multiserver operating
system. Although a logical layering of processes can be seen, all
processes are treated equally by the kernel.

rather waste a small amount of memory with a simple
algorithm than save memory and introduce bugs with a
complex algorithm. Of course, this strategy is a trade-
off between reliability and other demands such as perfor-
mance and scalability, but the problem, after all, is not a
shortage of resources; the problem is weak reliability due
to too many bugs in the code.

The microkernel of MINIX 3 is responsible for in-
terrupt handling, programming the CPU and MMU,
scheduling, interprocess communication, and kernel calls.
Clearly these are the things normal operating systems do,
but only the basic mechanisms. Policies, in contrast, are
part of the user-mode operating system servers. There is
no attempt to create the illusion of multiple copies or dis-
tinct partitions of the hardware as in VM/370, VMware,
Xen, or Exokernel [11].

Processes are essentially the same as in UNIX sys-
tems. They have private address spaces protected by
the MMU hardware, registers, and can hold many
resources—but a substantial part of the resources, includ-
ing file descriptors and signal masks, are now managed
by user-space servers. Although servers and drivers re-
quire more privileges than ordinary applications (such as
the ability to perform I/O), each process is treated equally
by the kernel. The novelty here is the fact that all servers
and drivers run as independent user-mode processes.

Processes can communicate with each other and with
the kernel by sending typed, fixed-length messages. Mes-
sage passing is synchronous using the rendezvous princi-
ple. If a process tries to receive a message and none has
been sent, it blocks. Likewise, a sender with no receiver
also blocks. When both sender and receiver are ready to
dance, the kernel copies the message from the sender’s
address space to the receiver’s. This scheme eliminates
all the complexity associated with buffer management, as
well as buffer overruns due to variable-sized messages.

When synchronous message passing is not adequate,
a notification mechanism is used. This scheme allows a
sender to notify a process that is not currently receiving
without blocking itself. The notification is stored as a bit



in a bitmap and the sender is allowed to continue. When
the target is ready to receive a message, the kernel creates
a message of type NOTIFICATION and passes it the notifi-
cation bitmap. Interrupt handlers use this mechanism to
avoid blocking themselves when notifying device drivers
that are busy at the time of the interrupt.

The kernel contains two processes to support the user-
mode parts of the operating system. One is the clock
driver, which is so intimately tied to scheduling that it
would be difficult and inefficient to put it in user space.
The other is the system task, which handles the approxi-
mately 35 kernel calls that authorized processes can make
to the kernel. These calls allow user-mode operating sys-
tem processes to perform actual I/O, copy blocks of data
from one address space to another, and similar low-level
functions. These kernel calls should not be confused with
POSIX system calls, which user processes can make and
which are discussed below. Although part of the kernel
space, both the clock driver and system tasks are sched-
uled like any other processes. Their memory maps just
happen to coincide with the kernel’s address space.

The next layer up consists of all device drivers except
the clock. These include drivers for the keyboard, mouse,
screen, disk, Ethernet, sound, etc. Each driver is a sep-
arate process and is scheduled when its turn has come.
It can send messages to other processes as well as make
kernel calls, for example, to read or write I/O ports. With
only a few exceptions, driver processes are normal user
processes prevented from touching anything outside their
own address space by the MMU hardware.

Above the driver layer is the server layer. These, too,
are ordinary processes. The file server is basically a 4500-
line C program that accepts requests from user programs
to open, read, write, and close files, and perform other
POSIX calls relating to files. A typical system call, say,
read, starts when a user process sends a fixed-length mes-
sage to the file server asking it to read from a previously
opened file some number of bytes. If the file server does
not have the requested data in its cache, it sends a fixed-
length message to the disk driver process asking the latter
to read the data into the file server’s buffer cache. Once
the data are in place, the file server makes a kernel call
asking the system task to copy it to the user. Data is
copied the same number of times as in all UNIX systems.
The only extra overhead here is four messages and two
extra context switches. As we will show in Sec. 7, send-
ing a message and doing a context switch takes about 500
nsec, so this overhead is really negligible. Even 10,000
system calls/sec would eat up less than 1% of the CPU.

Other servers that provide POSIX functionality in-
clude the process manager and the network server. The
process manager handles POSIX system calls such as fork
and generally manages memory allocation policy. It also
handles signals and some of the simple POSIX system
calls, such as getpid. While the kernel is responsible for
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low-level process management mechanisms, it is the pro-
cess manager that implements all policies.

The network server provides a complete TCP/IP stack
that supports BSD sockets. Performance measurements
have shown that fast Ethernet easily runs at full speed, and
initial tests show that we can also drive gigabit Ethernet
at full speed in user space, as discussed in Sec. 7.

5. SELF-REPAIRING PROPERTY

MINIX 3 includes two special servers, the reincarnation
server and the data store, that support automatic repair of
common failures. The reincarnation server manages all
servers and drivers and monitors the system’s well-being.
The data store provides a place to backup state and is used
by the reincarnation server to publish information about
the system’s configuration.

While a human user detects a driver crash when the
system freezes, the operating system needs different tech-
niques. The reincarnation server can detect component
crashes because it is the parent process of all the drivers
and servers. If one crashes, it is collected by the rein-
carnation server, the same way all UNIX systems allow
parent processes to collect children that have exited. In
addition, the reincarnation server can periodically send a
status request to selected drivers. If no reply is received
within the timeout interval, further action is taken.

Whenever a problem is detected, the reincarnation
server looks up the malfunctioning component’s policy
script that governs the recovery procedure. The script nor-
mally causes the failed component to be replaced with a
fresh copy, but it can also record the event in a log file,
move the core dump of the dead process to a special di-
rectory for subsequent debugging, or even send e-mail to
a remote system administrator. It is important to note that
while all this is happening, the system continues to run
normally and no processes are terminated.

The underlying assumption of MINIX 3’s self-
repairing property is that problems can be detected and
that restarting a component makes it possible to repair a
defect. The defects that MINIX 3 can repair include, for
example, transient failures and aging bugs. Transient fail-
ures are problems caused by specific configuration, such
as deadlocks or timing issues that are unlikely to hap-
pen. Aging bugs are implementation problems that cause
a component to fail over time, for example, when it runs
out of buffers due to memory leaks.

MINIX 3 is not designed to deal with malicious pro-
cesses that do not violate any rules nor with logical er-
rors of components that adhere to the specified system
behavior but fail to perform a request correctly. For ex-
ample, consider a printer driver that accepts a print job
and replies that it successfully handled the request, but in
fact prints garbage. Such bugs are virtually impossible
to catch in any system. It is up to the user to replace a
malfunctioning component in this case.



Recovery of some lost state after a component restart
and informing dependent processes of changes in the sys-
tem configuration is done through the data store. The data
store is a tiny database server that allows system compo-
nents to store and retrieve strings by name. For example,
after a driver crash and recovery, the file server can ask it
for the internal name of the new driver to allow the system
to transparently recover from driver failures. As another
example, the RAM disk driver stores the base address and
size of the physical memory taken by the RAM disk at the
data store. In the future, it might be possible to log incom-
ing driver IPC to allow transparent recovery of individual
driver calls, as in Nooks [36].

To provide transparent recovery to the user, an inte-
gral approach is required whereby the driver, server, and
applications may be involved. For example, after a driver
failure, the reincarnation server replaces the driver and in-
forms the file server or network server about this event to
initiate further recovery. If the server cannot recover, it
pushes the error up to the application level, which in turn
might retry the failed operation or warn the user.

Although in principle MINIX 3 can handle both server
and driver failures, our system is currently mainly de-
signed to reincarnate dead device drivers, since such fail-
ures are more common [8, 36].
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Figure 2: Recovery scenarios for device driver for block, char-
acter, and Ethernet devices. Errors are pushed up when they
cannot be handled at the current level.

Different recovery scenarios for different kinds of de-
vice drivers are shown in Fig. 2. Block device driver fail-
ures and Ethernet driver failures can be recovered trans-
parently by retrying the failed block or reinserting miss-
ing network packets, respectively. Character driver fail-
ures are pushed to the application level, because it is im-
possible to tell where the stream of data was interrupted.
Depending on the application and type of I/O application-
level recovery may or may not be possible. For example,
a print job can be restarted by the printer daemon, but a
failure while burning a CD-R is not recoverable.

As an example of how self-repairing works, consider
the crash of an Ethernet driver. The reincarnation server
will notice the failure and restart the dead driver. The rein-
carnation server publishes the new system configuration
at the data store, which notifies the network server of this
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event. Then the network server starts its recovery proce-
dure. It reinitializes the driver and when the TCP stream
is interrupted, it retransmits lost packets. In this case, the
use of a reliable transport protocol enables full recovery
transparent to the application level and without user in-
tervention. Sec. 7 shows how the recovery overhead is
limited to only a few percent even in the light of frequent
Ethernet driver crashes. For example, one simulated crash
every 4 seconds leads to performance degradation of just
8%, but the transfer successfully completes without even
bothering the user.

6. THE TOP 10 RELIABILITY FEATURES

MINIX 3 has many features that enhance its reliability
above that of conventional monolithic operating systems
where all the code is contained in a single binary program
running in kernel mode. Below we will briefly mention
the top 10 reliability features.

First, the amount of code that runs in kernel mode
has been kept to an absolute minimum, in our case, about
4000 lines of executable code—including the clock and
system task. When all the headers and comments are
included, the full kernel can be printed in under 100
pages. A single programmer can easily understand all of
it, whereas no one can fully understand all of the 2.5 mil-
lion lines of the Linux kernel or much larger Windows XP
kernel. It is tough to get a program bug free when no one
understands the whole thing, as changes in one part can
affect other parts.

Second, although moving code to user space does not
eliminate bugs, it greatly reduces the amount of damage
a bug can do. A bug in, say, a sound driver in the kernel
can easily crash the operating system; the same bug in a
user-mode sound driver will crash only the driver, since
it is encapsulated in a private address space protected
by the MMU hardware. Faults in one process thus can-
not corrupt other processes’ memory. Using 10 bugs per
1000 lines of code as a plausible number [3, 29, 30], the
MINIX 3 kernel probably has fewer than 50 bugs, whereas
the kernels of Linux and Windows XP may have over
25,000 and 50,000 bugs, respectively. Getting large num-
bers of bugs out of the kernel and into tightly restricted
user processes certainly is a reliability enhancement.

Third, since drivers run in user-mode, they cannot use
privileged CPU instructions, such as disabling interrupts
and performing I/O, which we see as a reliability feature.
Instead, the driver has to make a kernel call giving a list
of /O ports to read or write. The kernel checks each call
to make sure the printer driver cannot touch the 1/0 ports
for the disk, and so on. Similarly, kernel calls to manage
interrupt lines are available. The overhead here is negli-
gible (about 1 usec for the kernel call) but reliability is
enhanced by preventing buggy drivers from touching de-
vices that they do not own.



Fourth, the operating system is self-repairing as de-
scribed in Sec. 5. All drivers and servers are children of
the reincarnation server. When a server or driver crashes
or misbehaves, the reincarnation server notices and can
often transparently start a new one, as described above.
Currently we can restart most device drivers and a few
servers that maintain no or little state. In theory, we could
also restart some of the core operating system servers, but
we have not yet implemented that.

Fifth, our interprocess communication uses syn-
chronous rendezvous communication using fixed-length
messages. The message size is not a parameter of the IPC
calls; it is a system-wide compile-time constant, allowing
all message buffers to be easily set to the correct (static)
size. This scheme eliminates many bugs associated with
buffer management as well as stack overruns caused by
unexpectedly large messages. In the occasional case that
a variable-length data structure has to be passed, such as
a file name, a pointer to it is passed instead.

Sixth, interrupts and message passing are unified in a
very simple way. When an interrupt happens, the corre-
sponding driver is notified. If it is waiting for a message, it
gets the interrupt immediately as a message. If it is busy,
it gets the interrupt notification message as soon as it is
able to handle it without any complex locking schemes.
Converting interrupts to notifications at a very low level
eliminates many of the problems associated with kernel
reentries and makes system programming much easier.

Seventh, wild stores due to bad pointers in a driver
cannot corrupt any memory outside the driver’s own ad-
dress space. All servers and drivers are encapsulated in a
private address space that is protected by the MMU hard-
ware, just as with ordinary user applications. Most com-
monly, a wild store will ultimately bring down the driver,
in which case it will automatically be restarted. Some
work may be lost, for example, a job may not be printed,
but the system will not crash.

Eighth, damage from buffer overrun vulnerabilities
that are commonly exploited by viruses and worms to ex-
ecute injected code is limited. Many exploits work by
overrunning a buffer to trick the program into returning
from a function call using an overwritten stacked return
address pointing into the overrun buffer. In MINIX 3, this
attack does not work because instruction and data space
are split and only code in (read-only) instruction space
can be executed.

Ninth, infinite loops in drivers no longer hang the
system. The scheduling algorithm will notice that the
looping driver is using large amounts of CPU time and
gradually lower its priority. Meanwhile, the reincarnation
server will notice that the driver is not answering its sta-
tus requests, and will eventually kill it and start a fresh
copy. Since a copy of the disk driver is kept in RAM all
the time, it is even possible to restart a looping disk driver
with a fresh version.
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Tenth, the system can be configured to restrict drivers
and servers to a subset of the available kernel calls. Which
kernel calls a process can make is controlled by a bitmap
in its process table entry. User processes can only send
messages (and then only to servers). An audio driver, for
example, is allowed to request I/O, but cannot change the
process privileges, which is the job of the reincarnation
server. Likewise, the process manager is the only process
that can instruct the kernel to start or stop processes.

There are various other reliability features available
as well [20], but these give an idea. Basically, running
drivers and servers as user processes rather than as kernel
functions in monolithic operating systems makes it possi-
ble to encapsulate them, restrict what they can do, monitor
their behavior, and replace them on the fly if need be. No
other operating system to date has all these properties.

7. PERFORMANCE

In the 1980s, microkernels were plagued with perfor-
mance problems, but since then we have learned a great
deal about how to solve them. The current version of
L*Linux has a performance about 2-3% worse than Linux
running on the bare metal. Our performance is not quite
so good yet because we have not even attempted to tune
it (remember, our research interest is in reliability, not
performance), but we could probably achieve something
close to this if we tried hard.

Measuring performance is very tricky. What we re-
ally are interested in is how much the microkernel de-
sign costs. Running some benchmark on MINIX 3 and
on Linux or FreeBSD would tell us that the various sys-
tems have different compilers, different file systems, dif-
ferent memory management strategies, etc. There would
be no way to see how much of the difference is due to, for
example, the different file caching algorithms. Also, the
nature of the benchmark matters a lot. For example, in a
networking test, the speed of the Ethernet might easily be
the bottleneck. Two systems that were capable of driving
the Ethernet at full speed would be declared equal, while
one of them might be able to go faster had the network
been able to handle it.

Thus we did what scientists normally do: run con-
trolled experiments with two systems that differ in only
one parameter. Then we know for sure that any ob-
served differences are due to that parameter. In our
case, the experiments compared MINIX 2, which has in-
kernel drivers, against MINIX 3, which has user-space
drivers. Furthermore, we measured the recovery overhead
incurred by the self-repairing mechanisms of MINIX 3.
All tests were done on a 2.2 GHz Athlon.

Our first test measured individual system calls.
The results are shown in Fig. 3. The first table entry
shows that the getpid call—a simple message from a
user process to the process manager and an immediate
answer—takes 180 nsec more in MINIX 3 than in



MINIX 2. The difference is due to the extra checking
done since the number of messages and context switches
is the same. Since little real work is done, getpid shows
that a typical request-reply IPC interaction costs about
1 pusec. Reading and writing is about 8% slower in
MINIX 3 due to the extra two messages and extra two
context switches required for user-mode drivers.

Call MINIX 2 MINIX 3 A Ratio
getpid 0.831 1.011 0.180 1.22
Iseek 0.721 0.797 0.076 1.11
open+close 3.048 3.315 0.267 1.09
read 64k+Iseek 81.207 87.999 6.792 1.08
write 64k+Iseek 80.165 86.832 6.667 1.08
creat+wr+del 12.465 13.465 1.000 1.08
fork 10.499 12.399 1.900 1.18
fork+exec 38.832 43.365 4,533 1.12
mkdir+rmdir 13.357 14.265 0.908 1.07
rename 5.852 6.812 0.960 1.16
Average 1.12

Figure 3: System call times for kernel-mode vs. user-mode
drivers and their differences and ratios. All times are in psec.

We also ran some macroscopic tests, as shown in
Fig. 4. These are actual programs rather than just system
calls. The first two are large make jobs, one to build the
kernel and the user-mode servers and drivers; and one to
build the POSIX test suite. Again we see an overhead
of about 8%. These tests are heavily I/O bound. The
other five tests consisted of sorting, sedding, grepping,
prepping, and uuenceding a 64-MB file, respectively.
These tests were run only once, reducing the file server’s
cache hit ratio to 0, so every block came from the disk.

Program MINIX2 | MINIX 3 A | Ratio
Build image 3.630 3.878 | 0.248 1.07
Build POSIX tests 1.455 1.577 0.122 1.08
Sort 99.2 103.4 472 1.04
Sed 17.7 18.8 [.1 1.06
Grep 13.7 13.9 0.2 1.01
Prep 145.6 159.3 13.7 1.09
Uuencode 19.6 21.2 1.6 1.08
Average 1.06

Figure 4: Run times in sec for various I/O-bound programs.

To measure disk /O performance, we read and wrote
a file in units of 1 KB to 64 MB. The tests were run many
times, so the file being read was in the file server’s 12-
MB cache except for the 64-MB case, when it did not
fit. The disk controller’s internal cache was not disabled.
Another test read the raw block device corresponding to
the hard disk. This test bypasses the file server’s buffer
cache and just tests moving bits from the disk. Writing
to the raw device would destroy the contents of the file
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system on it, so that test was not performed. The overhead
of user-mode drivers is shown in Fig. 5. We measured a
performance hit ranging from 3% to 18% with an average
of 8.4%. The worst performance is for 1-KB writes, but
the absolute time increase is only 457 nsec, so writing
1000 1-KB blocks per second would waste less than half
a millisecond. The ratio decreases when more I/O is done
since the relative overhead decreases. For the 64-MB tests
the overhead is only 3% to 5%.
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Figure 5: Performance overhead of user-mode drivers com-
pared to kernel-mode drivers when reading and writing increas-
ingly large chunks of a large file and reading the raw device.

We also tested the networking performance of user-
mode drivers. The test was done with the Intel Pro/100
card as we did not have a driver for the Intel Pro/1000
card. We were able to drive the Ethernet at full speed.
In addition we ran loopback tests, with the sender and
receiver on the same machine and observed a throughput
of 1.7 Gbps. Since this is roughly equivalent to using a
network connection to send at 1.7 Gbps and receive at
1.7 Gbps at the same time, we are confident that handling
gigabit Ethernet with a single unidirectional stream at 1
Gbps should pose no problem with a user-mode driver.

To measure the costs of the protection and recovery
mechanisms of our system, we initiated a TCP transfer us-
ing the wget utility to retrieve a large (512-MB) file from
the Internet. For this test we used the user-mode RealTek
8139 Ethernet driver, and repeatedly killed it during the
transfer using a SIGKILL signal (to simulate a crash) with
varying intervals between the simulated crashes. As de-
scribed in Sec. 5, the reincarnation server detects such a
failure and restarts the Ethernet driver. Because lost data
was automatically resent due to the use of the TCP proto-
col, full recovery transparent to the application and with-
out user intervention was possible.

Even though the Ethernet driver repeatedly failed,
wget successfully completed in all cases; the only dif-
ference is a little performance degradation as shown in
Fig. 6. The mean recovery time for the RealTek 8139
driver failures is 0.36 sec, which is mainly due to the TCP
retransmission timeout. The transfer times range from



47.46 sec without interruptions to 63.03 sec in the worst
case, when the driver is killed once per second. The loss
in throughput due to driver failures ranges from 25% to
just 1% in the best case. With no failures there is no per-
formance overhead.
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Figure 6: Networking throughput when using wget retrieve a

512-MB file from the Internet while repeatedly killing an Ether-
net driver with various time intervals.

All in all, the performance loss due to our design is in
the 5-10% range, and could no doubt be improved with
careful tuning. The self-repairing functionality of our sys-
tem adds a little overhead only when actual failures occur.
We consider this performance loss completely acceptable
in trade for the better reliability.

8. THE USER VIEW OF MINIX 3

Using MINIX 3 is like using a normal multiuser UNIX
system. Of course, since the system has only been under
development for about 18 months, with a small core of
developers, it is not as complete as Linux or FreeBSD
yet. Nevertheless, over 400 UNIX programs have been
written or ported. A few of them include:

Shells: ash, bash, pdksh, rsh, zsh

Editors: ed, emacs, ex, nvi, vim, elvis, elle, mined, sed
Languages: awk, C, bison, flex, perl, python, yacc
Programming tools: cdiff, make, patch, tar, touch
Networking: ssh, pine, fip, lynx, mail, rlogin, wget
File utilities: cat, cp, bzip2, compress, my, dd, uue
Text utilities: grep, head, paste, prep, sort, spell, tail
Administration: adduser, cron, fdisk, mknod, mount

In addition, nearly all of the other standard UNIX
shell and file utilities the GNU utilities and the X
Window System are available. Large GUI applications,
such as the Firefox web browser and the Thunderbird
e-mail client, have not yet been ported, but can be used
on MINIX 3 by launching X clients over the network.
MINIX 3 also supports multiple virtual terminals, which
is more-or-less the command-line interface equivalent of
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running multiple Xterms on X. This feature is important
on low-end machines with very limited memory (e.g., 8
MB) that cannot support X.

While MINIX 3 is not yet competitive with much more
mature systems in terms of software available, there is
clearly enough already to eliminate any doubt that it could
be done given some programming effort. Furthermore,
the overall performance is surprisingly good. For exam-
ple, a system build of the kernel plus all standard user-
mode drivers and servers (125 compilations), takes un-
der 4 sec, as mentioned above. Furthermore, the time in-
terval between leaving the multiboot monitor and getting
the login prompt is only 5 sec. At that time a POSIX-
conformant operating system is ready to use.

The MINIX 3 website is www.minix3.org. It con-
tains all the source code, documentation, and news about
MINIX 3. It also has a CD-ROM image containing the
binaries and sources that can be downloaded, burned onto
a CD-ROM and then booted as a live CD. Partitioning the
hard disk is not necessary to test MINIX 3, but of course,
to do anything useful a free hard disk partition is required.
Installation is simple. Just log in as root and type setup.
After you have answered a few simple questions such as
which keyboard you have (US, French, German, etc.),
MINIX 3 will install itself in about 10 minutes. In the
first few months after it became available, 50,000 people
downloaded the CD-ROM image.

A USENET newsgroup, comp.os.minix, hosts a lively
discussion forum where people can ask questions, ex-
change code, and get and give help.

9. RELATED WORK

Below we will briefly discuss some related work, focus-
ing on complete operating systems, not just microkernels.
Writing a small kernel is one thing; putting a complete
(POSIX-conformant) operating system on top of it and
then porting hundreds of programs to it and being able to
use it as a UNIX clone is something quite different.

Our work differs significantly from other approaches
that isolate device drivers in that we combine full com-
partmentalization of the operating system in user mode
with explicit mechanisms to recover from critical failures.
We rely on hardware protection offered by the MMU and
take the process model to its logical conclusion.

Nooks proposed and implemented in-kernel wrapping
of drivers to isolate faults in commodity operating sys-
tems using manually written wrappers for each compo-
nent to be isolated [36, 37]. In contrast, we do not use
wrappers, but put all servers and drivers in unprivileged
user-mode processes, and deal with faults differently.

Virtual machines-like approaches like VM/370, Exo-
kernel, VMware, Denali, and Xen [33, 11, 35, 40, 2]
are powerful tools for running multiple services, but can-
not prevent a bug in a device driver from crashing the



hosted operating system. Fault isolation can be achieved
by means of para-virtualization and running each driver
in a dedicated operating system instance [13, 25, 26]. In
contrast, MINIX 3 isolates drivers by running each as an
independent user-mode process, encapsulated in a private
address space that is protected by the MMU hardware.

Various microkernels have been built, such as Mach,
V, and Amoeba, [I1, 41, 7, 28], but they all had un-
wrapped device drivers inside the kernel. User-mode
drivers have been used before [12, 9, 24], but only as
a partial approach where lots of extensions and other
code remain in the kernel. More sophisticed multi-
server designs that move more functionality out of the
kernel also have been proposed. For example, Perseus,
DROPS, and NIZZA are multiserver systems on top of
the L4 microkernel [31, 16, 17, 27]. Other efforts in-
clude QNX, GNU Hurd, Nemesis, Mungi, and SawMill
Linux [21, 6, 32, 19, 15, 14]. These approaches com-
partmentalize operating system, but do not have explicit
mechanisms to recover from failures in critical compo-
nents, such as device drivers, like we do.

Language-based protection and formal verification
can also be used to isolate drivers, as proposed by SPIN,
Coyotos, VFiasco, and Singularity [4, 34, 22, 23]. These
approaches are complementary to ours, since the user-
mode servers and drivers of our operating system can be
implemented in a type-safe language and the small size
of each component might make code verification feasi-
ble. For example, we have experimented with languages
like Cyclone and Objective Caml.

Various other experimental systems have been written
over the years, but few, if any, of these have gotten beyond
the stage of a paper design and a primitive lab prototype,
usually with an ad hoc APT and little user-level software.
Until the system is really built and can be used in a serious
way by a real user community, it is hard to say whether it
is a suitable alternative.

10. CONCLUSIONS

We have presented a design that can improve operating
system reliability. It consists of a very small kernel and
a large number of modular, tightly controlled user-mode
processes, each performing a specific task, such as being
a device driver or server. The design has many reliability
features not present in current systems, including the abil-
ity to withstand wild stores, infinite loops, and other (tran-
sient) errors in drivers, the ability to strictly limit what
kernel calls, I/O ports, message targets, etc. operating
system components can use.

Moreover, MINIX 3 has the ability to restart failing
or failed operating system components on the fly with-
out rebooting the system. If a critical component, such
as a device driver, crashes, the reincarnation server no-
tices and initiates the recovery process. Character de-
vice driver failures have to be dealt with at the applica-
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tion level, whereas full recovery transparent to applica-
tions and without user intervention is possible for block
device drivers and Ethernet drivers.

While other systems have had some of these fea-
tures, no previous research team has put them all together,
built a serious open-source prototype that is POSIX-
conformant, ported hundreds of programs to it, and gotten
50,000 people to download it.

All in all, we believe this is a small step in the direc-
tion of an operating system with a mean time to failure
approaching that of a television set.
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