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Abstract
Many real-world systems require continuous operation.
Downtime is ill-affordable and scheduling maintenance for
regular software updates is a tremendous challenge for sys-
tem administrators. For this reason, live update is a potential
solution as it allows running software to be replaced by a
newer version without stopping the system. The vast major-
ity of live update approaches proposed as a solution to this
problem aims to support existing software systems, while
striving to maintain a good level of safety and flexibility.

In this paper, we consider the opposite direction. Our
work aims to build dependable and trustworthy live updat-
able systems that do not attempt to be backward compati-
ble but look forward to solving the update problem in future
systems. To this end, we highlight possible issues and limita-
tions in existing approaches and propose a new cooperative
model for live update to provide better safety and flexibility
guarantees.

Categories and Subject Descriptors D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement;
C.4 [Performance of Systems]: Reliability, Availability, and
Serviceability

General Terms Design, Maintenance, Dependability

Keywords DSU, Live Update, Update Validity

1. Introduction
Experience indicates that trading off high availability against
the need to update a software system is painful for many
systems. Live update—namely the ability to update software
without service interruption—is a promising direction to ad-
dress this problem. An infrastructure to apply online changes
to a running system would greatly aid in the maintenance of
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systems that cannot tolerate disruption of service or loss of
transient state. Live update could be the definitive solution
to support software evolution in high-availability environ-
ments. Unfortunately, despite significant effort, few research
systems for software-based live update have made their way
into the real world. The majority of high-availability systems
still rely on hardware-based solutions or do not use live up-
date at all.

In this paper, we investigate the root causes of the poor
acceptance, review existing solutions, and highlight possible
issues and limitations. We argue that existing models do not
scale efficiently for complex systems and nontrivial general-
purpose software updates. We then present a new coopera-
tive model for live update. In our approach, the old and new
versions actively cooperate in the live update process by be-
ing able to understand the nature of the update and react ac-
cordingly. Our model could be applied at different levels of
granularity. In the paper, we assume a generic component as
the structural unit of dynamic replacement. The model aims
to achieve better dependability properties at the cost of no
backward compatibility with legacy software already out in
the field.

The remainder of the paper is as follows. We first dis-
cuss existing models for live update highlighting character-
istics, limitations, and trade-offs (Sec. 2). Then we present
examples of updates of different natures, analyze their im-
plications, and present our model (Sec. 3). Section 4 finally
presents our conclusions.

2. Existing models
System research in the area of live update is generally fo-
cused on designing frameworks to seamlessly apply online
changes to existing software systems the instant they arrive.

We observe three different and separate worlds: the world
of software developers, the world of update authors, and the
world of system administrators. Developers build the soft-
ware unaware of live update. Update authors fetch an exist-
ing patch or two different versions of the system and build a
live update patch with the help of the live update infrastruc-
ture. A live update patch typically contains code from the
new version and an author-provided state transfer function
to transform the state of the system at update time into an



equivalent state for the new version. The patch is finally de-
livered to system administrators, who are instructed to install
it on-the-fly the instant the update is made available. Figure 1
depicts the evolution of a software system from version V 1
to version V n by installing a series of live update patches
LU .
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Figure 1. The common model adopted for live update.

This model has largely promoted performance and trans-
parency as key success criteria for live update technologies.
The extensive focus on these properties has, however, led
many researchers to neglect other important characteristics.
We now analyze these properties in more detail and justify
our claim further.

Is performance necessary?
Performance measurements have been extensively used to
determine the time and the overhead required to apply an on-
line change. Much recent research has specifically focused
on improving update timing to maximize performance, even
at the cost of additional complexity [1, 2]. In practice, fast
update is rarely a concern in real-world scenarios.

Consider bug fixes. It usually takes a very long time to
find a bug, fix it, and publish a patch. Studies on operating
systems have estimated a mean bug lifetime of about 1.8
years, with the median around 1.25 years [3]. Even once a
bug is discovered, it may take a considerable amount of time
to resolve it and deliver an adequate patch. A recent study
shows that many difficult (but possibly critical) bug reports
may be deferred for months or, in some case, indefinitely [4].

Consider security patches. Although patching soon is de-
sirable not to expose the system to possible attacks, experi-
ence indicates that timing the installation of updates is cru-
cial to avoid problems induced by possible bugs in the patch
itself. Previous work on security patches suggested that sys-
tem administrators should delay an update at least 10 days
after the patch’s release [5].

In light of all these observations, delaying a live update
for a few seconds in order to get the system into a simpler
and known state to make updating easier and less error prone
seems to be a reasonable option.

Is transparency desirable?
Transparency relates to the property of hiding the nature of
the update and details of the live update process from soft-
ware developers, update authors, system administrators, and
the system itself. In most studies this property is regarded
as the ability of the framework to support existing binary or
source patches and dynamically apply them starting from an
arbitrary state of the system with no or little modification.

The focus on transparency in prior work is largely mo-
tivated by the need to cope with existing systems. While its
importance in supporting legacy systems is indisputable, this
model has many known practical limitations derived from
its inherent implementation complexity. Supporting a broad
range of updates efficiently while ensuring that the resulting
configuration is valid is hard in the general case [6].

1 void task(int t) {
2 init(t);
3 run(t);
4 }
5 void init(int t) {
6 count++;
7 do_init(t);
8 }
9 void run(int t) {

10 do_run(t);
11 }

(a) Version 1

1 void task(int t) {
2 init(t);
3 run(t);
4 }
5 void init(int t) {
6 do_init(t);
7 }
8 void run(int t) {
9 count++;

10 do_run(t);
11 }

(b) Version 2

Figure 2. Two different versions of a program fragment in
a C-like syntax.

Figure 2 presents an example of an update scenario for a
program in a C-like syntax. Assume the program fragment in
Figure 2a must be dynamically replaced by the fragment in
Figure 2b. Many existing live update solutions cannot deal
with this simple scenario efficiently. Approaches focusing
exclusively on type safety would allow the execution of
the new version of run() right after the execution of the
old version of init() [1, 7–11]. In that case, the update
would bring the system to an invalid state with the variable
count incremented twice. Note that no simple state transfer
function could solve this problem, under the assumption that
the update is performed in an arbitrary state of the system.

A common solution to this problem is to limit the set of
live updates allowed. Update authors are expected to labori-
ously manually inspect the code of the two versions of the
system to figure out whether the resulting live update can be
reliably performed starting from an arbitrary state of the sys-
tem. The main problem with this approach is that it does not
scale because two versions may have thousands of changes.
While it is easy to understand that the example above would
not produce correct results in the general case, the same anal-
ysis on more complicated updates can become expensive and
error prone, possibly leading to an unreliable live update pro-



cess. To make manual inspection realistic, a number of ap-
proaches, such as OPUS [7] and Ksplice [11], specifically
target small security patches. For example, Ksplice has been
evaluated on a list of significant Linux CVE (Common Vul-
nerabilities and Exposures) patches from May 2005 to May
2008 [12]. Figure 3 shows that the median number of lines
of code changed or added in these patches is only 4, while
the median is close to 100 for standard Linux incremental
patches (e.g. from 2.6.11.1 to 2.6.11.2) of the same period.
Further, if we consider minor version change patches (e.g.
from 2.6.11 to 2.6.12), statistics like the ones presented in
Figure 3 reveal results on the order of hundreds of thousands
of lines of code. In our work, reliability and scalability are
major concerns, as we aim to support efficiently many types
of updates, ranging from small bug fixes or security patches
to new versions of the system with additional functionalities.
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Figure 3. Comparative LOC analysis of Linux incremental
patches and Linux CVE patches from May ’05 to May ’08.

For multithreaded applications, manual inspection can
become even more complicated because the number of pos-
sible states of the system grows exponentially with the num-
ber of running threads. In some cases, manual inspection
may also be required to detect possible deadlocks. For exam-
ple, in [13], the use of manual checking—or a timeout-based
update process as a fallback mechanism—is advocated to
avoid possible deadlocks when cyclic external call chains
occur.

To overcome the issues presented above, a number of ap-
proaches go beyond type safety and offer support for addi-
tional safety constraints. To make sure that the update is not
performed while executing a specific code region, update au-
thors can specify safe update points [14] or mark blocks of
code that must be entirely executed on a single version of
the system [15]. While these approaches have been effective
in some real-world scenarios, they potentially suffer from a
structural problem. Update safety constraints are hard-coded
in the original version of the system and cannot be modified
at update time.

Recall the example in Figure 2. By looking at the struc-
ture of the original code, one might conclude that line 4 in
Figure 2a is a safe update point to replace functions init()
and run(). In practice, assume a new update is published to
measure the time it takes to execute all the tasks. If init() is
modified to record the start time of the first task and run()
is modified to record the end time of the last task, no state
transfer function could bring the system to a valid state if
the update is executed at line 4 before all the tasks com-
plete. While this is an artificial example, one might expect
to deal with similar issues far more frequently with complex
systems and nontrivial updates. At the very least, meticu-
lous manual patch inspection is still required to ensure a re-
liable update process. Similar problems in real-world sce-
narios have been reported in [16], while experimenting live
updates with sshd and vsftpd.

Other approaches specific to event-driven systems have
suggested using atomicity at the level of an event to make
sure that each event-generated transaction is entirely exe-
cuted on a single version of the system [17]. Supporting
atomicity at the level of an event, however, reduces the de-
gree of flexibility and may cause excessive system disrup-
tion for small updates [18]. In addition, event-level atomicity
may not be sufficient in some cases. It is easy to show that
it would not even suffice for the example in Figure 2 and the
time measurement update if the execution of the tasks were
distributed across multiple events.

As evident from the examples presented, there is a clear
tension between the level of transparency ensured and the
safety and flexibility properties of the resulting live update
process. A key problem with the transparency model is that
the nature of any future update is ignored in the original de-
sign, thus resulting in very high implementation complexity
to provide even basic safety and flexibility guarantees. An-
other problem relates to the way safety constraints are en-
forced by the live update infrastructure. If safety constraints
are enforced eagerly, namely before the update can take
place, the update process may not complete in bounded time.
In contrast, if safety constraints are enforced lazily, provid-
ing hard guarantees on the correctness of execution becomes
even more challenging in the general case.

Assuming we do not aim at transparency and backward
compatibility, what kind of system support do we need to
maximize safety and flexibility? What level of atomicity is
desirable to best achieve these properties? In the following
sections, we address these questions in detail.

3. Our Model
Hicks [19] describes two main models of updating, the inter-
rupt model—the system is interrupted at an arbitrary point
during its execution, the update is performed, and execution
is resumed—and the invoke model—the system is modified
to invoke an update procedure periodically that will result in
a live update if a new version is available. Here we introduce



a new cooperative model, where the system is notified that
an update with certain properties is available, reacts prepar-
ing itself, and, only when ready, installs the update online.
In our approach the nature of the update is central.

The Nature of an Update
In complex systems, different updates may require very dif-
ferent conditions to be applied. When considering several
categories of updates, the notion of transactional version
consistency [15] can be generalized throughout the entire
lifetime of a software system. In the following, we draw ex-
amples from operating systems to examine a number of up-
date scenarios with different levels of impact. Our analysis
does not aim at generality and completeness, but is intended
to illustrate and examine a number of concrete examples of
updates of fairly different natures.

1. Update affects a single component. This scenario com-
prises changes isolated in a single component. Common up-
dates at this level are small bug fixes and security patches.
An example is a change to the data type of an access counter
of a component to avoid data loss (e.g. from an int to an
unsigned int).

2. Update affects interaction between components. This
scenario comprises changes to an interaction between two or
more components. An example is changing the interface of a
call to the disk driver to represent a block number in 48 bits
instead of 32.

3. Update affects global data. This scenario comprises
changes to global data structures that are shared across mul-
tiple components. An example is a change to global data
constants, like renumbering all the error codes.

4. Update affects global algorithms. This scenario com-
prises changes to global algorithms that may affect multi-
ple components. An example is an improved implementa-
tion of a file usage counter. Assume the original version in-
cremented a counter in the inode at open() time, while in the
new version the counter is incremented when the first read()
or write() is processed. Another example is a change to the
generation algorithm of the random number generator.

5. Update affects data on the disk. This scenario is gen-
erally concerned with data stored on the disk. An example
is a change to the format of the disk image used for process
checkpointing. Another example is a change to the filesys-
tem format to support the creation time of a file.

6. Update affects hardware requirements. This scenario
comprises changes that impose new hardware requirements.
An example is the transition from Windows XP to Windows
Vista. Minimum requirements went from 64MB to 512MB

for RAM and from 1.5GB to 15GB for disk space available.

From the examples above, we observe very different sce-
narios as we vary the nature of the update. In some cases,
the update is not feasible on-the-fly. Consider the random
number generator example. If running applications or com-
ponents of the operating system rely on a sequence of ran-
dom numbers provided by the generator, a live update would
break this assumption regardless of when changes are ap-
plied. The only reliable solution here is a conventional re-
boot update. In other cases, such as the file creation time
example or a change imposing new hardware requirements,
an update may not be possible at all.

In addition, live updates of different natures may require
different levels of atomicity of execution to be applied. In
the access counter example, the update could occur immedi-
ately, under the assumption that the component code is not
executing. In the file usage counter example, we can reliably
perform the update only when every open file has already ex-
ecuted at least one read or write operation. In some cases,
the level of atomicity required at update time can be relaxed.
In the file usage counter example, we could improve update
timing if an author-provided state transfer function is able to
adjust the value of the counter correctly for each open file.

Nevertheless, as we gradually relax constraints imposed
at update time, we observe an increasingly complicated state
transfer. In some circumstances, constraints cannot be fur-
ther relaxed or state transfer will become infeasible. These
considerations further suggest that assuming an arbitrary or
a fixed state of the system at update time is not desirable.
Gupta has formally proven that the validity of a live update
is undecidable for an arbitrary state of the system and arbi-
trary program versions [6]. Although the proof is valid, we
reject both of the assumptions it is based on—(i) the update
must be applied instantly and (ii) the system is not aware
that updates happen. We advocate (i) allowing the system
to delay an update for a few seconds in order to get into a
known and stable state and (ii) having the system be aware
that an update may happen and be prepared to handle it.

The Live Update Process
In the previous section, we discussed how the nature of the
update determines the characteristics of the resulting live
update process. In our model, we make this explicit. Each
update carries with it adequate information to describe what
changed and when it can be applied. To realize this vision,
we believe a paradigm shift is necessary, moving from the
common belief that live update is somehow similar in spirit
to conventional patch installations. Our model integrates live
update as part of the software development process.

In particular, the software developers producing the up-
date should document the changes they made in a live update
package. Note that we use the new terminology to indicate
the distinction between patch installation and live update. A



live update package contains code to update a running in-
stance of the system to the new version, but also developer-
provided metadata to describe the nature of the changes and
specifications on how to apply them online properly. The en-
closed metadata shall provide semantic information neces-
sary to shape the properties of the update process and drasti-
cally reduce the amount of non-determinism one has to deal
with at update time.

The system, in turn, should support an infrastructure to
interpret developers’ specifications and apply the changes
correctly at the appropriate time. At the heart of the system
lies the update manager, which translates the specifications
contained in the live update package into an update protocol.
The protocol is used to drive the system into the required
state in a cooperative fashion and apply changes online after
then. In the following, we discuss the evolution of the live
update process in more detail.

1. Initialization. A new live update package is submitted to
the update manager, which loads and processes the enclosed
information. The package includes the new code for a num-
ber of system components and the associated state transfer
and state checking functions (if any). The metadata in the
package specify the set of affected components and the state
required for the update to occur.

2. Notification. The update manager notifies each affected
component that an update is available, asking it to con-
verge to a specific state as required by the update. The state
could be a generic state, for example no pending activity,
or a component-specific state, for example CD-ROM mo-
tor off or no I/O reads in progress. The definition of the
set of generic states is domain-specific, since each system
component must support all of them. Generic states are use-
ful to provide a common framework to specify update con-
straints at a coarse level of granularity. For greater flexibility
and finer control over the update process, each component
should also support a set of component-specific states.

3. Preparation. Each component keeps processing work
but starts converging to the required state. Components are
specifically designed to reach a given state in bounded time.
To ensure convergence, a component is allowed to queue
new work, with the exception of requests originated from
other affected components that must complete to reach the
required state globally. When ready, every component saves
its state in a safe place and replies back to the update man-
ager, committing itself to maintain the state if not told oth-
erwise. The update manager can abort the update process
at any time, for example when a predetermined timeout ex-
pires.

4. State checking. When all components have responded,
the system has reached the global state desired. To ensure

that the entire process is deterministic and reliable, the state
of each component is checked for consistency. If any of the
components did not meet the required constraints or reached
a tainted state due to latent errors, the live update is aborted
unless an appropriate recovery mechanism is available.

5. State transfer. The system is now in the state required
by the update. The state transfer functions are executed to
transform the state of each component into an equivalent
state for the new version.

6. Replacement. The new components are now loaded into
the running system and initialized with the transformed state.
Execution is redirected atomically to the new version and the
old components are garbage-collected. A possible optimiza-
tion is to replace some component incrementally, allowing
cross-version execution. This is only safe for components
that maintain the exact same behavior in the new version.
Developers can mark these components in the live update
package.

The proposed model solves the problem of establishing
a safe update time structurally, using a deterministic and
reliable live update process that is designed to complete
in bounded time. The feasibility of an update becomes an
implementation problem: a live update is feasible as long as
a combination of constraints is available to specify a state of
the system that can be transfered to an equivalent state for the
new version. To improve update timing, software developers
can occasionally reduce the number of constraints on the
system at the cost of a higher implementation complexity
for the state transfer function.

Admittedly, handwritten state transfer functions can gen-
erally represent a fundamental (but unavoidable) threat for
every dependable live update solution. Nevertheless, al-
though still required for many categories of updates, writ-
ing state transfer functions is made simpler in our model.
Each function must only deal with a known and determinis-
tic state of the system, as identified by the update constraints
contained in the live update package. The ability to specify
the initial state for the update process can greatly reduce (or
eliminate) the complexity and the amount of code required
for state transfer. In a matter of speaking, the proposed ap-
proach shifts large part of the state transfer burden from the
update authors to the system itself.

Our model can be considered as a generalization of other
update models discussed earlier, but the ability to specify
update constraints dynamically can reliably and efficiently
support a broader range of updates requiring different levels
of atomicity of execution. Our approach can also support
updates in an arbitrary state of the system, but is not limited
to this simple scenario. Testing is also made simpler and
more effective, since changes must only be tested against
a deterministic state of the system.



4. Conclusion
In this paper, we have presented a cooperative model for de-
pendable live update that scales efficiently to support a broad
range of updates in complex systems. From our analysis, an
important aspect emerges: the nature of an update is central
in determining the characteristics of the resulting live update
process. We argued that existing approaches have largely ne-
glected this important aspect, while focusing more on trans-
parency and backward compatibility.

Our model, in contrast, is based on this observation and
aims to build systems that support live update by design.
In our approach, the system is receptive to changes and
cooperates during the update process to converge to the
appropriate state in bounded time before performing the
update. Feasibility and safety of a live update are dealt with
at design time, while flexibility is guaranteed by the ability to
specify update constraints at update time. Better availability
can be achieved by trading off the complexity of the state
transfer function against the number of constraints imposed
on the system.

A legitimate concern is the practical application of the
proposed model. We believe, however, that a modular de-
sign in which each component has a well-defined interface
and an appropriate level of isolation can perfectly fit the live
update model we envisioned. Under these assumptions, a
component with the required properties could possibly be
implemented at different levels of granularity (e.g. module,
object, or process). In addition, we believe that our approach
can perfectly fit in a typical software development process,
also promoting a better system design and encouraging pro-
grammers to document changes.

In our ongoing work, we are developing a prototype to
apply the ideas described in the paper to operating systems.
An operating system is an ideal setting to demonstrate the
effectiveness of our model. We are planning to evaluate our
prototype system with both small and big updates.
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