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Abstract—With the amount of data increasing at an alarming
rate, domain-specific user-level metadata management systems
have emerged in several application areas to compensate for
the shortcomings of file systems. Such systems provide domain-
specific storage formats for performance-optimized metadata
storage, search-based access interfaces for enabling declarative
queries, and type-specific indexing structures for performing
scalable search over metadata. In this paper, we highlight several
issues that plague these user-level systems. We then show how
integrating metadata management into the Loris stack solves all
these problems by design. In doing so, we show how the Loris
stack provides a modular framework for implementing domain-
specific solutions by presenting the design of our own Loris-based
metadata management system that provides 1) LSM-tree-based
metadata storage, 2) an indexing infrastructure that uses LSM-
trees for maintaining real-time attribute indices, and 3) scalable
metadata querying using an attribute-based query language.

I. INTRODUCTION

For over four decades, file systems have treated files as a set

of attributes associated with an opaque sequence of bytes, and

have provided a simple hierarchical structure for organizing

the files. By providing a thin veneer over devices, and by not

imposing any structure on the data they store, file systems

have found widespread adoption in many application areas

as preferred lightweight data stores. However, this very same

generality has also led to the emergence of domain-specific,

user-level metadata management systems in each application

area to offset several shortcomings of file systems.

In the personal computing front, file systems have been used

as document stores for housing a heterogeneous mix of data

ranging from small text files to large multimedia files like

photos, music and videos. With the amount of data stored by

users increasing at an alarming rate, hierarchy-based file access

and organization has lost ground to content-based access

mechanisms. Most users have resorted to using attribute-

based or tag-based naming schemes offered by multimedia and

desktop search applications for managing and searching their

data. These applications essentially build a user-level metadata

management system that crawls the file system periodically to

extract metadata, maintains indices on the extracted metadata,

and offers application-specific search interfaces to query over

metadata.

Modern-day enterprise storage systems house millions of

files, and as each file has at least a dozen attributes (POSIX

and extended attributes), these systems store an enormous

amount of metadata. In addition, storage retention require-

ments for meeting regulatory compliance standards further

fuels metadata growth. Administrators of such systems are

constantly faced with the necessity to answer questions about

file properties to make policy decisions like “which files can

be moved to secondary storage?” or “which are the top N

largest files?.” Answering these questions require searching

for relevant attributes over massive amounts of metadata. As

using primitive utilities like the UNIX find utility at such large

scales is not an option, administrators resort to using enterprise

search tools. These applications build a user-level metadata

management subsystem that gathers metadata periodically,

maintains elaborate indices to speed up metadata queries, and

offers administrator-friendly search interfaces.

In high-performance scientific computing, local file systems

have been used as data stores in local nodes for multi-

node, POSIX-compliant cluster/parallel file systems. Similar

to enterprise systems, these systems also suffer from problems

of scale. In addition, data provenance has emerged to be

an extremely important technique in scientific computing for

assessing the accuracy and currency of data. Several systems

have proposed integrating provenance with parallel file sys-

tems to ensure complete, automatic provenance collection [1].

Such systems provide a metadata management system on top

of local file systems that collect and store provenance using

optimized storage formats, index provenance records, and

support specialized query languages for querying provenance

data.

The data-intensive scalable computing front has witnessed

the growth of domain-specific distributed file systems [2].

These systems maintain separate data and metadata paths so

that after a single-step authentication at the metadata server,

clients can retrieve data directly from data nodes, thus prevent-

ing any single data server from becoming bottlenecked. While

such architectures have scaled the data wall, they continue to

remain bottlenecked when it comes to metadata scalability.

Scaling directory operations to support millions of mutations

and lookups per second is an ongoing topic of research. Recent

research has shown how indexing algorithms employed by

local file systems can have a profound impact on performance

of distributed directory partitioning and indexing schemes [3].

Some researchers have even proposed using custom-built

databases that use sophisticated indexing structures to optimize

metadata storage and retrieval, as storage back ends for meta-

data servers [4]. These databases act as dedicated metadata

management systems that obviate the need for using local file

systems to store directory and other file metadata.



Thus, domain-specific metadata management systems have

emerged as the “least common denominator” functionality

across these application areas. However, such systems suffer

from several problems that are well known [5]. First, since they

are situated outside the mainline metadata modification path,

they do not maintain indices in real time, which can result in

stale query results due to inconsistent metadata. While this sit-

uation can be averted by updating indices frequently, user-level

systems avoid this to reduce the performance impact caused

by file system crawling. Unoptimized metadata placement

makes crawling for metadata gathering an extremely slow,

resource intensive operation. To avoid crawling the entire file

system, some user-level systems [6] leverage new file system

functionality like snapshotting and perform an incremental

scan of only data modified since the last snapshot. While this

in combination with other notification-based techniques can

reduce the performance impact of crawling, it hardly helps to

remedy the storage inefficiency inherent to user-level metadata

systems. This inefficiency arises because metadata is stored

twice, once in the file system itself, and a secondary copy

in the elaborate indices maintained by user-level metadata

systems. As metadata can consume a significant percentage

of the storage capacity in large installations [5], this metadata

duplication results in inefficiency that is unwarranted since the

duplicated metadata is always inconsistent.

Thus, once the purview of local file systems, metadata

management is now being performed by domain-specific, user-

level systems that suffer from several shortcomings. Rather

than building custom databases for storing metadata, we

believe the the right solution to these problems is integrating

support for metadata management into local file systems. First,

since file systems are in the mainline path of all metadata

operations, no separate polling or notification mechanism is

needed for collecting changes. Second, since file systems are

in charge of storing metadata, they can employ sophisticated,

search-friendly storage formats to optimize metadata perfor-

mance. Third, file systems can unify metadata storage and

indexing using a single storage format, thus avoiding unnec-

essary duplication. Fourth, with metadata management being

the least common denominator functionality, it is obvious that

an integrated system can be used as a customizable framework

for deploying domain-specific solutions. Such a customizable

framework should possess two salient properties. First, it

should be efficient; the integration of metadata management

should not cause performance deterioration. Second, it should

be modular; the metadata management functionality should be

independent of other functionalities. Unfortunately, traditional

file systems lack the latter property.

Traditional file systems use customized data structures for

storing metadata and such data structures form an integral

part of the file system’s on-disk layout. Further, file systems

handle a range of tasks from providing device-specific layout

algorithms to implementing POSIX-style file and directory

naming. As a result, any metadata management system that

is integrated with one file system is inherently non-portable

to other file systems, and a single implementation of metadata
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Fig. 1: The figure depicts (a) the arrangement of layers in the traditional stack,
and (b) the new layering in Loris. The layers above the dotted line are file
aware; the layers below are not.

management cannot be used across multiple file systems. Thus,

metadata management would have to be implemented on a

case-by-case basis due to the lack of modularity of traditional

file systems.

In prior work [7], we presented Loris, a complete redesign

of the traditional storage stack that solves several reliability,

flexibility, and heterogeneity issues by design. In this paper, we

show how Loris can be used as a efficient, modular metadata

management framework. In doing so, we present our Loris-

based metadata management system that provides 1) LSM-

tree-based metadata storage, 2) an indexing infrastructure that

uses LSM-trees for maintaining real-time attribute indices, and

3) scalable metadata querying using an attribute-based query

language.

The rest of the paper is organized as follows. In Section 2,

we present an overview of Loris and show how the Loris

stack provides a convenient framework for integrating meta-

data management. We present the design of our metadata

management system in detail in Section 3, following which we

present an evaluation of our prototype using several micro and

macrobenchmarks in Section 4. We then compare our approach

with related work in Section 5. Finally, we present future work

in Section 6, and conclude in Section 7.

II. BACKGROUND: THE LORIS STORAGE STACK

In prior work [8], we highlighted a number of fundamental

reliability, flexibility, and heterogeneity problems that plague

the traditional storage stack and presented Loris, a fresh

redesign of the stack, showing how the right division of labor

among layers solves all problems by design [7]. In this section,

we will briefly describe Loris’ layered architecture.

Loris is made up of four layers, as shown in Figure 1. All

the layers in Loris are file-aware, in contrast to the traditional

stack, and the interface between the layers is file-centric,

consisting of operations such as create, delete, read, write,

and truncate. Files are identified throughout the stack using a

unique file identifier (file ID). Each Loris file is also associated

with several attributes, and the interface supports two attribute



manipulation operations—getattribute and setattribute. We

will now briefly describe the responsibilities of each layer in

a bottom-up fashion.

A. Physical layer

The physical layer exports a “physical file” abstraction to

the logical layer. The logical layer stores data from both end-

user applications, and other Loris layers in physical files. The

physical layer is tasked with two primary responsibilities. The

first responsibility of the physical layer is providing persistent

storage of files and their attributes using device-specific layout

schemes. Each storage device is managed by a separate

instance of the physical layer, and we call each instance a

physical module. Each device, and hence its physical module,

is uniquely identified using a physical module identifier. Our

prototype physical layer was based on the traditional UNIX

layout scheme. The physical file abstraction is realized using

inodes. The logical layer uses an inode number to refer to the

target physical file in any file operation.

The second responsibility of this layer is providing data

verification. Each physical layer implementation must support

some comprehensive corruption detection technique, and use

it to verify both data and metadata. As the physical layer is

the lowest layer in the stack, it verifies requests from both

applications and other Loris layers alike, thereby acting as a

single point of data verification. Our prototype physical layer

supports parental checksumming [9] and uses it to provide

end-to-end data integrity.

B. Logical layer

The logical layer is responsible for providing per-file RAID

services using physical files. The logical layer multiplexes

data across multiple physical files and provides a virtualized

logical file abstraction. A logical file appears to be a single,

flat file to the cache layer above it. The logical layer abstracts

away details like the physical files that constitute a logical file,

the RAID level used by a file, etc. by using the logical file

abstraction.

The central data structure in the logical layer that enables

multiplexing is the mapping file. This file contains an array

of configuration information entries, one per logical file.

Each configuration information contains: (1) the RAID level

used for this file, (2) the stripe size if applicable and (3)

<physical module identifier, inode number> pairs that identify

the physical files that make up this logical file. Since the

mapping file is an extremely crucial piece of metadata, it is

mirrored on all physical modules. A physical file with a fixed

inode number is reserved in each physical module and is used

to store the mapping file’s data blocks.

Let us consider a logical file with file ID F1, that is

stored using a RAID 0 configuration backed by physical files

with inodes I1, I2 on physical modules P1, P2 respectively.

Such a file would have F1=<raidlevel=0, stripesize=4096,

<PF1=<P1:I1>, PF2=<P2:I2>> as its configuration infor-

mation in its mapping entry. We will explain the entry creation

process later while describing the naming layer. For now, let us

consider a read request for this logical file. When the logical

layer receives a request to read, say, 8192 bytes, from offset

0, it determines that the logical byte ranges 0-4095 maps onto

the byte range 0-4095 in physical file PF1 and the logical

byte range 4095-8191 maps onto the range 0-4095 in physical

file PF2. Having determined this, the logical layer forwards a

request to read 4096 bytes, at offset 0, from files PF1 and PF2

to physical modules P1 and P2 respectively.

C. Cache layer

The cache layer provides data caching on a per-file basis. As

it is file aware, it can deploy different data staging and eviction

policies for different files depending on their types and access

patterns. Our prototype cache layer provides a simple fixed-

block read ahead and LRU-based eviction for all files.

D. Naming layer

The naming layer acts as the interface layer. Our original

prototype naming layer provided POSIX-style file/directory

naming and attribute handling. The naming layer is also

responsible for assigning a unique file ID to each Loris file.

It processes a file create request by picking a unique file

ID and forwarding the create call to the cache layer, which,

in turn, forwards it to the logical layer. The logical layer

picks physical modules for this logical file, and forwards a

create call to those modules. The physical modules service

the create call by allocating physical files and returning back

their inode numbers. The logical layer records the <physical

module identifier, inode number> pairs, in addition to other

details, in the mapping file’s configuration entry.

Directories are implemented as files containing a list of

records that map file names to Loris file IDs. Only the naming

layer is aware of this structure; below the naming layer,

a directory is simply considered another opaque file. Loris

attributes are used by the naming layer to store per-file POSIX

attributes like modification time and access permissions. These

attributes are passed from the naming layer to corresponding

physical modules using the setattribute call. Our physical layer

implementation stores attributes in the corresponding physical

file’s inode. The getattribute call is used by the naming layer to

retrieve the stored attributes when necessary. Loris attributes

are also used to exchange policy information between layers.

An example of this usage is how we enable selective mirroring

of directories on all physical modules to improve reliability

and availability. When the naming layer issues a create call

for creating a directory, it informs the logical layer that the

corresponding logical file must be mirrored by passing the

RAID level (RAID 1 on all physical modules) as an attribute.

This attribute is not passed down for normal files. Thus, the

attribute infrastructure in Loris serves dual purpose.

III. EFFICIENT, MODULAR METADATA MANAGEMENT

WITH LORIS

With the modular division of labor between layers in the

Loris stack, the naming layer in Loris provides an ideal place

for integrating metadata management. Since all layers in the



Loris stack are file aware, the cache, logical and physical

layers can be conceptually seen as providing a file store for

the naming layer. The naming layer could thus implement

custom storage schemes that pack domain-specific metadata

into performance-optimized file formats that would be stored

by the lower layers as plain Loris files. By isolating metadata

management in the naming layer, Loris provides a modular

framework where naming implementations can be changed

without affecting algorithms in other layers.

In this section, we will detail the design of our new naming

layer that provides metadata management. It is made up of

two sublayers, namely, the storage management sublayer and

the interface management sublayer.

A. Storage management sublayer

The storage management sublayer is the lower layer and is

responsible for providing domain-specific storage formats that

optimize storage and retrieval of metadata. It provides a simple

key-value interface to the interface management sublayer, and

performs space-efficient packing of such key-value pairs in

Loris files.

Our storage management sublayer uses write-optimized log-

structured merge (LSM) trees [10] for storing key-value pairs.

LSM-trees are multi-component data structures that consist of

a number of in-memory and on-disk tree-like components. The

fundamental idea behind maintaining two different types of

components is to buffer updates temporarily in the in-memory

component and periodically flush out batched updates as new

on-disk components. These on-disk components are write-

optimized tree structures that provide space-efficient packing

of key-value pairs by filling up tree nodes completely. They

are immutable, and thus, once created, they can either be

deleted as a whole, or be used for key lookups, but can never

be updated in place. By buffering updates in memory and

writing them out in batches to a new on-disk component,

LSM-trees avoid directly updating on-disk components, and

thus eliminate expensive seek operations.

A lookup operation in an LSM-tree first checks the in-

memory tree for the target key. A failure to locate the key

results in searching the on-disk components chronologically.

By using components that are tree structured, LSM-trees

provide efficient indexing of data in both in-memory and on-

disk components. However, the number of on-disk components

that must be searched plays a crucial role in determining

the overhead of lookup operations. Minimizing this overhead

requires periodic merging of on-disk components to form

a single densely-packed index. Because on-disk components

are immutable, such a merge operation can happen asyn-

chronously, in the context of a background thread without

affecting foreground traffic.

There are two special boundary cases that arise when

one uses an LSM-tree-based key-value store. The first one

concerns updates to existing records. Updating an existing

record is performed by adding a new record to the tree with

the same key and the updated value. Lookups are executed

by chronologically searching all components and returning as

soon as there is a match, so new records implicitly obsolete

any other records that exist in the tree with the same key.

The second boundary case concerns record deletion. Delete

operations are performed by inserting “tombstone” markers—

records whose value denotes that the key-value pair has been

deleted. If a key lookup operations ends up at a tombstone

record, the lookup fails with an error that notifies the caller that

the record being looked up has been deleted. In both boundary

cases, the old, outdated records consume unnecessary space

and are cleaned periodically during merging to improve space

utilization.

We will explain how the LSM-tree-based key-value store

is used to house POSIX metadata in Sec. III-B, but for

now, we would like to emphasize that LSM-trees are ideally

suited for storing metadata due to several reasons. First,

metadata updates are rarely sequential. Most modern file

systems use B-tree variants for storing metadata. It is well

known that B-trees (and their variants) require random writes

for random updates and may get fragmented over time [4].

Further, almost all existing storage technologies are ill suited

for such random write workloads. Despite tremendous growth

in capacity and bandwidth of disk drives the performance

of small, random workloads continues to suffer from seek-

imposed access latencies. RAID installations using parity-

based redundancy schemes have known issues with small,

random-write workloads [11]. Even modern SSDs suffer under

a random-write workload and it has been shown that random

writes can significantly reduce both the performance and

lifetime of SSDs [12]. By using write-optimized LSM-trees,

we convert slow, small, random metadata updates into fast,

large, sequential write operations without sacrificing lookup

performance.

Second, metadata lookups exhibit significant locality. A di-

rectory listing operation for instance looks up POSIX attributes

of all files in a directory. A backup application might scan

through extended attributes of each file in the file system to

identify flagged files that must be incrementally backed up.

Most file systems fail to exploit such locality as metadata is

scattered all over the device. For instance, while file names are

stored in directory data blocks, POSIX attributes are stored in

inodes, and extended attributes are stored in blocks pointed to

by inodes. As a result, metadata lookups result in expensive

seek operations when disk drives are used, significantly crip-

pling performance. In contrast, with LSM-trees, locality can

be controlled with the choice of key format. As records in the

leaves of both the in-memory tree and on-disk trees are sorted

in key-order, iterating over records with the same key prefix is

very efficient as they are more likely to be stored together on

disk, and thus more likely to reside in the (block-level) cache.

We will see later how we take advantage of this to achieve

good directory listing performance.

Third, a significant number of files in several workloads

exhibit very short lifetime. For instance, it has been shown

that about 50% of files are deleted within 5 minutes, with

20% existing for less than half a minute in certain local file

system workloads [13]. Development workloads also create



a large number of empty lock files, and short-lived compiler

temporaries. As we will see later, supporting native searching

in our naming layer requires the capability to create a large

number of links to existing files, which maybe be temporary

when queries are used for a one-time, dynamic search over

metadata. Traditional file systems typically require additional

implementation tricks to optimize for such short-lived meta-

data. As metadata updates are first handled in memory, LSM-

trees handle such temporary files efficiently.

Our implementation employs AVL-trees for the in-memory

component (but any search-efficient data structure will suffice),

and densely-packed, two-level B+-trees for storing on-disk

components. As the on-disk components are immutable, nodes

are packed full for optimal space efficiency. To limit the num-

ber of disk seeks to one per disk component, their root nodes

are always kept in memory. Merge parameters like component

size thresholds, maximum number of disk components, etc. are

configurable to allow system-specific optimization.

In addition to the record-based lookup/insert operations,

our LSM-storage sublayer’s interface also exposes a prefix

lookup operation that returns an iterator over all records whose

key starts with the supplied prefix. We mentioned earlier

that records with the same key prefix are likely to be stored

together on disk; enumerating them can therefore be performed

efficiently. Thus, while the choice of key format is used to

control locality, the prefix lookup can be used as a means to

exploit it.

B. Interface management sublayer

The interface management sublayer is responsible for trans-

lating domain-specific interface operations to key-value in-

sertion or lookup operations on the underlying storage man-

agement sublayer. We will first explain how this sublayer

maps well-known POSIX abstractions to key-value pairs,

thereby providing POSIX-compatible naming. Then, we will

describe extensions that provide scalable attribute-based meta-

data search using LSM-tree-based attribute indices.

1) POSIX interface: The interface management subsystem

provides the POSIX environment to applications by mapping

familiar file system primitives to key-value pairs. Thus, while

the storage management subsystem stores key-value pairs, the

interface subsystem controls the semantics of keys and values.

We will now describe how we map per-file POSIX attributes

and directories to key-value pairs.

As we mentioned earlier, each file in Loris is identified

using a unique file ID. As each file in POSIX is associated

with a set of POSIX attributes, a straightforward way to map

these attributes would be to use the unique file ID as the

key, and store all attributes as the value. It is important to

note here that only file attributes are stored by the storage

subsystem, not file data. Thus, a file create request would result

in the interface management subsystem storing a new <file ID,

<POSIX attributes>> pair in the LSM-tree following which,

the create call would be forwarded to the lower layers. While

subsequent metadata updates would result in the LSM-tree

being updated, data updates would be immediately directed to

the lower layers.

Supporting directories is a bit tricky. With our old naming

layer, directories were files containing an array of <name,

file ID> pairs, one per file stored in that directory. Since

each directory is also a file, it also has its own unique file

ID. Thus, one possible implementation would be to use the

directory’s file ID as the key and store this array of entries

as the value. However, directories also have POSIX attributes

associated with them, and hence, each directory could then be

represented using two key-value pairs, one containing an array

of entries, and the other containing the POSIX attributes of the

directory itself. While this approach is simple to implement, it

however suffers from the disadvantage that a lookup operation

has to perform a linear scan through file names.

Avoiding such a linear scan requires using LSM-trees to

index directory entries. Such an index would use file names

as keys to lookup file identifiers. However, the key structure of

such a tree is incompatible with the key structure for storing

file attributes we mentioned earlier. Thus, using this approach

requires maintaining two LSM-trees, one mapping file names

to file identifiers, and the other mapping file identifiers to file

attributes. The level of indirection also means that a directory

listing operation would need to perform two lookups, one

per tree. While the resulting implementation would be better

than existing file systems due to the use of LSM-trees to

store POSIX attributes, we wanted to eliminate this additional

indirection to maximize performance gains.

Eliminating this level of indirection requires using a single

tree that uses a unified key structure. Thus, we adopted an

approach similar to the one used by BabuDB [4] for mapping

both directories and POSIX attributes to key-value pairs. In

this approach, we use the triplet <parent directory’s file ID, file

name, metadata type> as the key to store POSIX attributes for

each file. The reasoning behind using this triplet is to speed up

lookup operations. Each lookup operation attempts to resolve

a filename in the context of a directory to retrieve the target

file’s identifier or file attributes. Since each directory in Loris

is a file, and hence has a file ID, using the directory’s file

ID in combination with the file name can be used to search

through the index for the relevant file’s attributes.

The metadata type field in the key is an optimization to

reduce the amount of metadata updates. It essentially classifies

metadata into two categories: frequently-updated metadata

(like access time and size), and rarely-updated metadata (such

as modes, ACLs). By making this classification, updates to the

LSM-tree are kept small due to the fact that a change to the

frequently-updated metadata does not involve writing out all

POSIX metadata. Thus, each file is associated with two key-

value pairs, one per metadata type, and both these pairs can

be located using the key-prefix <parent directory’s file ID, file

name>.

With this metadata scheme, we achieve several advantages

when compared to our old naming layer. First, by linking files

and directories in reverse with the parent’s file ID, directories

no longer need to store <file name, file ID> pairs in data



blocks. As a result, directories are empty files represented

in the LSM-tree using two key-value pairs that record the

directory’s POSIX attributes. Thus, unlike our old naming

layer, directory create requests need not propagate down to

the lower layers, thus improving performance, as it eliminates

further processing of create requests by these lower layers. For

similar reasons, metadata updates are also significantly faster.

As the old naming layer used Loris’ attribute infrastructure

to store POSIX attributes, for each change in any POSIX

attribute, the naming layer had to use a setattribute call that

percolated down the stack resulting in unnecessary overhead.

The new naming layer completely avoids this as metadata

updates are restricted to the LSM-tree.

Second, lookup operations are much more scalable as linear

lookups are avoided in both in-memory and on-disk trees.

Third, by using parent ID as a part of the key, lookups can ben-

efit from significant locality. This is due to the fact that records

in the leaf of the tree are sorted based on their parent ID and

then by their file name. Thus, all file entries belonging to a

directory are tightly packed, thereby speeding up operations

like directory listing. Fourth, using LSM-based storage results

in random metadata updates being converted into sequential

write operations at the storage level, improving performance

significantly. Our old naming, in contrast, incurred expensive

disk seeks for each metadata update as POSIX attributes were

stored in the inodes. Table I illustrates the mapping of metadata

to key-value pairs using an example configuration.

Key Value

<0, /, f> atime=2011-01-01 . . .

<0, /, r> id=1 links=4 mode=drwxr-xr-x . . .

<1, etc, f> atime=2011-01-02 . . .

<1, etc, r> id=5 links=2 mode=drwxr-xr-x . . .

<1, tmp, f> atime=2011-01-03 . . .

<1, tmp, r> id=3 links=2 mode=drwxr-xr-x . . .

<3, prog.c, f> atime=2011-01-01 . . . size=2000
<3, prog.c, r> id=10 links=1 mode=-rw-r–r– . . .

<3, test.txt, f> atime=2011-01-03 . . . size=100
<3, test.txt, r> id=13 links=1 mode=-rw——- . . .
<5, passwd, f> atime=2011-01-02 . . . size=1024
<5, passwd, r> id=20 links=1 mode=-rwx—— . . .

TABLE I: Example mapping of POSIX metadata to key-value records.
This example illustrates a small file tree containing the root directory /,
the directories /etc and /tmp, and the files /etc/passwd, /tmp/test.txt and
/tmp/prog.c. Keys are in the format <parent ID, filename, type>, causing
metadata records of files in the same directory to be stored adjacently. Record
values contain either frequently-updated metadata when the type value is ’f’
and rarely-updated metadata when the type value ’r’. Metadata is shown here
in human-readable format but is physically stored in native format using
positional notation.

Linking files to their parent however does complicate the

implementation of hard links, as a file’s metadata is mapped

to one unique <parent ID, filename> pair. Hard links require

a file to be accessed from multiple names—this requires either

storing the metadata redundantly for each name, or letting

each name point to one central entry. The first approach will

not scale as the number of links to a file increases, while

locality advantages are lost in the second approach. In the latter

case, this means one extra index traversal for each hard linked

file. As hard links are not very common, we believe such an

overhead is acceptable, and we do not duplicate metadata.

Our implementation stores the metadata of hard linked files

under the different key <hardlink ID, file ID, type> (where

hardlink ID is simply a reserved parent ID). Thus, metadata

is retrieved in the same way, except by file ID rather than

parent ID and filename. The original <parent ID, filename,

type> record is still used, but only includes the file ID and

a flag denoting that the name represents a hard linked file.

As a result, enumerating the names in a directory can still be

done with a single prefix lookup, but stat lookups require extra

index traversals.

2) Efficient metadata search: Having explained how the

conventional POSIX interface can be realized using our in-

frastructure, we will now describe extensions to the interface

management subsystem that enables metadata search. Since

metadata is well structured and can be logically considered to

be a collection of attribute-value pairs associated with files,

most user-level metadata management systems have adopted

an attribute-based scheme for naming and searching. We will

now show how our interface management sublayer can be

extended to support such an attribute-based naming scheme.

While we use attribute-based naming as an example, we would

like to point out here that the infrastructure is flexible enough

to accomodate other naming schemes, like tag- or keyword-

based schemes, as well.

a) Real-time indexing: The first requirement for enabling

efficient searching is attribute indexing. Consider a name

lookup operation. Such an operation can be considered to be

a search over POSIX metadata for the name attribute. In the

absence of indexing, one would have to resort to a linear

lookup over all file names, similar to our earlier prototype.

As we mentioned earlier, we solved this one specific problem

by indexing file names. However, such an index is not usable

for searching over any other attribute. For instance, a search

for files with size greater than 1 GB can be done only by

performing a linear scan over each file’s metadata. Though

the locality-friendly, densely-packed LSM-tree design makes

high-speed sequential scans possible, this approach does not

scale as large installations can have millions of files.

To avoid linear lookup, we index attributes in an auxiliary

LSM-tree that reverse maps attribute values to file ID. This

tree contains records with the <attribute ID, attribute value,

file ID> triplet as the key, and an empty value field. The

file ID needs to be part of the key in order to guarantee its

uniqueness. Table II shows a sample index tree for the example

configuration in Table I.

Choosing which attributes to index is a policy decision that

can be tuned for each installation and the ones that are indexed

are identified in the tree using the attribute ID. Because LSM-

trees are update-optimized, maintaining these indices is cheap.

We further minimize their overhead by separating metadata

trees and index trees. This allows us to adopt different merge

parameters for index and metadata trees. For instance, since

metadata search is relatively less frequent compared to index

updates, we could trade off query performance for improving



Key Value

<atime, 2011-01-01, 20>
<atime, 2011-01-02, 13>
<atime, 2011-01-03, 10>

.

.

.
.
.
.

<size, 100, 13>
<size, 1024, 20>
<size, 2000, 10>

.

.

.
.
.
.

TABLE II: Attribute index belonging to the example in Table I. Only files
are indexed. This shows the subset of the index that covers the atime and size

attributes. The value fields are unused.

indexing performance by maintaining a higher number of on-

disk components to store indexing entries, thereby delaying

expensive merge operations.

b) Attribute-based search interface: Having described

the indexing mechanism, we will now detail attribute-based

query processing. Exposing new interfaces and functionalities

can generally be done in two ways: 1) by extending APIs and

system calls by introducing new function calls that applica-

tions can directly invoke, or 2) by overloading the semantics

of objects in an existing interface. The latter is preferable for

integration and compatibility reasons [14]. In the case of file

systems, the POSIX-based interface is ubiquitous, and our goal

is to preserve backward compatibility as much as possible.

Therefore, we overload POSIX semantics without changing

the VFS interface.

In Loris, we generalized the concept of a virtual direc-

tory [14] to provide typed virtual directories. Just like the

Semantic file system [14], directories are considered virtual

when their file entries are created on the fly. Each virtual

directory is associated with a type that determines the mech-

anism that populates the file entries. For example, a search

virtual directory is a virtual directory whose directory listing

implementation provides query resolution. A version virtual

directory [15], however, has a directory listing implementation

that enumerates all versions belonging to a particular file. In

this paper, we will describe only our search virtual directory’s

mechanism.

In Loris, query results are exposed through search virtual

directories that are instantiated dynamically using a well-

formed query term specified by the user. A query term is a

boolean combination of attributes and associated conditions

that must be met for a file to be a part of a search virtual

directory. Such a query starts with ’[’ and ends with ’]’. Our

current prototype supports equality conditions that can be used

to perform a point search over specific attributes. For instance

performing a directory listing of the search directory with the

name “[uid=100]” results in all files owned by the user with

uid 100 being listed. Similar to Semantic FS [14], search direc-

tories can also be used to map conjunctive queries into tree-

structured path names. For example, performing a directory

listing of the search directory “[uid=100]/[size>1048576]”

results in all files owned by the user with uid 100 and having

size over 1 MB being listed.

Key Value

1 <0, />
3 <1, tmp>
5 <1, etc>
10 <3, prog.c>
13 <3, test.txt>
20 <5, passwd>

TABLE III: Name index belonging to the example in Table I. As an example,
the fully qualified path name to file ID 20 is retrieved as follows: first, key
“20” is looked up to get parent ID 5 and name passwd. Next, key “5” is looked
up to get parent ID 1 and name etc. At this point, the path is etc/passwd. Next,
1 is looked up, and the root is reached. Thus, the full path is /etc/passwd.

Our search directory implementation performs query res-

olution in two steps. In the first step, the attribute index

is referenced to determine which file IDs match the given

query. For instance, the query “[uid=100]” results in our

implementation performing a prefix lookup with the key

<METADATA ID(uid), 100> on the index LSM-tree. Thus,

using a single range lookup, we can identify the file IDs of

all the files that match a query. If the query is the conjunction

of two subqueries, each subquery is performed separately and

the intersection of file IDs is used.

In the second step, we need to derive the fully qualified

path name of each file armed with the file ID. This is required

because our mapping of POSIX attributes to key-value pairs

uses <parent directory’s file ID, file name, metadata type>

as the key. Thus, it is not possible to use just the file ID to

retrieve file metadata. To solve this problem, we added a new

name index that maps file ID to <parent directory’s file ID,

file name>. Thus, each path can be generated by looking up

the parent ID and file name corresponding to each file ID in

the result and traversing the parent ID chain all the way to the

root directory. Table III shows the name index belonging with

the example configuration from Table I and illustrates how it

can be used to form a full pathname from a file ID.

We are currently experimenting with different methods for

exposing the results of a query. One such method is creating

a symbolic link entry for each file, with the link name being

the file name, plus a suffix if it is not unique. We currently

perform the query on the fly during a lookup request, but

a better approach would be to cache the results in a separate

LSM-tree. Not only is caching better for performance, it would

also simplify the implementation of search directories since a

lot of code can be reused.

IV. EVALUATION

In this section, we will evaluate several performance as-

pects of our naming layer. We implemented the new proto-

type as a part of the Loris stack running on the MINIX 3

multiserver operating system [16]. We will first present our

microbenchmark-based evaluation that compares the scalabil-

ity of our implementation with the original Loris naming layer.

Following this, we will present a comparison of metadata

storage/retrieval performance the two naming layers using

Postmark and Applevel macrobenchmarks, and a comparison

of query performance using native Loris queries vs. using



the find utility. Finally, we will present an evaluation of our

attribute indexing implementation.

A. Test setup

All tests were conducted on an Intel Core 2 Duo E8600

PC, with 4 GB RAM, and four 500 GB 7200RPM Western

Digital Caviar Blue SATA hard disk (WD5000AAKS). We ran

all tests on 8 GB test partitions at the beginning of the disks.

B. Microbenchmarks

We used two microbenchmarks to evaluate the update and

lookup performance of the LSM-tree-based naming layer. Our

first microbenchmark created 100,000 files spread across 4, 10

and 100 directories, following which, our second microbench-

mark performed the equivalent of “find | xargs stat” at the

root directory. Table IV outlines the running times of these

microbenchmarks with the old and the new naming layers.

The results show that the old naming layer does not scale

as the directory size increases, while the new naming layer’s

performance remains consistent. Performance gains achieved

by the new naming layer under the create benchmark can

be attributed primarily to the indexed lookup of file names.

The find benchmark on the other hand also benefits from

two other factors. First, as our POSIX-mapping associates file

metadata directly with file names, we avoid the additional level

of indirection inherent to the old naming layer (name to inode

number, and inode number to attributes). Second, tight packing

of metadata in our on-disk trees resulting in increased cache

hits due to the locality inherent in metadata requests.

MINIX 3 does not have file systems that support tree-

based directory indexing. As we explained earlier, a significant

portion of the performance improvement in the last two micro-

benchmarks can be attributed to the indexed lookup of file

names rather than the write-optimized LSM infrastructure.

Since we wanted to isolate the performance gains of using the

write-optimized LSM-tree, we built a random metadata update

microbenchmark. In this benchmark, we perform 200,000

metadata operations (chmod, chown, utime) on randomly-

chosen files in a three-level directory tree of 200,000 files. The

number of files per directory was deliberately restricted to 64

(the number of entries per directory block in the old naming

layer) to avoid the lookup bottleneck of the old naming layer.

Thus, each lookup operation in the old naming layer has to

Microbenchmark Loris (MFS) Loris (new)

create
tree A (4 dirs × 25,000 files) 153,5 (1,0) 43,58 (0,28)
tree B (10 dirs × 10,000 files) 76,23 (1,0) 45,88 (0,60)
tree C (100 dirs × 1000 files) 47,98 (1,0) 42,76 (0,89)

find and stat
tree A 79,3 (1,0) 6,86 (0,09)
tree B 27,5 (1,0) 6,00 (0,17)
tree C 9,21 (1,0) 5,71 (0,62)

random update 502,4 (1,0) 330,1 (0,66)

TABLE IV: Wall clock time for several microbenchmarks. All times are
in seconds. Table shows both absolute and relative performance numbers,
comparing our presented naming layer with our MFS-based naming layer.

Macrobenchmark Loris (MFS) Loris (new)

PostMark 744 (1,0) 511 (0,69)

Applevel
copy 46,4 (1,0) 40,9 (0,88)
build 95,0 (1,0) 92,0 (0,97)
find 22,4 (1,0) 10,7 (0,48)
delete 32,6 (1,0) 29,1 (0,89)

TABLE V: Transaction time for PostMark and wall clock time for Applevel
benchmarks. All times are in seconds. Table shows both absolute and relative
performance numbers, comparing our new naming layer with the original
naming layer.

retrieve only one directory block, and perform a linear scan

over 64 entries. At such a small scale, linear lookups provide

performance comparable to indexed lookups. As shown in

table IV, this benchmark shows an improvement of about 34%

which can be attributed to the batched flushing of metadata

performed by the write-optimized LSM-tree.

C. Macrobenchmarks

1) Metadata performance: We used two macrobenchmarks,

namely Postmark and Applevel, to evaluate the overall perfor-

mance of the new naming layer. We configured PostMark to

perform 20,000 transactions on 10,000 files, spread over 100

subdirectories, with file sizes ranging from 200 to 400 KB,

and read/write granularities of 4 KB. Our application-level

benchmark consists of a set of very common file system oper-

ations, including copying, compiling, searching, and deleting.

The copy-phase involves copying over 75,000 files, including

the MINIX 3 source tree. This source tree is compiled in the

build-phase. The find-phase traverses the resulting directory

tree and stats each file. Finally, the delete-phase removes all

files. The results are listed in Table V.

The PostMark numbers show a performance increase of

roughly 31%, demonstrating the effects of better metadata

management when working with many small files. The

application-level benchmark is much more data-oriented than

the previous benchmarks. Consequently the results only show

a moderate increase in performance, except in the find-

component of the benchmark, which is completely metadata-

oriented and twice as fast.

2) Query performance: We will now present our evaluation

of the metadata search functionality in Loris. We evaluated the

total time taken to resolve two typical administrative queries:

1) find all files owned by uid 100 with size > 1 MB, and 2) find

all files modified in the last hour. The queries were run over a

randomly-generated, three-level hierarchy containing 200,000

files. The query results encompass 1% of the total amount of

files.

Query Indexed search Find

query 1 0,33 (1,0) 8,24 (25,0)

query 2 0,30 (1,0) 7,90 (26,3)

TABLE VI: Time for attribute-based searches to complete, in seconds,
comparing Loris indexed search with the same query done using the Unix
find utility.



We are currently experimenting with different interface

setups and do not yet have a fully working query resolver.

Instead, we simulated queries by hardcoding index lookups.

Thus, the performance numbers present here reflect only

index lookup time and does not include the overhead of

other aspects of query processing like parsing for instance.

The running times are listed in Table VI. For comparison,

we ran the same query with find. We see that our indexing

scheme achieves excellent performance—both the range scans

for getting the matching file IDs and the pathname generation

step are performed almost instantly.

D. Attribute indexing overhead

Finally, we reran the previous macrobenchmarks (PostMark,

and Applevel without delete) with attribute indexing on for

the following POSIX attributes: size, uid, gid, atime, mtime

and ctime. Only files are indexed, not directories. We relaxed

the merging parameters of the LSM-tree used for indexing

purposes and included the running times in Table VII.

The results show that the overhead of indexing hovers be-

tween 4–19% for our tests. File creates are the most expensive,

as exemplified by the copy-phase of the Applevel benchmark.

This is because each new file adds an index entry for each

indexed attribute plus an index entry in the name index. We

believe this overhead is acceptable as it is possible to perform

selective indexing of both attributes and files easily to reduce

the overhead.

V. RELATED WORK

In this section, we will present related work and com-

pare our Loris-based metadata management infrastructure

with other approaches. We classify related work into three

categories based on whether it deals with metadata storage

management, metadata interface management, or both.

A. Storage management

Today, most file systems use B-trees or their variants

for indexing directory entries. Unfortunately, while these do

provide efficient keyed lookup, it is well known that they are

slow for high-entropy inserts due to their in-place updating

of records which requires one disk seek per tree level in the

worst case [4].

Spyglass is a user-level search application that proposed

using multi-dimensional indexing structures in combination

with hierarchical partitioning to provide scalable metadata

search. In effect, Spyglass builds a user-level metadata man-

agement subsystem and as a result suffers from problems

Benchmark Indexing disabled Indexing enabled

PostMark 511 (1,0) 572,0 (1,12)

Applevel
copy 40,9 (1,0) 48,7 (1,19)
build 92,0 (1,0) 105,2 (1,14)
find 10,7 (1,0) 11,1 (1,04)

TABLE VII: Attribute indexing overhead measurements. Time for PostMark
and Applevel macrobenchmarks to complete, in seconds, with attribute
indexing enabled/disabled.

inherent to such systems. We on the other hand propose a

modular integration of such functionalities within the Loris

storage stack. We would like to point out here that even

though we used LSM-tree based indexing, our framework is

flexible enough to support other types of indices. As we will

discuss later, we are working on modifying our prototype to

support and evaluate different partitioning strategies to provide

scalable searching.

BabuDB is a custom-built database back end intended to

be used as metadata server back end for any distributed file

system. BabuDB uses LSM-trees for storing file system meta-

data and their mapping of hierarchical file systems to database

records is similar to our approach. They also exploit the

snapshotting capabilities of the LSM-tree to support database

snapshots. As BabuDB targets only the storage management

aspect of metadata management systems, it does not provide

real-time attribute indexing, or search-friendly interfaces for

querying metadata.

B. Interface management

In order to cope with the hierarchical model’s restric-

tions, file systems have been fitted with hard and symbolic

links, allowing files to be referenced from multiple names.

Unfortunately, such links are unidirectional. A problem, for

example, is that when you delete the symbolic link target,

you end up with a dead link. Gifford et al. introduced the

concept of semantic file systems, providing associative access

to files [14]. Virtual directories are used to list files matching a

specified attribute-value pair; file type-specific transducers are

used to extract this metadata from file contents. Although the

path-based queries are syntactically POSIX-compatible, only

conjunctive queries are possible. Others have extended upon

these concepts [17] [18] [19].

HAC [20] exposes similar functionality through semantic

directories: persistent directories associated with a query that

are updated periodically. Unlike SFSs read-only virtual di-

rectories, semantic directories are tightly integrated into the

hierarchy, and HAC allows adding and removing files from

them. HAC has been architected such that it is possible

to choose different mechanisms for associative access. For

example, rather than the default full-text retrieval scheme,

more sophisticated schemes can be used. All these systems

focus primarily on the interface specification to enable content-

based access and do not consider storage management issues.

C. End-to-end metadata management

Since databases have optimized storage formats for storing

structured data, Inversion proposed using a relational database

as the core file system structure [21]. By using several

PostgreSQL tables to store file metadata and data, Inversion

was able to extend transactional semantics of databases to

file systems. Further, such a database could also be queried

declaratively to search over metadata. However, it has been

shown that such a database-based metadata back end suffers

from significant performance limitations, making it unsuitable

for performance-critical installations [5].



Magellan [5] is an on-disk file system that supports scalable

searching of metadata. It integrates the search-optimized data

structures used by Spyglass within a file system and provides

a custom-built search interface, thus providing an end-to-end

metadata management framework. However, the approach of

integrating metadata management with on-disk file systems

lacks modularity.

VI. FUTURE WORK

The new Loris-based metadata management framework

opens up several possible avenues for future work. We will

outline some possible directions in this section.

A. Partitioning

Spyglass and Magellan showed how partitioning could be

used to achieve scalable search performance in large installa-

tions. We are working on implementing a simple file volume-

based partitioning of the LSM-tree to improve scalability.

The fundamental idea behind this partitioning strategy is to

maintain a set of LSM-trees, both data and index trees, on

a per-volume basis. Since indices are separated on a volume

basis, and since users search for files in their own volumes

most of the time, query evaluation can be sped up considerably

as only the target volume’s index is used to find matching files.

Other partitioning techniques like hierarchical partitioning can

also be implemented easily using our infrastructure.

B. Exploiting heterogeneity

As we explained earlier, the Loris stack can use the attribute

infrastructure to exchange policy information between layers.

For instance, the naming layer uses this infrastructure to in-

form the logical layer to mirror directories on all local devices.

We plan to use the same infrastructure to assign different files

to different types of storage devices. For instance, the Loris

files used by the LSM-tree that contains key-value entries

representing file system metadata can be stored on an SSD

while the secondary indices could be stored on disk drives.

Such an approach trades off query performance for space-

efficient usage of SSD, as the SSD is used only for serving

metadata requests.

VII. CONCLUSION

Application-level metadata management subsystems have

evolved as a common solution in several application areas to

provide scalable metadata indexing and search functionalities

lacking in file systems. In this paper, we showed how Loris

acts as a modular framework for integrating efficient metadata

management subsystems with the storage stack. We presented

the design of our Loris-based metadata subsystem and showed

how it provides significant performance speedups for metadata

intensive workloads. We also showed how our LSM-tree based

indices and attribute-based search interface enables scalable,

efficient metadata search.
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