
Integrated System and Process Crash Recovery in
the Loris Storage Stack

David C. van Moolenbroek, Raja Appuswamy, Andrew S. Tanenbaum
Dept. of Computer Science, Vrije Universiteit, Amsterdam, Netherlands

{dcvmoole, raja, ast}@cs.vu.nl

Abstract— In this paper, we look at two important failure
classes in the storage stack: system crashes, where the whole
system shuts down unexpectedly, and process crashes, where a
part of the storage stack software fails due to an implementation
bug. We investigate these two problems in the context of the Loris
storage stack. We show how restoring metadata consistency can
provide a common first step for recovery from both types of
crashes. In addition, we present fine-grained and corruption-
resistant data resynchronization as the second step for system
crash recovery, and an in-memory roll-forward log that can
provide strong guarantees as the second step for process crash
recovery in a microkernel setting. We implement our findings in
our Loris prototype, and implement a new crash-resistant on-
device layout as part of our proof of concept. The evaluation
shows that our approach provides increased reliability at a
reasonable performance cost.

I. INTRODUCTION

In virtually any computer system, there is a component
responsible for storing users’ data: the storage stack. A large
part of the storage stack is software (usually) in the operating
system. While it is important that the storage stack has proper
performance, we argue that reliability is at least as important.
After all, not dealing with storage stack failures can translate
directly into data loss. In this paper, we look at two threats:
system crashes, and storage stack software (process) crashes.

A system crash is a whole-system failure of a machine.
The causes of such failures include power outages, hardware
failures, and operating system kernel crashes. In the event of
a system crash, the storage stack does not get the opportunity
to write out dirty data in memory, or even complete the
current operation. This may result in inconsistent on-device
data structures, which could lead to failure to reload these
data structures from disk after the system has restarted. That
in turn could lead to data loss.

Another major reliability threat comes from software bugs.
Previous research has suggested that the number of bugs in
software is roughly linear in its number of lines of code [12]. A
full-fledged operating system storage stack can easily consist
of hundreds of thousands of lines of code, and this makes the
presence of many bugs highly probable. Any such bug has the
potential to subvert the proper operation of the storage stack
and, again, cause data loss.

In previous work, we have designed a new storage stack
called Loris [2]. This storage stack has advantages in the
areas of reliability, heterogeneity, and flexibility. In this paper,
we investigate how to add support in Loris for system crash

recovery, and for process crash recovery from transient failures
in the lower layers of the stack, without compromising Loris’
other reliability guarantees.

We show that the recovery procedure for both types of
crashes require a single shared first step, namely restoring con-
sistency of all metadata maintained internally by the storage
stack. We argue that the storage stack should incorporate first-
class support for this, and to this end we add the concept of
global consistent checkpoints to Loris.

After this shared first step, each of the crash recovery pro-
cedures requires a different second step. For system crashes,
recovery involves restoring proper redundancy of (user) data,
using a resynchronization procedure similar to that of tradi-
tional software RAID. We present a data resynchronization
approach that is both fine-grained and corruption-resistant.
For process crashes, recovery involves an in-memory log to
roll forward from the last checkpoint to the current state. We
employ this approach in a microkernel environment to provide
better recovery guarantees than any previous work.

We implement these ideas in our Loris prototype. As part
of this, we present a new crash-resistant device layout and
a corresponding software implementation called “TwinFS.”
We evaluate our work using performance benchmarks and
reliability tests, aiming to prove that our design can be adopted
in environments where a moderate performance overhead is
acceptable, but high reliability is a requirement.

The rest of the paper is organized as follows. Sec. II
describes the Loris storage stack that we developed previously.
In Sec. III, we describe the two main problems to address, and
we sketch an architecture that integrates a solution for both.
In Sec. IV–VI, we present the design and implementation of
the three parts that make up the solution. In Sec. VII, we
evaluate the prototype. Sec. VIII covers related work. Sec. IX
concludes and lists future work.

II. BACKGROUND: THE LORIS STORAGE STACK

The traditional storage stack as found in most operating
systems is shown in Fig. 1a. A Virtual File System (VFS)
layer multiplexes application calls across file systems. File
systems are generally designed to operate on one device,
although a software RAID layer may transparently add storage
redundancy using multiple devices below it. The actual devices
are controlled by disk driver software.

The Loris stack was formed by first splitting the traditional
file system into three layers (naming, cache, and layout), and



File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Fig. 1: The figure shows (a) the layers of the traditional stack, and (b) the
new arrangement in Loris. The layers above the dotted line, and only those,
are file-aware.

then swapping the layout layer (also called the physical layer)
and the traditional software RAID layer (forming the logical
layer). The VFS and disk driver layers are left unchanged. The
result is depicted in Fig. 1b.

The Loris stack is completely file-oriented: the four layers
communicate in terms of files only. Each file has a unique
file identifier, and a small set of attributes associated with it.
The layers use and implement the following operations: create,
delete, read, write, truncate, getattr, setattr, and sync.

Compared to the traditional stack, the Loris stack has
reliability, heterogeneity, and flexibility advantages [2]. We
have built a Loris prototype on the MINIX 3 microkernel
system [8], where all layers and file stores are separate user
space processes. We will now describe the four layers.

A. Layers of the stack

At the bottom, the physical layer consists of one or more
file stores. Each file store manages one underlying device, and
maintains the layout on that device. It exposes an independent
set of physical files, each with a physical file ID chosen by
the file store. Each file store has a small local cache for the
metadata specific to that file store, which we call “layout
metadata.” All file stores are required to implement parental
checksumming in their layout [2]. As a result, they can reliably
detect all whole-device failures as well as any form of (overt
and silent) corruption.

Our prototype implements one file store called “PhysFS,”
based on the traditional UNIX file system. In PhysFS, the
layout metadata structures form a virtual tree. All parents in
this hierarchy point to their children by means of safe block
pointers. A safe block pointer consists of the block number of
the child block, and a checksum of its contents. File metadata,
including attributes, are stored in inodes. Inodes use safe block
pointers to point directly to data blocks, and to indirect blocks
that contain (safe) pointers to either data blocks or other
indirect blocks. Free inodes and blocks are tracked using inode
and block bitmaps. The parental checksumming hierarchy is
completed with three special inodes that point to the blocks
of the inode area and bitmap areas. These inodes are stored in

a root block, which is self-checksummed and forms the root
of the metadata tree.

The inode, bitmap, and root block metadata areas are preal-
located and statically sized. Out of all the layout metadata,
only indirect blocks are allocated dynamically, and stored
together with data blocks in the data area.

The logical layer implements a file-based version of RAID,
providing the abstraction of logical files. Each logical file
is made up of one or more physical files on different file
stores. The logical layer multiplexes operations across the
file stores in a RAID-like fashion. For example, a two-way
mirrored logical file is stored as two identical physical files
on different file stores (and thus devices). The logical layer
keeps a mapping, which for each logical file specifies: the
RAID level, the corresponding file stores and physical file IDs,
and other RAID parameters such as the stripe size. The logical
layer stores the mapping in a special file that is mirrored across
all file stores. This file is part of the global metadata of the
Loris stack, which we call “stack metadata.”

The logical layer also implements RAID-like recovery
mechanisms. If any of the file stores report a checksum error,
recovery is attempted. In case of permanent failure, operations
will continue to be served as long as enough redundancy is
available. Redundancy guarantees follow the standard RAID
failure model [14], although on a per-file basis.

The cache layer implements in-memory caching of logical
file data. It uses a large amount of system memory for caching
the contents of files.

The naming layer provides a POSIX abstraction by translat-
ing VFS operations to Loris operations. This layer implements
directories, which are stored using Loris files. Lower layers
are only aware that these directory files are part of the stack
metadata. The naming layer uses Loris’ file attributes to store
POSIX attributes. It is responsible for picking logical file IDs
for new files, and for tracking open deleted files.

III. THE CASE FOR INTEGRATED RECOVERY

In this section, we present the two challenges that we would
like to address in the Loris storage stack: recovery from system
crashes (Sec. III-A) and process crashes (Sec. III-B). We
then show that we can exploit significant overlap between the
solutions to both problems (Sec. III-C).

A. Recovering from system crashes

1) Metadata consistency: In the traditional storage stack,
the file system typically implements a consistency scheme.
Such a scheme returns the on-device structures to a consistent
state after a system crash. Some limit themselves to metadata
for performance reasons; others also cover the user data. Well-
known schemes include journaling [6], logging [13], copy-on-
write (CoW) [9], and soft updates [5].

All such schemes can be roughly described as periodically
establishing consistent restore points, checkpoints, that can
be reloaded such that any potentially inconsistent changes
made after it are discarded upon system crash recovery. For
example: copy-on-write schemes do this by writing a new root



block; logging and journaling schemes do this by writing a
commit record, and soft-update schemes effectively create a
new checkpoint upon every metadata write.

In the Loris stack, each file store is free to implement a
layout tailored to its underlying device. Layout metadata struc-
tures (such as inodes) are thus managed on a per-device basis.
Consistency of these structures must therefore be managed on
a per-device basis as well. Thus, each file store is necessarily
responsible for managing its own local checkpoints.

However, it is not enough for each file store to restore its
local layout metadata to just any consistent state after a system
crash. The higher layers of the stack rely on the file stores
in the physical layer to properly store stack metadata. For
example, it is crucial for the stack that all mirrored copies
of directories and the mapping are in sync and their contents
are consistent with the file stores. Thus, the first step towards
system crash recovery is restoring global metadata consistency
across all the file stores, which includes both layout metadata
and stack metadata.

There are two different approaches that we can adopt
for this step. The first is to allow file stores to take local
checkpoints whenever they choose, and then bring them back
in sync at restore time. However, this approach imposes several
requirements. For example, bringing the file stores back in
sync can only be done if the file stores keep on-device logs that
allow them to roll each other back or forward as appropriate.
This rules out consistency schemes that do not keep such a log
(e.g., copy-on-write). In addition, the file stores would have to
become aware of consistency requirements for stack metadata
updates, for example between file creates and directory writes,
so as to create consistent local checkpoints. This effectively
imposes stack-wide support for atomic transactions.

A better alternative is to globally coordinate the creation
and reloading of checkpoints throughout the whole stack, and
across all file stores. That means that all file stores were
in sync at the time that the local checkpoints were taken,
and they are thus again in sync if the same checkpoints are
reloaded after a system restart. In Loris, we can extend the
sync call to establish such global checkpoints. The whole
stack is involved, so all layers get the chance to flush any
pending stack metadata changes. The only downside is that
the sync call must be a stack-wide barrier operation: while
the checkpoint is being taken, any new state changes could
subvert its consistency. Overall, this approach is preferable
because it is simple to implement, and gives each file store a
large freedom in choosing a local consistency scheme that is
optimal for the underlying device.

2) Data resynchronization: The checkpointing system pro-
tects metadata, but for performance reasons it may not fully
cover user data. A system crash may thus cause inconsistency
between redundantly stored copies of the same data, due to a
partially completed multidevice write operation. For example,
a data write call to a mirrored file may make it to one mirror
before a crash, but not to the other.

Traditional software RAID faces the same issue. For this
reason, it typically implements resynchronization, whereby all

blocks from the devices are read in and checked to find and
fix any cross-device inconsistencies after a system crash. A
similar resynchronization process is also necessary for user
data in Loris. Thus, the second step towards system crash
recovery is resynchronizing data.

However, traditional software RAID resynchronization suf-
fers from two major problems. First, the RAID layer has
no knowledge about the file system or even about liveness
of blocks, and thus has to resort to scanning all devices
in their entirety, including all metadata, data, and unused
blocks. This may take a prohibitively long time–in the order
of magnitude of hours to days. Second, the RAID layer cannot
tell whether an inconsistency is the result of the system crash
or data corruption. It may thus restore RAID consistency by
overwriting a valid copy of data with a corrupted one, causing
data loss. This is known as the RAID “write hole.” As we
show later, we can significantly improve the approaches to
solving both problems in the Loris storage stack.

B. Recovering from process crashes

In a microkernel environment, most operating system com-
ponents are implemented as user space processes. Each such
system process has its own address space and restrictions
on inter-process communication (IPC), and as such, is an
individual failure domain. We use the term process crash to
describe an observable failure in a system process. A process
is said to “crash” when it performs an illegal CPU or memory
operation, does not respond in time to periodic ping signals,
performs disallowed IPC, or exits prematurely, for example
due to a failing assert. If the cause of the crash is transient,
repeating the operations leading up to the crash may not result
in a crash the next time. We only consider transient crashes.

MINIX 3 provides detection of process crashes and supports
basic recovery. When a process crashes, a fresh instance of the
process is started. The internal state of the crashed process is
lost. This approach works well for MINIX 3’s device driver
processes (including the disk drivers in the storage stack),
which have little to no internal state [8]. However, other system
components need to have their internal state fully restored
before they can continue normal operation.

In this work, we focus on process crash recovery of the
lower two layers of the Loris stack: the logical and physical
layers. These layers form the largest part of the entire stack,
and typically contain large amounts of in-memory state–
mainly metadata structures that have been updated in memory
as a result of application calls, but have not yet made it to
disk. We discuss the other layers in Sec. IX.

Our goal here is twofold. First, we want to provide recovery
that is fully transparent to applications. This means that system
calls must not be aborted with an error due to a process crash,
and that the effects of earlier system calls must never be lost.
Second, we want to make no assumptions about what has
happened inside the crashed process prior to the crash. Thus,
recovering the state from the crashed process memory image
is not an option, as this state may have been corrupted.



It is too costly to make a second in-memory copy of all
process state and changes to it; it is even more costly to
constantly flush the latest state to disk. However, it is possible
to perform recovery using on-disk and in-memory state in
combination. A large part of the required state is on the device
at any time, and the necessary remaining part can be kept in
memory until it is stored on disk. The recovery procedure
then consists of first reloading a previous state from disk, and
afterwards replaying from memory any state changes that have
been made since.

C. Integrated recovery

We now show how both the recovery approaches can share
the same first step. The checkpointing system that forms the
basis for system crash recovery can be used to provide the
first step toward process crash recovery as well. Thus, after a
process crash, the recovery starts by rolling back the logical
and physical layers to the latest checkpoint, discarding any
state modified since then. The second step then consists of
rolling forward these layers from the latest checkpoint to the
current state.

In the next three sections, we present the design and
implementation of this overall approach in Loris. We explain
each of the three necessary parts: restoring global metadata
consistency with checkpointing (Sec. IV), data resynchroniza-
tion for system crash recovery (Sec. V), and in-memory roll-
forward logging for process crash recovery (Sec. VI).

IV. CHECKPOINTING

We will now describe the design and implementation of
the checkpointing system in Loris. As outlined, this system
establishes global checkpoints by coordinating the file stores’
creation of local checkpoints. For this work, we have devel-
oped a new file store called “TwinFS,” which implements
a new on-device layout with support for local checkpoints.
We start by describing this file store (Sec. IV-A). Then, we
define the requirements for file store consistency schemes in
general (Sec. IV-B). Finally, we describe the procedures for
establishing and reloading global checkpoints (Sec. IV-C).

A. The TwinFS file store

TwinFS is based directly on our original PhysFS file store
implementation as described in Sec. II-A. It adds the concept
of checkpoints, by employing a copy-on-write-like scheme for
the blocks that are part of those checkpoints. We call such
blocks protected. At the very least, protected blocks are used
to store all the stack and layout metadata.

Each protected block has two preallocated on-device loca-
tions (“twins”). At any time, one of these locations is used
to store the “stable” version of the block: the block as it
was at the time of the last checkpoint. The other is used to
store the “unstable” version of the block: the most current
version, which may be updated several times before the next
checkpoint is taken. When a checkpoint is taken, the roles
of all modified blocks are swapped: the unstable twin is
marked stable, and the previously stable twin will be used

to store subsequent block updates. Unmodified blocks are left
untouched, so not all blocks switch twin sides between each
subsequent checkpoints. An example is shown in Fig. 2.

In theory, each of the two twins could be located anywhere
on the device. We simplify our implementation by hardcoding
the block distance between each of the two twins to a static
twin offset. This way, we can represent the twin state of each
block using just two bits: one bit that identifies the last-
modified twin (left or right), and one bit that identifies whether
the block has been modified since the last checkpoint. The
latter keeps the file store from having to track in memory
which blocks have been modified since the last checkpoint
(and thus have already switched sides).

The two-bit twin state of each block is stored in the safe
block pointer in its parent. Marking a block as unstable thus
implies recursively marking all parent blocks as unstable,
all the way up to the root of the hierarchy. Exactly the
same already happens in PhysFS due to updating the parental
checksums. Hence, updating the blocks’ twin state introduces
no extra overhead. Note that unlike with true copy-on-write
schemes, the preallocation of the twins guarantees that no new
blocks need to be allocated in this process.

The overall TwinFS on-device layout is shown in Fig. 3.
All layout metadata blocks are protected using the “twinning”
scheme. In the statically allocated metadata areas, this results
in a repeated pattern of N left twins being followed by N
right twins, were N is the twin offset. These metadata areas
are doubled in size as a result. Indirect blocks in the data area
are twinned as well. TwinFS can also protect the data blocks of
selected files. First and foremost, this data block protection is
applied to the stack metadata files (logical mapping; directory
files), since these must be included in the checkpoints as per
Sec. IV-B. As stated before, file data of important user files
can also be protected with this approach; however, it would
be costly (in performance and space usage) to protect all
file data this way. Thus, in the data area, the twin pairs of
indirect blocks and protected data blocks are interspersed with
unprotected data blocks. When a protected block is created in
the data area, two physical disk block locations at a fixed

U

U

(a) (b) (c)

Root

Inode

Indirect

Data

inode 1 inode 2

write

write

Fig. 2: TwinFS hierarchy example. Each block’s left and right twins are shown;
each latest stable twin is grayed. The lines represent safe block pointers. As
simplification, each inode block contains only one inode. In (a), inode 1 has
one indirect block pointing to a data block. In (b), this data block is overwritten
in-place, and its ancestors are updated with new checksums by writing to the
unstable (U) twins–up to but excluding the root block. In (c), a new checkpoint
is established by writing a new root block.



Boot block
Root blocks

Inode bitmap

Inodes Data area
Block

bitmap
Resync

log

Fig. 3: High-level overview of the TwinFS on-device layout. The root, inode, and bitmap blocks are metadata and thus protected. The data area contains both
protected and unprotected data blocks, as well as indirect blocks, which are metadata and thus protected. The resynchronization log is described in Sec. V-C.

separation must be allocated.
The root block of the layout scheme is “twinned” as well.

Writing out a new root block equals taking a new checkpoint,
and this is done only as part of a sync call. The root block
is self-checksummed and contains a timestamp. A write cache
flush is performed on the underlying device both before and
after writing out the root block. Since the twin state of the
root block cannot be stored anywhere, TwinFS has to read in
and verify the checksum of both root block twins at startup.

B. General consistency scheme requirements

During recovery, all file stores must agree on the checkpoint
to reload. For some file stores, this may be the penultimate
checkpoint they have taken: it is possible that a system or
process failure occurs during the checkpointing operation,
whereby some file stores have finished establishing the check-
point, and others have not. This results in the following
requirements for the consistency schemes employed by the file
stores: 1) it must always be possible to recover all (layout and
stack) metadata to the state in the last checkpoint; and, 2) right
after taking one checkpoint locally, but before this checkpoint
has been finished across all file stores, it must remain possible
to restore the previous checkpoint as well.

TwinFS meets these requirements. At any time, one of the
root block twins identifies a stable checkpoint, since all of the
metadata locations it refers to are stable and thus are left intact
at least until after taking the next checkpoint. Immediately
after taking a new checkpoint, both root block twins identify
usable checkpoints, and either can be reloaded. Once new
“unstable” data has been written out, only the latest checkpoint
can be reloaded.

Even though we use only TwinFS in our prototype, each
file store has the freedom to employ any consistency scheme
that satisfies the stated requirements. This includes several of
the more well-known consistency schemes:

• Copy-on-write consistency schemes effectively imple-
ment checkpoints by persisting new root nodes of the
metadata tree. A minimum of two root nodes is enough.

• For journaling schemes, each transaction has to span be-
tween two checkpoints, and taking a checkpoint amounts
to committing the current transaction. Copying from the
journal to the original location may commence only once
taking the checkpoint has finished globally.

• Logging schemes could be used as is, as long as the
recovery procedure restores the latest checkpoint without
performing any roll-forward on metadata.

• However, soft update schemes rely on frequently updating
metadata in-place. This makes rollback impossible. Any

such scheme is not suitable.

For consistency schemes that can overwrite data blocks in-
place, such as some forms of journaling, there is an additional
requirement: a data block must never be overwritten with
contents of one file, if according to the last checkpoint this
block was assigned to another file. If this were allowed, the
new data could be read from the old file after a checkpoint
restore, which could constitute a security violation. While
parental checksumming helps to protect against this case, it
does not provide a secure solution. In TwinFS, blocks that
are freed are not reused until a new checkpoint is taken. This
equally applies to protected and unprotected blocks.

C. Taking and reloading checkpoints

New global checkpoints are established using the Loris
sync operation, which travels from the naming layer down
the stack. This call causes all layers to flush pending data
and stack metadata updates, and tells the file stores to create
a new checkpoint. Sync calls are initiated upon application
request (with POSIX’ sync or fsync), periodically, and at system
shutdown. During the sync operation, other state-changing
Loris operations are deferred.

Upon startup, the logical layer queries all file stores for
valid checkpoints. In response to this, all file stores return
the timestamps of their valid checkpoints. If the system shut
down cleanly, or crashed while no sync call was ongoing, all
file stores will share the same latest checkpoint timestamp.
If the system crashed during a sync call, not all file stores
may have the latest checkpoint, but they will all have the
penultimate one. After all file stores have reported their
available checkpoint timestamps, the logical layer instructs
them to load the most recent common checkpoint.

V. DATA RESYNCHRONIZATION

Some consistency schemes include all data in the check-
points. Examples would be a pure copy-on-write or log-
structured layout. Journaling and twinning layouts may or
may not. For those that do not, data resynchronization may
be needed to restore full consistency after a system crash.

In Sec. III-A.2, we listed two problems in traditional RAID
resynchronization. We now show that the Loris stack offers
the opportunity to improve on both problems: the large area
to scan (Sec. V-A) and the possibility of corruption (Sec. V-
B). We then describe how TwinFS implements support for
data resynchronization (Sec. V-C), and we outline the full
resynchronization procedure (Sec. V-D).



A. Limiting the areas to scan
In the Loris stack, we can very narrowly define the areas to

which data resynchronization should be applied. First of all,
since the file stores are completely file-based, unused parts
of the disk are inherently excluded from resynchronization.
Furthermore, resynchronization only involves data files. The
layout metadata and the stack metadata files are already
covered by the checkpointing system.

Second, Loris’ per-file policies allow certain files to be
stored with more redundancy than others. Files that are stored
on one device only, need not be resynchronized. Moreover,
the per-file policy system allows the user to assign a level of
importance to a file. Files that are deemed especially important
by the user, can be included in the checkpoints. This excludes
them from resynchronization.

Finally, resynchronization is needed only for data blocks
that have been overwritten in-place since the last checkpoint.
After all, not-in-place updates are simply discarded when
restoring a checkpoint. Since the security requirement from
Sec. IV-B imposes that no file data can be overwritten with
another file’s data, resynchronization can be limited to in-place
overwrites within the same file.

B. Verifying data
If a data block is overwritten in-place, and the last check-

point is restored afterwards, the parental checksum of the block
will no longer match. The file store can then no longer discern
whether the block was merely overwritten, or has been subject
of corruption. Thus, it has to either discard the data block,
resulting in data loss, or ignore the checksum, risking to pass
corrupted data to the application. For a reliable stack, neither
is acceptable.

The file store must therefore make sure that when a data
block is overwritten in-place, its new parental checksum has
already been written to disk. The file store thus has to persist
this information outside the checkpoints. This can be done
by means of a log of “checksum records.” Depending on the
consistency scheme, this may be a dedicated resynchronization
log, or be integrated in the main journal or main log. Before
a data block is overwritten, the file store persists a record that
contains the new checksum for the block. After restoring the
last checkpoint, the file store can scan the log for these records.

The checksum records have two purposes. First, it allows
the file store to tell whether the contents of an overwritten data
block are valid or corrupted. The block contents are considered
valid if the block checksum matches any one of the recorded
checksums. After all, a system failure may occur between
writing the record and writing the data block, in which case an
earlier checksum is still valid. This checksum is possibly in an
earlier checksum record and otherwise in the last checkpointed
copy of the inode. Note that more than two checksums may
have to be tested: checksum records may be generated for
intermediate in-memory block updates that are never actually
written to the device.1

1This could be avoided with a counter in the checksum record that obsoletes
that many previous checksums for the block. We did not implement this.

Second, it allows the file store to tell exactly which blocks
have been overwritten and thus should be subject to resyn-
chronization. This limits resynchronization exactly to the areas
defined in the previous section. However, even though files that
are stored without redundancy also require no resynchroniza-
tion, checksum records also have to be generated for those
files, because the corruption concern applies equally to them.

If a system crash resulted in a torn write of a data block,
none of the checksums will match. This case cannot be
distinguished from other forms of corruption, and the data
block will be lost. Given sufficient redundancy, it can be
restored from other file stores. In the worst case however, every
device suffers from a torn write. By including their file data in
the checkpoints, stack metadata files and important user data
files are protected from this problem.

C. The TwinFS resynchronization log

Since TwinFS does not include all data blocks in its check-
points, it may end up overwriting unprotected data blocks in-
place. Thus, TwinFS must perform data resynchronization. To
this end, we add a dedicated resynchronization log to it, which
uses a reserved device area to store checksum records.

Each checksum record contains a physical file ID, a file
block offset, and the new block checksum. Pending check-
sum records are aggregated into “log blocks,” which are
self-checksummed and contain the corresponding checkpoint
timestamp. In order to let file stores generate and aggregate
checksum records ahead of the actual write operations, we add
a prewrite Loris call. This call is sent down from the cache to
the physical layer when an application performs a write call,
providing an early copy of the data to the file stores. Whenever
TwinFS receives a write operation that overwrites unprotected
blocks, it ensures that the corresponding log blocks have been
flushed to the device first.

After a checkpoint has been reloaded, TwinFS goes through
the log area, and processes log blocks that have both a valid
checksum and a matching checkpoint timestamp. It performs
two actions on the records in each valid log block. First,
it compares the checksum in the record to the computed
checksum of the corresponding data block. If those match,
it updates the data block’s safe block pointer (in the file inode
or an indirect block) with this checksum, effectively marking
the data block as not corrupted. Second, it reports the file byte
range from the record to the logical layer, for the purpose of
resynchronization across file stores.

D. Resynchronization procedure

After the file stores have checked local data checksums, the
next step is resynchronization across file stores. After all, the
redundantly stored copies may still be out of sync.

The resynchronization procedure is performed by the logical
layer as part of system crash recovery, right after restoring the
appropriate checkpoint. The logical layer queries all file stores
for a list of physical file IDs and byte ranges that are to be
resynchronized. In the worst case, resynchronization involves
all data from all unprotected, redundantly stored files; in the



common case, only a few files and blocks will be involved.
File stores that include all data in their checkpoints always
report an empty set.

The logical layer then maps each reported (physical) file ID
to a logical file ID. We do this by storing the logical file ID
as an attribute of each physical file. The logical layer reads in
the reported byte ranges from all file stores involved in storing
this logical file, and optionally writes back resynchronized data
to some of them. In the case of (RAID1-like) mirroring, all
mirrors are synchronized to the contents from the first file store
that does not report a checksum error. In the case of (RAID4/5-
like) parity-striping, the parity is recomputed, unless one of the
file stores reports a checksum error. In that case, that file store’s
contents are recomputed. If more checksum errors are reported
than supported by the RAID failure model, the affected byte
ranges are marked as bad, and will result in an error being
returned to the application when being read later.

By disregarding data copies with checksum errors before
performing resynchronization across file stores, we solve the
write hole problem. We do not offer guarantees about which
valid data copy is restored, however. Content-level data con-
sistency is thus left to applications, as with standard RAID.

VI. IN-MEMORY ROLL-FORWARD LOGGING

The process crash recovery procedure consists of two steps:
first restoring the last checkpoint, and then rolling forward the
lower layers by replaying operations. The cache layer, which
we currently assume to be a stable point in our stack, performs
the second step, by keeping an in-memory log of operations.
We describe how this log interacts with the checkpointing
system (Sec. VI-A), the operation of logging and replay
(Sec. VI-B), and the resulting assumptions and guarantees for
process crash recovery (Sec. VI-C).

A. Interaction with checkpointing

When any of the processes in the lower two layers crashes,
we choose to restart all of them, including all file stores. This
has two advantages. First, this saves us from adding extra
custom recovery code in those processes. Upon their restart,
they will simply cooperate in restoring the latest checkpoint
as part of their normal startup procedure. Second, there are no
corner cases to handle when multiple processes crash at once.

The logical layer can detect when any file store or itself has
restarted. First, when a Loris process is started, it will report
its presence to the next layer up the stack. An unexpected
presence notification from a file store thus indicates that a file
store has restarted. Second, when a MINIX 3 system process
crashes, it is restarted with a flag indicating that it crashed. If
the logical layer itself restarts, this flag will be set.

Upon detecting a file store crash, the logical layer commits
suicide (gracefully), forcing itself to restart. When it comes
back up after a restart, the restart flag will be set; this may
be the a result of either a local crash or committing suicide.
The logical layer then kills and thus restarts all file stores.
The result is that regardless of where a crash (or multiple

concurrent crashes) happened, both the logical and physical
layers will end up being restarted with a fresh state.

After that, the logical layer will perform the standard
checkpoint reloading procedure as part of its startup proce-
dure. However, when the logical layer’s restart flag is set, it
skips the unnecessary data resynchronization phase: any in-file
overwrites that took place after taking the latest checkpoint but
before the crash, will be performed again.

B. Logging and replay

At all times, the cache keeps an in-memory log of operations
performed after taking the last checkpoint. This log is cleared
upon each successful sync call. All Loris operations that
modify state in the lower layers are stored in the log: create,
delete, write, truncate, and setattr. Since the cache uses pages
as the smallest unit of storage, the new version of an entire
page is stored as part of the log entry for a Loris write
operation. Multiple writes to the same page are merged, and
pages are removed from the log as appropriate upon Loris
truncate and delete calls. As long as a page is in the main
cache, the log only keeps a pointer to it; a copy is made for
the log when the page is evicted from the main cache. If the
total size of the log exceeds a configurable threshold, the cache
makes an upcall to the naming layer to trigger an early sync.
Note that the naming layer’s subsequent flush will first cause
the log to expand further (but see Sec. IX on future work).

After startup, the logical layer always announces its pres-
ence to the cache layer. The cache layer can tell from an
unexpected presence announcement that the logical layer has
restarted. The cache layer then cancels all ongoing downcalls,
replays the in-memory log by issuing all operations in the log
in sequence, and, upon success, restarts the previously ongoing
calls. None of this is exposed to applications in any way. If
the replay procedure fails, it is retried for a predefined number
of times. Upon consistent failure, application-transparent re-
covery becomes impossible, and the entire stack is shut down
to prevent further data loss.

There is one exception. It may happen that the system
crashes before a sync call completes, but after all file stores
have established a new checkpoint. The newer checkpoint
would then be reloaded, causing unexpected failures during
replay. For this reason, the logical layer informs the cache
layer about checkpoint timestamps, and upon a mismatch after
a crash, the cache clears its log instead of replaying it.

C. Assumptions and guarantees

Due to the process isolation offered by the microkernel
environment, the only way in which failures can propagate,
is through inter-process communication between processes.
Moreover, since we completely restart the logical and physical
layers, we throw out all of their internal state, including any
state that has been corrupted as part of the failure.

As a result, we make only two assumptions about the
behavior of any failing process: 1) no “bad” (corrupted) results
are passed up to the cache; 2) no bad (meta)data may be
written to the devices, unless they are discarded again once a



Benchmark PhysFS PhysFS+df TwinFS-0 TwinFS-4 TwinFS-8 TwinFS-16 TwinFS-32
PostMark (transaction time, sec) 1097 1086 1101 1192 1158 1144 1150
FileBench File Server (ops/sec) 349.53 350.25 372.18 343.78 344.16 344.16 343.47
FileBench Web Server (Zipf) (ops/sec) 549.06 548.01 571.78 535.94 536.04 540.82 543.57
OpenSSH build (sec) 618.78 620.20 629.23 630.96 630.48 630.41 631.88

TABLE I: Transaction time in seconds for PostMark (lower is better), operations per second for File Server and Web Server (higher is better), and wall clock
time for OpenSSH build (lower is better). Performance is shown for PhysFS, PhysFS with delayed freeing, and TwinFS with various twin block offsets.

checkpoint is restored. The second point implies that writing
out corrupted unstable blocks is allowed in the failure model,
as long as a crash happens before these blocks are made stable.
This facilitates performing internal integrity checks before
taking a new checkpoint.

As long as the two assumptions are not violated, this
approach guarantees proper recovery from any bad behavior in
the lower layers. This includes: arbitrary memory overwrites
(wild writes), including heap and stack corruption; arbitrary
function calls; infinite loops; and, arbitrary allocation of re-
sources available to the processes, including memory.

VII. EVALUATION

We now present a performance and reliability evaluation
of our prototype. All of the following experiments were
conducted on an Intel Core2Duo E8600 PC, with 4GB of
RAM, and two 500GB 7200RPM Western Digital Caviar Blue
(WD5000AKS) SATA hard drives for testing purposes. The
tests were run on the first 8GB of the disks. All benchmarks
were run on MINIX 3. In order to stress the lower layers, the
cache layer was given a small (64MB) buffer cache. A sync
call is made once every five seconds.

A. Performance evaluation

For performance evaluation, we used these macrobench-
marks: PostMark, altered to perform a sync call before the
transactions phases, configured to perform 80,000 transactions
on 40,000 files in 10 directories, with file sizes between 4KB
and 28KB, using 4KB I/O operations; FileBench File Server,
altered to use the same randomly chosen random seed for
each round of experiments, configured with 10,000 files at
an average of 20 files per directory; FileBench Web Server,
altered to pick files using a Zipf distribution pattern in order to
introduce locality, configured with 25,000 files with an average
of 20 per directory; and finally, an OpenSSH build test which
unpacks, configures and builds OpenSSH.

1) TwinFS: We started by evaluating the performance of
TwinFS, on a single disk, initially without a resynchronization
log. Application data was unprotected (not twinned). We com-
pared various TwinFS configurations to the original PhysFS
file store implementation. We did not succeed in time to get
a journaling file store to perform well enough for a head-on
comparison to another crash-consistent layout.

In early experiments, TwinFS kept outperforming PhysFS.
This turned out to be due to TwinFS’ delayed block freeing,
which resulted in more favorable block allocation patterns.
We modified PhysFS to perform the same delayed freeing; we
refer to this version as “PhysFS+df.”

For TwinFS, we varied the hardcoded offset between the
left and right twin of all pairs. A twin offset of 1 block means
the twins are adjacent on the device. We show the results
for offsets of 4, 8, 16, and 32 blocks; other twin offsets did
not result in overall more favorable results. For comparison
purposes, we also tested a twin offset of 0, causing all blocks
to be updated in-place. This effectively reduces TwinFS to
PhysFS+df, with one major difference: TwinFS issues device
write cache flushes when writing the root block.

Table I shows the median performance result out of five runs
for each configuration and benchmark. For all tests, the cache
size was too small to contain the working set. This resulted in
long run times and a significant amount of I/O. Surprisingly, in
some tests, TwinFS-0 performed better than PhysFS+df. We
confirmed that this is due entirely to the added write cache
flush call–an oddity of the disk used.

Compared to the best of the crash-unsafe alternatives,
TwinFS with a twin offset of 16 blocks yielded the overall
best performance in our tests (with an overhead of 2–8%),
although only by small margins compared to the other twin
offsets. Microbenchmarks showed that performance degrades
when otherwise contiguous metadata blocks use a mix of left
and right twins, destroying contiguity. When this is not the
case, performance goes up with larger twin offsets, because in
that case the stretches of contiguous blocks are larger as well.

2) Data resynchronization: We used the same single-disk
configuration and the same set of benchmarks to evaluate
the overhead of the TwinFS resynchronization log. For each
benchmark, we also measured the maximum amount of data
that would have to be resynchronized after a system crash, if
all the files were stored with redundancy.

The resulting performance numbers are shown in Table. II.
The extra run-time overhead was negligible. Also, the worst-
case amount of data to resynchronize in case of a crash is very
small in all tests–we confirmed that the resulting resync times
are negligible (sub-second) even if all files were mirrored on
two disks. Finally (not shown), none of the benchmarks ended
up writing more than a handful of resync log blocks between
any two checkpoints, suggesting that TwinFS requires only a
small log area. Note that in our benchmarks, most in-place
overwrites were the result of appending data to log files. Web
Server only appends block-aligned chunks to its log, resulting
in almost no data being overwritten.

Overall, the prewrite solution allowed for proper aggrega-
tion of checksum records. However, it proved not to be ideal,
since it complicates parity precomputation for parity-striped
files. We now believe that a better solution is to let the file
stores cache small numbers of data blocks for short times.



Benchmark T-4 T-8 T-16 T-32 Peak
PostMark 1197 1161 1146 1153 1663 KB
File Server 342.61 345.74 345.83 342.04 1327 KB
Web Server 530.25 536.86 546.52 539.03 4 KB
OpenSSH 632.23 632.53 631.90 632.33 1266 KB

TABLE II: The same benchmarks, now for TwinFS with the resync log
enabled. Also shown is the worst-case size of the user data to resynchronize
if all data were stored with redundancy.

3) The cache log: Next, we tested the overhead of the cache
log, both in performance overhead and in resource usage.
We configured Loris to mirror all files on two disks, using
TwinFS with a twin offset of 16 blocks (and, although unused,
a resynchronization log) on both mirrors. We did not bound
the cache log size; rather, we measured the maximum amount
of memory needed for the log between any two checkpoints.
To keep the comparison fair, we do not let the cache save on
I/O by reusing (meta)data stored in the in-memory log if it
already evicted the primary copy; otherwise, this would speed
up the performance due to a bigger effective total cache size.
Table III shows the results.

As shown, the mirroring case added little overhead to
the single-disk case. The cache log added almost no visible
overhead on top of that. The memory usage for the log was
significant, but this is expected to get relatively smaller with
larger cache sizes, since more data pages will be shared
between the main cache and the log in that case.

B. Reliability evaluation

For the reliability evaluation, we used the same configura-
tion as for the cache log test.

1) Kill tests: We tested both the TwinFS checkpointing
system and the process crash recovery procedure at once, by
killing the processes in the lower two Loris layers. Each kill
was performed by injecting a trap instruction at the process
program counter. We repeatedly ran the OpenSSH benchmark,
killing one of the processes at random intervals–once every
twenty seconds on average.

We performed 10,701 kills this way. In all cases, the crash
was hidden completely from the application layer, and the
benchmark completed successfully. The median cache log
replay time was 0.22 seconds; the maximum was 6.5 seconds.
This depended only on the size of the log. However, the
logical and physical layers have to refill their local caches
from disk after each restart; this caused an overall benchmark
performance degradation of up to 44%. Of course, we do not
expect crashes to occur this often in practice. In 85 cases, the
cache refrained from replaying its log due to a crash at the
very end of a sync. In 88 cases, a TwinFS instance had to
reload its penultimate checkpoint.

2) Targeted fault injection: In addition, we manually in-
jected a number of less-trivial process faults, based on bugs
we experienced in practice while developing Loris.

Stack overrun: In early Loris versions, thread stacks had no
guard pages. If the stack for one thread’s execution path was
too small, part of the next thread’s stack would be overwritten.
That would cause a crash in the next thread, but only if that

Benchmark No cache log With cache log Memory usage
PostMark 1132 1150 170 MB
File Server 337.79 337.70 192 MB
Web Server 531.85 540.60 112 MB
OpenSSH 635.05 634.28 230 MB

TABLE III: The same benchmarks, now with two TwinFS-16 instances (with
resync log) and all files mirrored across these two instances. Also shown is
the peak memory usage for the cache log.

thread was active. This bug occasionally triggered in TwinFS
with deep recursive parent block updates.

Heap corruption: In one case, a static array in the logical
layer was too small for the maximum amount of data stored
in it, and this would sometimes result in other variables on
the heap to be overwritten. An assert would then go off when
one of the corrupted fields was used afterwards.

Deadlock: A typical source of transient failures is threads
contending for shared resources. Any programming errors
in mutual exclusion code can cause race conditions. During
TwinFS development, we ran into a case where multiple
threads would concurrently try to acquire a large number of
data buffers from a shared pool for a write operation, resulting
in buffer exhaustion and a deadlock between the threads. This
would trigger call timeouts after a while.

We simulated these and 12 other comparable bugs in the lat-
est Loris version. Each bug eventually triggered, and caused a
process crash. In all cases, the recovery mechanism performed
successful recovery, and the system kept running.

VIII. RELATED WORK

We list the most directly related work on system and process
crash recovery.

A. System crash recovery

TwinFS can be described as a hierarchical version of
doublefs [7], or a selective copy-on-write file store where
each protected block has two preallocated copies. As such,
this layout shares several advantages with copy-on-write file
systems: no need to write out metadata updates more than
once, and no metadata recovery code. At the same time,
TwinFS does not share some of their disadvantages: high
fragmentation, cascaded metadata allocation, and difficulty to
track free space. Finally, the implementation is fairly simple.
It does however require more on-device space. Compared to
doublefs, TwinFS uses the hierarchy to determine which block
copy to use, eliminating the necessity to read in both copies on
every read. Intra-device redundancy, like Stable Storage [11],
could be added as an orthogonal feature.

We are not aware of work that involves global consistency
across arbitrary local heterogeneous file/object stores. A simi-
lar problem can be found in fan-out stackable file systems that
require their own metadata storage. An example is RAIF [10],
which does not fully address this problem.

Several solutions have been proposed to limit the areas of
resynchronization in traditional software RAID. Most com-
parable to our work is journal-guided resynchronization [4],
which proposes extending existing file system journals with



records for data resynchronization. Our checksum records
add checksumming to this, allowing the resynchronization
procedure to determine not only what to resynchronize, but
also which of the redundantly stored copies (not) to use. Our
checksum log is similar to the hash log used for general data
integrity, but not resynchronization, in [16].

The write hole can be eliminated by never overwriting data,
thus avoiding the need for resynchronization altogether. This
approach is employed by for example ZFS [1].

B. Process crash recovery

Little research has focused on storage stack reliability in
microkernel environments. Studies that do (e.g., [3], [15]),
depart much more radically from the traditional storage stack
model, leaving open the question whether a reasonably effi-
cient POSIX-compliant system could be built on top.

Membrane [17] uses checkpoints and in-memory logging
to recover from crashes in existing file systems on Linux.
We use the same basic approach, but can offer stronger
guarantees because of the microkernel-provided process isola-
tion, allowing recovery from a broader class of failures. This
does come at an extra performance cost; ongoing research
aims to reduce that cost significantly by exploiting multicore
architectures. Compared to Membrane, we protect the rather
complex equivalent of the RAID layer. On the other hand,
Membrane protects the equivalent of our naming layer. By
leaving out the naming layer in this work, we can make fewer
assumptions about the implementation of the layers we do
protect. For example, the file stores are not required to generate
the same physical file ID upon retried create operations, and
open deleted files are not a special case.

Toward the other end of the spectrum, Re-FUSE [18] can
recover from crashes in a more diverse set of file systems, at
the cost of making more assumptions about their behavior.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have made a case for integrated support for
recovery from system and process crashes in the Loris storage
stack, using a single shared base: restoring global metadata
consistency by means of checkpointing. On top of this, we
have presented a fast and reliable approach to data resyn-
chronization for recovery from system crashes, and recovery
from transient process crashes in the lower two layers of the
stack with relatively few assumptions. Our proof-of-concept
implementation shows that these additions increase the overall
reliability of our prototype, at a reasonable performance cost.

Dealing with process crashes in other layers in the stack is
part of future work, as sketched in [19]. For the naming layer,
this involves making sure that every VFS call immediately
flushes its state changes down to the cache. As a result, the
cache will always be consistent with respect to the naming
layer’s stack metadata. That in turn means the cache can
perform a sync operation at any time, allowing the cache log’s
memory size threshold to be strictly enforced (see Sec. VI-B).
The cache layer itself is deemed a stable point in the stack;
still, we are working on a new crash recovery technique for

the cache, even though we have to make stronger assumptions
about the failures that can occur.

One unsolved problem in this work is efficient support for
fsync and transactions. We intend to investigate the implica-
tions of adding support for those. This will likely result in
exploring the other option laid out in Sec. III-A.1.

ACKNOWLEDGMENT

This research was supported in part by European Research
Council Advanced Grant 227874.

REFERENCES

[1] Sun Microsystems, Solaris ZFS file storage solution. Solaris 10 Data
Sheets, 2004.

[2] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum. Loris
- A Dependable, Modular File-Based Storage Stack. In Pacific Rim
International Symposium on Dependable Computing, PRDC’10, pages
165–174, 2010.

[3] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell. CuriOS:
Improving Reliability through Operating System Structure. In USENIX
Symposium on Operating Systems Design and Implementation, OSDI’08,
pages 59–72, 2008.

[4] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Journal-
guided resynchronization for software RAID. In Proc. of the Fourth
USENIX Conf. on File and Storage Technologies, FAST’05, pages 7–7,
2005.

[5] G. R. Ganger and Y. N. Patt. Metadata update performance in file
systems. In Proc. of the First USENIX Conf. on Operating Systems
Design and Implementation, OSDI’94, page 5, 1994.

[6] R. Hagmann. Reimplementing the Cedar file system using logging and
group commit. In Proc. of the Eleventh ACM Symp. on Operating
Systems Principles, SOSP’87, 1987.

[7] V. Henson and T. Ts’o. Double the Metadata, Double the Fun:
A COW-like Approach to File System Consistency. http://
valerieaurora.org/review/doublefs.pdf.

[8] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum.
Construction of a Highly Dependable Operating System. In Proc. of the
Sixth European Dependable Computing Conference, EDCC’06, pages
3–12, 2006.

[9] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS file
server appliance. In Proc. of the USENIX Winter 1994 Tech. Conf., 1994.

[10] N. Joukov, A. M. Krishnakumar, C. Patti, A. Rai, S. Satnur, A. Traeger,
and E. Zadok. RAIF: Redundant Array of Independent Filesystems.
In Proc. of Twenty-Fourth IEEE Conf. on Mass Storage Systems and
Technologies (MSST 2007), pages 199–212, September 2007.

[11] B. W. Lampson. Atomic Transactions. In Distributed Systems - Archi-
tecture and Implementation, An Advanced Course, pages 246–265, 1980.

[12] T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large
industrial software system. In Proc. of the 2002 ACM SIGSOFT int.
symp. on Software testing and analysis, ISSTA ’02, pages 55–64, 2002.

[13] J. Ousterhout and F. Douglis. Beating the I/O bottleneck: a case for
log-structured file systems. SIGOPS Oper. Syst. Rev., 23:11–28, 1989.

[14] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays
of inexpensive disks (RAID). In Proc. of the 1988 ACM SIGMOD Intl.
Conf. on Management of data, pages 109–116, 1988.

[15] J. S. Shapiro and J. Adams. Design Evolution of the EROS Single-Level
Store. In Proc. of the USENIX Annual Technical Conf., 2002.

[16] C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying File System
Protection. In Proc. of the General Track: 2002 USENIX Ann. Tech.
Conference, pages 79–90. USENIX Association, 2001.

[17] S. Sundararaman, S. Subramanian, A. Rajimwale, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and M. M. Swift. Membrane: operating system
support for restartable file systems. In Proc. of the Eighth USENIX Conf.
on File and Storage Technologies, FAST’10, pages 21–21, 2010.

[18] S. Sundararaman, L. Visampalli, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Refuse to Crash with Re-FUSE. In Proc. of the 6th
European Conf. on Computer Systems, EuroSys’11, 2011.

[19] D. C. van Moolenbroek, R. Appuswamy, and A. S. Tanenbaum. Inte-
grated End-to-End Dependability in the Loris Storage Stack. In Proc. of
the Seventh int. conf. on Hot topics in system dependability, HotDep’11,
2011.


