
IOMMU driver for MINIX 3

Author: Supervisors:

Adriana Szekeres Erik van der Kouwe

dr. Andrew S. Tanenbaum

May, 2011

Table of Contents

1 Introduction . 1

2 Architecture . 2

3 AMD’s IOMMU driver Implementation 4

3.1 IOMMU acpi . 4

3.2 IOMMU init . 6

3.3 IOMMU commands . 6

3.4 IOMMU logging . 7

3.5 IOMMU mapping functions . 8

3.5.1 Simple virtual address allocator 9

3.5.2 Page tables manipulation . 10

4 IOMMU’s driver interface . 12

5 Modifications/Additions to other MINIX components 14

6 Future Work . 16

Bibliography . 18

ii

Introduction

The Input/Output Memory Management Unit (IOMMU) is a hardware device (chipset
feature) designed to translate the I/O virtual addresses, i.e. the addresses used by
devices to access the main memory, to physical addresses. Its main function is to protect
the main memory against faulty devices/drivers, by controlling their DMA operations.

While a traditional MMU is used to translate to physical addresses the virtual addresses
issued by the CPU, the IOMMU sits between devices and the main memory, intercepting
and translating to physical addresses the I/O virtual addresses issued by the devices,
(see Fig. 1.1).

Main Memory

IOMMU MMU

CPUDevice

Physical Addresses

Virtual AddressesDevice Addresses

Fig. 1.1: Comparison between the IOMMU and the traditional MMU

The IOMMU has been recently added to AMD and Intel chipsets. The AMD-Vi is the
AMD implementation of the IOMMU. Its specification is published in [amd09]. Intel
has also published a specification for their IOMMU technology, called Virtualization
Technology for Directed I/O, abbreviated VT-d [int08].

This project aims to build the IOMMU driver for MINIX, for an AMD-Vi device.

1

Architecture

The general architecture of the MINIX 3 IOMMU driver has been designed to be com-
patible with the two IOMMU specifications (AMD and Intel). The main components
of the IOMMU driver and their interaction with the other MINIX 3 servers/drivers are
shown in Fig. 2.1. The direction of the arrow specifies which driver/server is the initiator
of the message (using sendrec or send syscalls). For example, the IOMMU is the one
initiating the requests to both PCI driver and ACPI driver, using the sendrec syscall.

IOMMU driver

ACPI driver

iommu_acpi
iommu_commands

iommu_mapping_functions

VM server

PCI driver

iommu_init

iommu_logging

Any driver using DMA

(1)

(2)

(3)

(4)

(5)

(6)

sendrec()

send()

Fig. 2.1: The architecture for the testing system

The numbers assigned to the arrows in Fig. 2.1 refer to the following messages (defined
in common/include/minix/acpi.h and common/include/minix/com.h) that are
sent between the drivers/servers:

• (1)

ACPI REQ GET TABLE SIZE

ACPI REQ GET TABLE

2

2. ARCHITECTURE

• (2)

BUSC PCI BDF

• (3)

IOMMU MMAP

IOMMU MUNMAP

• (4)

VM IOMMU REGISTER

• (5)

VM IOMMU MMAP

VM IOMMU MUNMAP

• (6)

IOMMU CLEAR PT

The roles of the above mentioned messages are explained in detail in the next chapters
of this document.

Configuration and status information for the IOMMU are mapped into PCI configura-
tion space using a PCI capability block. Also, the same and additional information can
be found in the ACPI tables. The IOMMU’s registries can be accessed through memory
mapped I/O (MMIO).

As it is shown in Fig. 2.1, the IOMMU driver consists of five components:

• iommu acpi - extracts the necessary information from the ACPI tables

• iommu commands - implements the commands supported by the IOMMU

• iommu logging - implements the logging mechanism

• iommu mapping functions - implements and fills-in the structures used by the
IOMMU to map the physical addresses that drivers are allowed to access.

• iommu init - initializes the IOMMU

3

AMD’s IOMMU driver

Implementation

In this chapter we will present the implementation of each of the five components for
the AMD-Vi IOMMU driver.

3.1 IOMMU acpi

This component parses the ACPI IVRS table. The IVRS table contains information
about all IOMMUs present in the system. The IVRS table is composed of a 48-byte
long header, followed by IVHD and IVMD blocks. The header contains information
such as: the length of the entire table, the Vendor ID of the utility that created the
table, and the virtual and physical address sizes (which are common to all IOMMUs).

The IVHD blocks are used to describe the I/O topology of I/O devices and slots served
by the IOMMUs. Basically, for each IOMMU in the system, there is an IVHD block that
specifies which devices that IOMMU serves. Therefore, an IVHD must exist for each
IOMMU in the system. Additionaly, the IVHD block contains important information
about the IOMMU it describes, such as: DeviceID (BDF) of IOMMU (this will be used
to access the PCI configuration space, as I will describe bellow), the offset in Capability
space for control fields of IOMMU (the Capability space is also in the PCI configuration
space, after the standardized header) and Base address of IOMMU control registers in
MMIO space (this will be basically used to send commands to the IOMMU).

The IVRS table is described in more detail in IOMMU Architectural Specification
[amd09].

Impelementation details:

First, the IOMMU acpi will interrogate the ACPI driver for the IVRS table and then it
will parse it and store it into some structures (some of the structures have been copied
from actbl2.h). Because in MINIX each driver is a separate process, with its own address
space, we cannot access directly functions from the ACPI driver. Therefore, the ACPI
driver has been extended, as we will describe in Chapter 5.

The implementation can be found in the following files:

• iommu acpi amd.h This file contains the structures that describe the ACPI
IVRS table: the ACPI TABLE HEADER, which is common to all ACPI tables

4

3.1. IOMMU acpi 3. AMD’S IOMMU DRIVER IMPLEMENTATION

(one of its most important fields is the length field, which specifies the length,
in bytes, of the whole table); the ACPI TABLE IVRS, which is the header of
the IVRS table; the ACPI IVRS HEADER, which is the header of the IVRS
subtables, i. e. IVHD and IVMD; the ACPI IVRS HARDWARE, which is the
structure describing an IVHD block; the ACPI IVRS DE HEADER, which is
the header of the device entries; the ACPI IVRS MEMORY, which describes an
IVMD block; the iommu container t, which describes one IOMMU; etc. This file
also contains three important global variables: iommu s, which contains a list of all
IOMMUs in the system; iommu lookup, which maps the device to the IOMMU
that is responsible for it and the domain lookup which is a hash that maps a
domain id to its corresponding structure.

This file also contains some masks which are used to extract specific parts from
the table’s fields. For example, the 32-bit long Info field from the structure
ACPI TABLE IVRS is divided into 5 parts: bits [7:0] are reserved and must be
0, bits [14:8] represent the physical address size, bits [21:15] represent the virtual
address size, bit 22 is the ATS address translation range reserved and bits [31:23]
are also reserved and must be zero. So, for example, to extract the virtual address
size, we use the mask (21 << 8 | 15) in which we encoded two numbers: the last
bit of the mask, 21, and the first bit of the mask, 15, that specifies with how
many bits the field (in our case, Info) must be shifted to the right. The following
functions are used for field extraction:

#define LAST(m) \
(0xFFFFFFFF >> (31 − (m >> 8)))

#define FIRST(m) \
(0xFFFFFFFF << (m & 0xFF))

#define MASK(m) \
(FIRST(m) & LAST(m))

#define GET FIELD(p , m) \
(((p) & MASK(m)) >> (m & 0xFF))

• iommu acpi amd.c This file contains the implementation of the ACPI IVRS ta-
ble parsing. The system call ACPI REQ GET TABLE is used to copy the IVRS
table to IOMMU driver’s address space (see Modifications to MINIX, at the end
of this document). After receiving the table, the IOMMU acpi parses it and stores
the references to all the IVHD subtables it finds (in function iommu acpi parse
ivrs()). During the IOMMU initialization, specifically after the device table struc-
ture is allocated, function process iommu entries amd() is called to further process
the IVHD subtable, with all its entries, and to fill-in the device table structure
accordingly.

5

3.2. IOMMU init 3. AMD’S IOMMU DRIVER IMPLEMENTATION

3.2 IOMMU init

This component initializes the IOMMU structures and enables the IOMMUs. It allo-
cates all the necessary memory for the IOMMU structures and sets them up at the
device. Communication with the IOMMU is done through PCI configuration space and
Memory Mapped I/O (MMIO). The PCI driver offers system calls to access the PCI
configuration space (we need to know only the DeviceID, BDF - we find this in the
IVHD block from the IVRS table). MMIO access is a normal memory access (we just
need to know the address where the device is mapped into memory - we find this in the
capability block in the PCI configuration space).

Impelementation details:

The implementation of this component can be found in the following files:

• iommu init amd.h This file only defines some sizes for the structures used by the
IOMMU, such as: the maximum size of the device table, the size of the command
and event logging buffers, etc.

• iommu init amd.c This file implements the functionality of this component. Ba-
sically, the main function is iommu init all amd(), which detects all the IOMMUs
from the PCI devices array and sets them up by allocating the necassary memory
space for their structures and by writing the addresses of the allocated buffers into
their MMIO space (in the device’s registers).

3.3 IOMMU commands

The IOMMU is controled by using a shared circular buffer in system memory. The
IOMMU driver writes commands into the buffer and then notifies the IOMMU. The
IOMMU then reads the commands and executes them asynchronously. To implement
this mechanism, the IOMMU has the control registers mapped into the memory (MMIO
space), e.g. the Command Buffer Base Address Register, Command Buffer Head Pointer
Register, etc. The supported commands are:

COMPLETION WAIT: it synchronizes the IOMMU driver with the IOMMU
device. The COMPLETION WAIT command does not finish until all older com-
mands issued since a prior COMPLETION WAIT have completely executed.

INVALIDATE DEVTAB ENTRY: When the IOMMU driver changes a de-
vice table entry, it must instruct the IOMMU to invalidate that DeviceID from
its internal caches. The IOMMU is then forced to reload the device table entry
before DMA from the device is allowed. The IOMMU may reload the device table
entry any time after the invalidation has completed.

6

3.4. IOMMU logging 3. AMD’S IOMMU DRIVER IMPLEMENTATION

INVALIDATE IOMMU PAGES: this command instructs the IOMMU to in-
validate a range of entries in its translation cache for the specified DomainID.

INVALIDATE IOTLB PAGES: this command is only present in IOMMU im-
plementations that support remote IOTLB caching of translations. This command
instructs the specified device to invalidate the given range of addresses in its
IOTLB.

INVALIDATE INTERRUPT TABLE: this command instructs the IOMMU
to invalidate all cached interrupt remapping table entries for the device.

However, not all of the above commands are used in the driver yet. For example,
the driver does not yet support interrupt remapping. Consequently, the command IN-
VALIDATE INTERRUPT TABLE is not yet used, although it is implemented by the
IOMMU driver.

Impelementation details:

The implementation of this component can be found in the following files:

• iommu cmd amd.h This file defines the constants used to implement the com-
mands for the IOMMU. Mainly, this file contains the constants used to work with
the IOMMU Control Registers (specified in section 3.6.2 from [amd09]).

• iommu cmd amd.c The main function in this file is iommu cmd amd(), which
accepts a command request, fills-in a command buffer, with the specified command
format, and puts it into the circular Command Buffer.

3.4 IOMMU logging

The IOMMU reports events to the IOMMU driver by means of another shared circular
buffer in system memory. The IOMMU device writes event records into the buffer.
The IOMMU driver increments the IOMMU’s head pointer to indicate to the IOMMU
device that it has consumed event log entries. If the IOMMU needs to report an error
but finds that the event log is already full, it sets MMIO Offset 2020h[EventOverflow].
The IOMMU can be configured to signal an interrupt whenever the event log is written.
However, for this it needs the OS to support MSI/MSI-X interrupts. MINIX currently
doesn’t support MSI/MSI-X. Therefore, for now, the IOMMU driver just prints the log
events after each command request to the IOMMU device, even if no event happened.
The following events can appear:

ILLEGAL DEV TABLE ENTRY: when the IOMMU performs a lookup in
the device table and encounters a device table entry that it does not support or
that is formatted incorrectly.

7

3.5. IOMMU mapping functions 3. AMD’S IOMMU DRIVER IMPLEMENTATION

IO PAGE FAULT: when the IOMMU performs a lookup in the page tables for
a device and encounters an error condition.

DEV TAB HARDWARE ERROR: if the IOMMU detects a hardware error
(master abort, target abort, poisoned data, etc.) while accessing the device table.

PAGE TAB HARDWARE ERROR: if the IOMMU detects a hardware error
(master abort, target abort, poisoned data, etc.) while accessing the I/O page
tables.

ILLEGAL COMMAND ERROR: if the IOMMU reads an illegal command
(including an unsupported command code, or a command that incorrectly has
reserved bits set).

COMMAND HARDWARE ERROR: if the IOMMU detects a hardware er-
ror (master abort, target abort, poisoned data, etc.) while accessing the command
buffer.

IOTLB INV TIMEOUT: if the IOMMU sends an invalidation request to a de-
vice and does not receive a response before the invalidation timeout timer expires.

INVALID DEVICE REQUEST: if the IOMMU receives a request from a de-
vice that is not allowed to perform.

Impelementation details:

The implementation of this component can be found in the following files:

• iommu log amd.h This file defines the format for each log event (specified in
section 3.4 from [amd09]).

• iommu log amd.c The main function in this file is display log amd(), which
reads all the events from the Event Log Buffer, parses and then pretty prints them
to the console.

3.5 IOMMU mapping functions

This component is responsible for generating the I/O virtual addresses that will be used
by the devices to perform DMA transfers. The I/O virtual address is basically an index
into a tree structure of page tables. The page tables are used by the IOMMU to check
if the device has the permission to access the requested memory location.

The AMD’s IOMMU page tables are designed to support a full 64-bit device virtual
address space. They are a multi-level tree of 4K tables indexed by groups of 9 virtual
address bits (determined by the level within the tree) to obtain 8-byte entries. Each

8

3.5. IOMMU mapping functions 3. AMD’S IOMMU DRIVER IMPLEMENTATION

page table entry is either a page directory entry (PDE) pointing to a lower-level 4K page
table, or a page translation entry (PTE) specifying a physical page address (frame). A
page translation entry is a page table entry with the Next Level field set to 0h or 7h.
A page directory entry is a page table entry with the Next Level field not equal to 0h
or 7h. More information on AMD’s IOMMU page tables can be found in section 3.2.3
from [amd09].

By default, the IOMMU driver maps the physical address of the DMA buffer to the page
table index (IO virtual address) with the same value. This behaviour is preferred as it
will allow the DMA transfers to be successful even if the IOMMU device (hardware)
fails. However, the IOMMU can be instructed first to generate an IO virtual address
and then map the physical address to that page table index. We believe that this second
behavior will be useful to the Virtual Machine Manager (VMM).

In the following two subsections we will first describe the details of the IO virtual address
generator and then the how the IOMMU driver manipulates the page tables.

3.5.1 Simple virtual address allocator

The virtual address allocator allocates a free range of virtual addresses from a given
virtual address pool, which is basically a linked list of free address ranges.

Impelementation details:

The implementation of the allocator can be found in the following two files:

• iommu va allocator.h This file contains the structure defining the element of
the linked list that contains the currently unallocated virtual address ranges:

typedef struct range {
u32 t s t a r t ;
u32 t end ;
struct range ∗next ;
} range t ;

Each IOMMU initializes this structure with only one element, i.e. the range from
0 to the maximum number of pages supported by MINIX. As MINIX operates on
32 bits and the last 12 bits are for page offset, the maximum number of pages is
220. When the IOMMU needs to allocate a given number of pages, it passes this
structure to the allocation functions, described next.

• iommu va allocator.c This file contains the (de)allocation functions. These
functions basically work on the given range structure, passed as a parameter. The
allocator supports the following functions:

int v a a l l o c (range t ∗∗ range , u32 t s i z e , u32 t ∗va)

9

3.5. IOMMU mapping functions 3. AMD’S IOMMU DRIVER IMPLEMENTATION

This function finds the first free range of pages that fit in the requested size. It
accepts the following parameters:

range - the range on which the allocation will be performed (this parameter
will be modified accordingly after the allocation)

size - size in number of pages of the address space that is needed

va - (output parameter) it contains the first page that has been allocated

int v a r e l l o c (range t ∗∗ range , u32 t s i z e , u32 t va)

This function also allocates a range of pages, but this time it knows the virtual
address that it has to allocate (it doesn’t find the first fit). This function is used
when the IOMMU has to map the mappings received from the VM, as well as
in the normal operation of the IOMMU (when the flag IOMMU GEN VA is not
used, see 4). It uses the same parameters as the previous function, except for va,
which is now an input parameter and represents the page at which the allocation
must start.

int v a f r e e (range t ∗∗ range , u32 t va , u32 t s i z e)

This function frees a previous allocation. It accepts the same parameters as the
previous two functions.

3.5.2 Page tables manipulation

This is the part that deals with the mapping of physical addresses into the IOMMU page
tables. The (un)mapping algorithm is simple. We start with a virtual page address, that
was received or not from the simple allocator. This virtual address represents a page
index into the IOMMU page tables, which we will call first index. Let the end index be
the sum of start index and the number of pages to be mapped. The first thing to do
is see if end index exceeds the current level of the page tables, i.e. it is too big for the
currently supported number of pages. If it does, a new page directory/page transiton
table is allocated, and so on until the page table level has a mximum page index bigger
or equal with the end index. Then we start to (un)map pages from the IOMMU page
tables from start index to the end index. To do this we use a recursive function, that
basically performs something like a BDF (breadth-first search), starting from the page
directory/page translation table corresponding to the first start index and end index,
changing the start and end indexes accordingly, at each recursion.

Impelementation details:

The implementation of the allocator can be found in the following two files:

• iommu mappings amd.h This file contains the definitions that help to easily
modify the page directory entries and the page translation entries fields. It also

10

3.5. IOMMU mapping functions 3. AMD’S IOMMU DRIVER IMPLEMENTATION

defines some constants that are used for page tables manipulation, such as the size
of the page (12 bits), the size of the page table level (9 bits), etc.

• iommu mappings amd.c The functions worth mentioned are:

int map pa (u16 t devid , u32 t pa , u32 t s i z e ,
u32 t ∗va , int f l a g s)

This function maps the requested number of pages into IOMMU page tables. It
accepts the following parameters:

devid - the device id (BDF) for which the mapping is performed

pa - the physical address of the first memory location to be mapped (the
whole memory zone must be contignous in memory)

size - size in number of bytes

va - it can be an input, as well as an output parameter. As an output
parameter, it will contain the virtual address of the first page, as returned
by the simple allocator. As an input parameter, it will contain the virtual
address of the first page at which the mapping should start.

int unmap pa (u16 t devid , u32 t va ,
u32 t s i z e)

This function is similar with the previous one, but modifies in a different way the
page tables entry, i.e. it unsets the page present bit.

11

IOMMU’s driver interface

This chapter describes the interface provided by the IOMMU driver. It is bassically a
guide to driver developers who need to use the IOMMU functions.

The following two functions, implemented in libsys, should be called when a driver
instructs a device to perform DMA:

void ∗iommu mmap(u16 t devid , s i z e t s i z e ,
phys bytes ∗addr , int f l a g s)

This function maps a requested number of pages into the IOMMU page tables. By
default, it first will try to allocate a DMA buffer and then map this buffer into the
IOMMU page tables. However, it can be instructed not to allocate a buffer, but to
use a given one. Also, by default, the IOMMU driver uses the physical address of
the DMA buffer as the virtual address into the page tables (it doesn’t generate a new
virtual address, but maps the physical address of the buffer to a virtual address, i.e. the
index in the page tables, equal to the buffer’s physical address). It accepts the following
parameters:

devid - the BDF of the device

size - size in bytes of the requested memory zone

addr - it contains one of the following:

– (output parameter) the physical address of the allocated DMA buffer, if no
IOMMU is present

– (output parameter) the virtual address as mapped by the IOMMU driver
(this must be used by the device when performing DMA)

– (input parameter) the physical address of the already supplied DMA buffer,
when used in conjunction with IOMMU USE BUF flag

flags - can be one or more of the following (combined with the ”OR” bit operator):

– IOMMU USE BUF - instructs the mapping function to use the provided
buffer (in addr parameter)

– IOMMU R - read access for the device

– IOMMU W - write access for the device

12

4. IOMMU’S DRIVER INTERFACE

– IOMMU GEN VA - instructs the IOMMU driver to generate a virtual ad-
dress where to map the physical address of the buffer

int iommu munmap(u16 t devid , s i z e t s i z e ,
v i r b y t e s vaddr , phys bytes ioaddr , int f l a g s)

This function unmaps the requested pages from the IOMMU’s page tables. It accepts
the following parameters:

devid - the BDF of the device

size - size in bytes of the memory zone that must be unmapped

vaddr - the virtual address of the DMA buffer, as returned by alloc contig()

ioaddr - the address used by the device to perfom DMA, i.e. the virtual address
at which the memory pages have been mapped by the IOMMU driver

flags - can be one or more of the following (combined with the ”OR” bit operator):

– IOMMU KEEP BUF - the dafault operation of the unmap function is to first
free the DMA buffer and then unmap the pages from IOMMU’s page tables.
This flags tells the unmap function not to free the DMA buffer.

13

Modifications/Additions to other

MINIX components

While implementing the IOMMU driver, we had to do several modifications/additions
to the existing MINIX components. In this chapter we briefly describe these modifica-
tions/additions.

VM server: To make the IOMMU driver restartable, we modified the VM
server to record each DMA memory request. When the IOMMU driver is start-
ed/restarted, it will first ask for these requests from the VM server and then it
will map them in new page tables and instruct the IOMMU to use these page
tables. Also, when a driver that uses DMA dies, the VM will have to clear this
driver’s mappings and then inform the IOMMU about the dead process so that
the IOMMU driver could also cleanup its page tables accordingly.

The modifications can be seen in file servers/vm/alloc.c and they mainly consist
in the following:

– the structure that contains a DMA memory request/mapping:

#d e f i n e NR IOMMU MMAPPINGS 1024

PRIVATE struct iommu table
{

int f l a g s ;
u16 t dev bdf ;
phys bytes dev base ;
phys bytes pa base ;
phys bytes s i z e ;
endpo int t source ;

} iommutab [NR IOMMU MMAPPINGS] ;

To record the mappings, we used a static buffer of 1024 entries. Considering
that most of the drivers will require only one DMA buffer, the number of
entries should suffice. Only the disk driver required more that one buffer.
However, while testing, the maximum number of entries required in total
was 50.

– function do iommu register() which sys safecopyto() the requestor the map-
pings vector. This function is called when the IOMMU driver registers at

14

5. MODIFICATIONS/ADDITIONS TO OTHER MINIX COMPONENTS

the VM. To register to the VM, the driver should use the following function,
implemented in lib/libc/other/ vm iommu calls.c:

int vm iommu register (c p g r a n t i d t g id)

– VM mapping functions do iommu mmap() and do iommu munmap() used
to manipulate the mappings vector. These functions are used by those im-
plemented in lib/libc/other/ vm iommu calls.c, which, in turn, are used by
those described in 4.

– function clear iommutab(). This function is called when VM learns that a
process died. It searches into the iommutab structure for possible mappings
pertaing to the dead process. If these mappings exist, they are removed from
the mappings array and then the IOMMU gets notified about this.

PCI driver: We modified the PCI driver to support the following function (im-
plemented in drivers/pci/pci.c):

int p c i b d f s (int devind , u16 t ∗bdf)

This function returns the BDF (bus, device, function) for the given deviceid,
i.e. the index in the PCI devices vector. The correspondig library function is
implemented in libsys in file lib/libsys/pci bdf.c and has the following signature:

void pc i bd f (int devind , u16 t ∗bdf)

ACPI driver: As the IOMMU driver has to parse the IVRS ACPI tables,
we needed to implement two more function in the ACPI driver (in file driver-
s/acpi/acpi utils.c):

void d o g e t a c p i t a b l e s i z e (message ∗m)

This function returns the size of the requested table.

void d o g e t a c p i t a b l e s i z e (message ∗m)

This function copies the requested table to the requesting process memory space.
The requesting process must first request the table size of the table, allocate the
necessary memory space and create a grant to let the acpi driver copy the table
into its memory space (using sys safecopyto).

To see an example that uses the above functions, see the function iommu acpi parse
ivrs(), implemented in file drivers/iommu/iommu acpi amd.c.

15

Future Work

There is more functionality that can be added to the IOMMU driver. There are some
things that need to be implemented and there are also some things that are implemented,
but need to be tested on a machine that presents the needed environment.

• support for INTEL’s IOMMU: As the AMD driver is already written, and the
architecture was designed such as to support both the AMD and INTEL IOMMU
devices, this task should be easier. The two specifications are much alike, for
example, they both use the ACPI tables to store almost the same information,
they both use similar structures for the mappings, i.e. the page tables, etc.

• event logging triggered by interupts: Currently, MINIX doesn’t support
MSI/MSI-X, so if an event happens, it is just put into the Event Log Buffer, but
no interrupt is generated to announce the event.

• IOMMUs in the same function: A device may implement more than one
IOMMU within a single function. Configuration and status information for the
IOMMU are mapped into PCI configuration space using a PCI capability block.
One or more IOMMU capability blocks may be implemented in a function. This
part has not been tested as the testing machine has only one IOMMU.

• IVMD structure: Platform firmware (BIOS) may have memory usage require-
ments to communicate to system software based on its needs or on hardware
characteristics. Platform firmware can inform system software of memory us-
age restrictions or requirements by using I/O Virtualization Memory Definition
(IVMD) blocks. Each IVMD entry may be per-device, specifying the DeviceID
to which the entry applies, or the IVMD entry may apply to all devices and the
DeviceID is ignored. The code parsing the IVMD structure needs to be imple-
mented and tested on an architecture that allows it. On the current architecture,
the IVMD structure does not exist.

• improve page tables manipulation: The mapping algorithm could be im-
proved by filling-in the page tables such as to skip levels where it is possible (a
mechanism supported by the AMD IOMMU). For example, if all the 9 bits form
the virtual address designating a level are 0, then the PDE could be filled-in such
as to point to a (level - 2) PDE/PTE, instead of pointing to a consecutive lower
level.

16

6. FUTURE WORK

• USB support: Currently, MINIX does not have support for USB so the USB
is emulated by the BIOS. The BIOS should have built an IVMD structure in
which it should have specified the memory zone reserved for the USB, so that
the IOMMU driver could instruct the IOMMU device to allow the USB access to
these memory zones. However, the BIOS doesn’t build the IVMD structure so
the IOMMU blocks all DMA accesses performed by the USB. To workaround
this problem, we use an environment variable that can be used (in the boot
monitor) to specify which devices are allowed to perform DMA. For example:
iommu exclude=165:144:45:146 will instruct the IOMMU to allow DMA per-
formed by devices 165, 144, 145 and 146. This problem should dissapear once the
USB driver is be implemented.

17

Bibliography

[amd09] AMD I/O Virtualization Technology (IOMMU) Specification. http:

//support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_

2-11-09.pdf, February 2009. 1, 4, 7, 8, 9

[int08] Intel® Virtualization Technology for Directed I/O. ftp://download.intel.
com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf,
September 2008. 1

18

http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf
http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf
http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf
ftp://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
ftp://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf

	Title
	Table of Contents
	1 Introduction
	2 Architecture
	3 AMD's IOMMU driver Implementation
	3.1 IOMMU_acpi
	3.2 IOMMU_init
	3.3 IOMMU_commands
	3.4 IOMMU_logging
	3.5 IOMMU_mapping_functions
	3.5.1 Simple virtual address allocator
	3.5.2 Page tables manipulation

	4 IOMMU's driver interface
	5 Modifications/Additions to other MINIX components
	6 Future Work
	Bibliography

