
Techniques for Efficient In-Memory Checkpointing

Dirk Vogt Cristiano Giuffrida Herbert Bos Andrew S. Tanenbaum

d.vogt@vu.nl, {giuffrida,herbertb,ast}@cs.vu.nl

The Network Institute, VU University Amsterdam

ABSTRACT
Checkpointing is a pivotal technique in system research, with
applications ranging from crash recovery to replay debugging.
In this paper, we evaluate a number of in-memory check-
pointing techniques and compare their properties. We also
present a new compiler-based checkpointing scheme which
improves state-of-the-art performance and memory guaran-
tees in the general case. Our solution relies on a shadow state
to efficiently store incremental in-memory checkpoints, at
the cost of a smaller user-addressable virtual address space.
Contrary to common belief, our results show that in-memory
checkpointing can be implemented efficiently with moderate
impact on production systems.

1. INTRODUCTION
In-memory checkpointing is an important technique that

allows one to record (and later restore) a memory snapshot
of the entire program state. This general strategy has been
applied in different contexts, including crash recovery [5,7,10,
12,13], replay debugging [6,8,14,16], and automated program
backtracking [16].

Traditional in-memory checkpointing implementations op-
erate at the page level using the standard copy-on-write
(COW) mechanisms offered by modern operating systems [8,
13]. Albeit simple and effective, this strategy can translate
to much unnecessary copying for checkpointing purposes, ul-
timately resulting in poor end-to-end performance especially
for programs that exhibit sparse memory write patterns.

More recent techniques [5,7] have relied on static program
analysis to restrict memory copying only to the set of objects
that can possibly be modified by the program in the current
checkpoint/restart transaction. The conservative nature of
the analysis, however, can greatly overestimate the amount
of data to be copied in the general case, de facto limiting the
technique to checkpoint/restart intervals with well-defined
and scoped entry points (e.g., driver calls [7]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotDep’13, November 03 - 06 2013, Farmington, PA, USA
Copyright 2013 ACM 978-1-4503-2457-1/13/11 ...$15.00.

Other techniques have suggested recording individual mem-
ory writes in an undo log generated by compiler-based [10,16]
or dynamic [12] instrumentation. While an important step
forward over prior techniques, this strategy is still prone
to unnecessary copying and unbounded memory overhead
for programs that exhibit highly-duplicated memory write
patterns.

In this paper, we compare traditional page-granular check-
pointing with more fine-grained compiler-based techniques
implemented entirely at the application level. In particular,
we evaluate the tradeoffs between undo log-based checkpoint-
ing and our newly proposed scheme based on a shadow state
entirely managed by instrumentation. We show how our tech-
niques scale efficiently in presence of duplicate writes, thus
outperforming existing solutions in the general case. Our
evaluation demonstrates that in-memory checkpointing can
be realistically deployed in production systems for general
use.

2. CHECKPOINTING TECHNIQUES
In this section we describe the in-memory checkpointing

techniques considered and compare their key properties in
terms of performance, memory consumption, and run-time
behavior.

Page-granular Checkpointing
Traditional page-granular checkpointing leverages the fea-
tures offered by modern MMUs to implement COW semantics
and limit the amount of copying that a full memory snapshot
would otherwise require. This is typically done by write
protecting the entire memory address space and copying the
content of a page to a safe location when the first write
occurs.

A straightforward way to implement this strategy on Unix
systems is to create checkpoints using the fork system call,
which delegates the COW semantics entirely to the kernel.
As we are only interested in maintaining one in-memory
checkpoint at the time (sufficient for most checkpointing
applications), we can simply kill the child process and fork

again when the next checkpoint is requested.
An alternative is to use the mprotect system call to write

protect all the user pages and implement COW semantics in
an application-level SIGSEGV signal handler. In practice, the
signal handling overhead can significantly hurt performance
and most implementations—including ours—resort to the
simpler and faster fork-based strategy described earlier.

Undo Log
Undo log-based checkpointing techniques [12,16] log all the
memory writes performed by the program after the last
checkpoint request. Every single write is typically recorded
in an undo log entry that contains the address, size, and
previous content of the target memory location. To reduce
the overhead, the log is never searched for duplicate entries,
which are simply appended to the end of log. This strategy
still allows undoing the entire log to reconstruct the last
checkpoint at any point during program execution. The
log is maintained in memory and the write offset reset in
constant time when the next checkpoint is requested.

To intercept individual memory writes, both static [16] and
dynamic [12] instrumentation strategies are possible. In our
prototype, we opted for the former strategy since it is faster
and allowed us to implement several optimizations to reduce
the number of instrumented memory writes, as discussed
in [16]. We implemented our compiler-based instrumentation
as a link-time pass with the LLVM compiler framework [9].
Our pass prepends each memory-altering instruction (i.e.,
store, memcpy, etc.) with a call instruction to our homegrown
logging function. The latter simply creates a new memory
write entry and appends it to the log.

2.1 Shadow State
While relatively efficient, undo log-based techniques incur

nontrivial extra costs to store log entry metadata and record
duplicated entries. To address these issues, we propose a
new shadow state-based approach to keep track of all the
memory changes occurred from the last checkpoint request,
similar, in spirit, to Valgrind’s Memcheck [11]. The shadow-
state checkpointing strategy splits the address space into a
primary state (i.e., the original program state), a shadow
state (i.e., changed data from the last checkpoint), and a
tagmap keeping track of the state changes. Each tag in
the tagmap describes a specific region of memory in the
primary state (currently 128 bytes) and indicates whether
its counterpart in the shadow state contains a copy of the
original checkpointed data. The tagmap and the shadow
state are located at the end of the virtual address space at
fixed offsets. As a result, every byte of the primary state has
a corresponding tag and a candidate shadow copy located
only one constant offset away in memory.

In the simplest case, the tagmap can be implemented as
a simple bitmap, with every bit marking the target region
as being “shadowed” from the last checkpoint request. This
scheme, however, would require resetting the tagmap every
time a new checkpoint is requested. While our current im-
plementation mitigates the cost of resetting the tagmap by
overmapping it with kernel-prefetched zero pages, the cost
of doing so has still proven nontrivial. For this reason, our
tagmap opts instead for 8-bit epoch numbers to express a
single tag. The epoch number is incremented at every new
checkpoint, allowing the tagmap to be reset only every 255
cycles.

Our current prototype implements this strategy with an-
other LLVM link-time pass, which instruments memory
writes to create a shadow copy of a given region in the
primary state only on the first write from the last checkpoint,
essentially implementing byte-level COW semantics. This
is done by checking if the target tag stored in the tagmap
matches the current epoch number and by shadowing the

M
et
h
o
d

P
er
fo
rm

a
n
ce

O
v
er
h
ea

d

V
ir
tu

a
l
M
em

o
ry

O
v
er
h
ea

d

P
h
y
si
ca

l
M
em

o
ry

O
v
er
h
ea

d

D
a
ta

In
te
g
ri
ty

Page-granular – ++ + ++
Undo Log + – – +

Shadow State ++ – + +

Table 1: Comparison of the checkpointing tech-
niques considered. A plus sign denotes a positive
characteristic according to a given property.

target region (and also updating the tagmap) in case of
mismatch.

3. COMPARISON
This section provides a comparison of all the presented

techniques, with key properties and results summarized in
Table 1.

3.1 Performance Overhead
Page-granular checkpointing is only efficient when the pro-

gram exhibits high spatial locality (with an arbitrary number
of duplicate writes) and checkpoints are infrequent events.
When the former assumption is violated, sparse memory
writes can trigger several page-level COW operations which
can slow down the execution with unnecessary memory copy-
ing. When the latter assumption is violated, the cost of
frequent fork system calls can impose a significant perfor-
mance penalty.

Undo log-based checkpointing has somewhat complemen-
tary properties compared to page-granular checkpointing.
First, the checkpointing frequency has essentially no impact
on performance, given that a log reset is a relatively inexpen-
sive operation. Second, the checkpointing strategy is agnostic
to the locality of the program, given the low cache pressure
expected by sequential writes into the log. The inability
to handle duplicate writes, however, results in extra costs
associated to redundant memory copying, with performance
overhead increasing linearly with the number of memory
writes.

Shadow state-based checkpointing is somewhat more sen-
sitive to the locality of the program (memory write patterns
in the shadow state and the tagmap follow closely those of
the primary state) and the checkpointing frequency (the cost
of resetting the tagmap is amortized by our epoch-based
tagging strategy), but we expect the performance impact
of these factors to be negligible in practice. The shadow
state, however, eliminates any redundant memory copying
associated to duplicate writes, which results in much better
scalability with the number of memory writes in the general
(and average) case.

3.2 Memory Overhead
As shown in Table 1, page-granular checkpointing is the

one approach that exhibits nearly optimal virtual/physical
memory behavior. In particular, this strategy has no vir-
tual memory overhead (the fork-based strategy checkpoints
data in a different address space) and typically low physical
memory overhead (only touched physical pages need to be

reallocated), although the latter may increase rapidly for
sparse memory write patterns.

Undo log-based checkpointing can potentially have the low-
est virtual and physical memory overhead (even better than
page-granular checkpointing in presence of sparse memory
write patterns), but its inability to discard duplicate writes
results in very poor guarantees on the memory consumption
and makes the memory overhead unbounded in the general
case.

Shadow state-based checkpointing, in turn, provides the
worst-case virtual memory overhead, with more than half of
the user-addressable address space reserved for checkpointing
purposes. This is a necessary compromise to perform efficient
tagmap lookups and shadow copying. Although this might
lead to the problem of address space exhaustion on 32-bit
systems, we did not run into problems for our test applica-
tions. Further, on 64-bit systems this problem is virtually
non-existent. In addition, this property has no impact on
physical memory usage, given that demand paging guaran-
tees our shadow state-based strategy to be asymptotically
equivalent to page-granular checkpointing (extra memory is
only required for used tagmap pages).

3.3 Data Integrity
Given that one of the main goals of in-memory checkpoint-

ing is to recover or examine the last checkpointed state after
a crash (or some form of state corruption) occurs, a good
checkpointing strategy should strive to preserve data (and
metadata) integrity and be able to restore the last checkpoint
correctly even in face of program-generated memory errors.

Page-granular checkpointing provides the highest level of
data integrity, given that checkpointed data is always isolated
in a separate address space not directly accessible from the
original program. Both the undo log-based and the shadow
state-based scheme, in turn, maintain data and metadata in
the original program address space, thus providing inherently
lower data integrity guarantees. Shielding data and meta-
data from memory errors caused by instrumented memory
writes in the program is, however, still a viable option. For
this purpose, we extended our log-based implementation to
perform pre-write bounds checking (to prevent the program
from writing into the undo log) and our shadow state-based
implementation to use an extra “shadow” tagmap, which
tagmaps all the memory writes into both the original tagmap
and the shadow state, similar, in spirit, to [15]. This strategy
requires no extension to our original implementation and
will cause any instrumented write operation to read from an
unmapped tagmap (and thus segfault).

4. EVALUATION
To evaluate the performance overhead of all the considered

techniques, we measured the checkpointing-induced through-
put degradation on three real-world web servers and the
runtime overhead of one scientific computing application. In
addition, we developed a memory-intensive microbenchmark
to further stress the proposed techniques and fully explore the
design space. In particular, we wish to compare our shadow
state-based checkpointing technique with prior fine-grained
strategies (undo log) with respect to locality and duplicate
writes. We implemented all the proposed techniques on a
32-bit Linux installation and performed our experiments on
a Intel Core2 Dou E6550 clocked at 2.33 GHz.

Fork Undo Log Shadow State

nginx 79.5 % 11.7 % 9.5 %

lighttpd 87.2 % 16.6 % 14.0 %

httpd 75.2 % 14.2 % 11.6 %

Table 2: Throughput degradation for nginx, lighttpd
and httpd using different checkpointing techniques
(4 kilobyte sized file).

Fork Undo Log Shadow State

nginx 76.0 % 2.2 % 1.0 %

lighttpd 81.4 % 0.9 % 0.2 %

httpd 66.7 % 10.4 % 7.4 %

Table 3: Throughput degradation for nginx, lighttpd
and httpd using different checkpointing techniques
(64 kilobyte sized file).

4.1 Macrobenchmarks
Web Server Benchmarks. We evaluated the throughput

degradation induced by the proposed techniques on nginx [4],
lighttpd [3] and Apache httpd [1], three popular open source
web servers. The event-driven design of nginx and lighttpd

naturally yields predetermined execution points—the top of
a long-running event-handling loop—in which the program
state is stable and suitable for checkpointing and recovery [5].
For our purposes, we instrumented nginx and lighttpd to
create a checkpoint every iteration of the event-handling
loop. Further, we instrumented Apache httpd to perform
a checkpoint whenever the http-request handler-function is
called.

We measured the throughput in terms of processed requests
per second using the Apache benchmark (AB) part of Apache
httpd. To mimic a realistic scenario, we configured AB to
perform 25.000 requests on 10 parallel connections with
10 requests per connection requesting a 4 kilobyte file and in
a second run a 64 kilobyte file. We compared the throughput
of the checkpoint-enabled version of our servers against the
baseline and reported the mean of 11 runs.

Tables 2 and 3 show the throughput degradation intro-
duced by the proposed techniques for 4 kilobyte and 64 kilo-
byte sized files, respectively. As expected, fork-based check-
pointing yields with 67 % to 81 % throughput degradation
the highest performance impact. The results, in turn, confirm
that our shadow-state based technique provides better perfor-
mance than the undo log-based strategy, with a 2.2 (nginx) to
3.0 (httpd) percentage points lower throughput degradation.

To examine the effect of different region sizes on the
shadow-state based approach’s performance, we measured
the throughput degradation for region sizes from 16 bytes
to 4096 bytes. The results in Figure 1 show that the opti-
mal region size for all three web-servers is 128 bytes. For
region sizes bigger than 1024 bytes the performance drops
significantly. This advocates that fine-grained checkpoints
can help to improve checkpointing performance in general.

Scientific Computation Benchmark . To stress the pre-
sented checkpointing techniques we also ran experiments with
hmmer [2], a CPU-intensive program that uses hidden Markov
models to search in gene sequence databases. In this case we
instrumented the application to take a checkpoint for each

16 32 64 128 256 512 1024 2048 4096
0

5

10

15

20

25

nginx

lighttpd

httpd

Region Size in Bytes

T
h

ro
u

g
h

p
u

t
D

e
g

ra
d

a
ti

o
n

 i
n

 %

Figure 1: Throughput degradation of the shadow-
state based approach with different region sizes for
nginx, lighttpd and httpd.

iteration of its compute loop. The runtime of the uninstru-
mented program is 226 seconds. The runtime overhead for
the instrumented versions can be found in Table 4.

Fork Undo Log Shadow State

202.8 % 121.5 % 64.4 %

Table 4: Runtime overhead for hmmer using different
checkpointing techniques.

Again, the fork-based approach performs worst, whereas
our shadow-state scheme has 56.1 percentage points less
runtime overhead than the undo log. Another interesting fact
is the memory consumption: As expected, the shadow-state
roughly doubles the memory consumption from 33 megabytes
to 80 megabytes. The undo log however grows during the
computation up to more than 1.5 gigabytes, which is a clear
indication for a significant amount of duplicate writes.

4.2 Microbenchmarks
To thoroughly analyze the behavior of fine-grained check-

pointing techniques in presence of poor locality and duplicate
writes, we evaluated the performance overhead imposed on
the completion of our own homegrown microbenchmark. We
designed the latter to stress our checkpointing implementa-
tions as much as possible, with the base parameters chosen
to resemble nginx’s write behavior. Our microbenchmark
performs byte-wise memory writes for a total of 1 kilobytes
distributed over a range of R bytes for 5000 iterations of
a long-running (checkpointed) loop. We also introduced a
redundancy factor r, which instructs the microbenchmark to
repeat every single write r + 1 times at every loop iteration.

First, we explored the effect of bad locality. For this
purpose, we varied the write range R between 32 bytes and
32 megabytes, while setting the redundancy factor r to 4.
Figure 2 depicts the checkpointing-induced execution time
normalized against the baseline as a function of r. As the
figure shows, small write ranges yield comparable results.
For larger ranges, in particular r greater than 32 kilobytes
(i.e., 215 bytes), however,the overhead increases for both

Write range in bytes

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o
rm

a
liz

e
d
 e

xe
cu

ti
o
n
 t

im
e

Undo log

Shadow state

25 27 29 211 213 215 217 219 221 223 225

Figure 2: Normalized execution time for different
memory ranges.

0 2 4 6 8 10 12 14 16

Redundancy factor

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
o
rm

a
liz

e
d
 e

xe
cu

ti
o
n
 t

im
e

Undo log

Shadow state

Figure 3: Normalized execution time for different
redundancy factors.

schemes. We interpret this as a result of cache trashing in
the L1 cache. Interestingly, this also makes the effect of
duplicate writes more prominent, with our shadow state-
based technique yielding around 15 % lower performance
overhead for r set to 32 kilobytes. Further, for ranges larger
than 8 megabytes (i.e., 215 bytes), the overhead of both
techniques drops again. We interpret this as a result of
second-level cache trashing degrading the performance of the
baseline, so that the relative overhead becomes smaller.

Second, we evaluated the two techniques against different
degrees of write duplication. Figure 3 depicts the normalized
execution time while varying the redundancy factor r and
fixing the write range R to 128 kilobytes. As the figure
shows, the undo log-based technique performs better only for
r = {0, 1} and it is increasingly outperformed by the shadow
state-based approach for greater values of r. This confirms
that our technique provides better performance for real-world
programs that typically exhibit nontrivial duplicate write
patterns.

5. CONCLUSION
While being a widely used technique in several system

applications, in-memory checkpointing is still often deemed
as impractical and inefficient for general use. In this pa-
per, we compared a number of in-memory checkpointing
techniques and argued that checkpointing can instead be
implemented safely and efficiently, and even potentially de-
ployed in production. To support our claim, we evaluated
both traditional page-granular checkpointing techniques and
more fine-grained compiler-based techniques. We also pro-
posed a new compiler-based checkpointing technique based
on a shadow state. Our solution relies on a tagmap to imple-
ment efficient fine-grained copy-on-write semantics between
the shadow state and the primary state originally used by the
program. Experimental results confirm that our approach
provides better performance and memory guarantees than
state-of-the art techniques, scaling up efficiently (and with
bounded memory overhead) even in face of heavily-duplicated
memory write patterns.

Ackowledgements
We would like to thank the anonymous reviewers for their
comments. This work has been supported by European
Research Council under grant ERC Advanced Grant 2008 –
R3S3.

6. REFERENCES
[1] Apache benchmark (AB). http:

//httpd.apache.org/docs/2.0/programs/ab.html.

[2] hmmer. http://hmmer.janelia.org.

[3] lighttpd. http://www.lighttpd.net/.

[4] nginx. http://nginx.net.

[5] Giuffrida, C., Cavallaro, L., and Tanenbaum,
A. S. We crashed, now what? In Proc. of the Sixth
Workshop on Hot Topics in System Dependability
(2010), pp. 1–8.

[6] Hursey, J., January, C., O’Connor, M.,
Hargrove, P. H., Lecomber, D., Squyres, J. M.,
and Lumsdaine, A. Checkpoint/restart-enabled
parallel debugging. In Proc. of the 19th European
Message Passing Interface Conference (2010),
pp. 219–228.

[7] Kadav, A., Renzelmann, M. J., and Swift, M. M.
Fine-grained fault tolerance using device checkpoints.
In Proc. of the 18th Int’l Conf. on Architectural
Support for Programming Languages and Operating
Systems (2013), pp. 473–484.

[8] King, S. T., Dunlap, G. W., and Chen, P. M.
Debugging operating systems with time-traveling
virtual machines. In Proc. of the USENIX Annual Tech.
Conf. (2005), p. 1.

[9] Lattner, C., and Adve, V. LLVM: a compilation
framework for lifelong program analysis &
transformation. In Proc. of the Int’l Symp. on Code
Gen. and Opt. (2004), p. 75.

[10] Lenharth, A., Adve, V. S., and King, S. T.
Recovery domains: an organizing principle for
recoverable operating systems. In Proc. of the 14th Int’l
Conf. on Architectural Support for Programming
Languages and Operating Systems (2009), pp. 49–60.

[11] Nethercote, N., and Seward, J. How to shadow
every byte of memory used by a program. In
Proceedings of the 3rd international conference on
Virtual execution environments (New York, NY, USA,
2007), VEE ’07, ACM, pp. 65–74.

[12] Portokalidis, G., and Keromytis, A. D.
REASSURE: a self-contained mechanism for healing
software using rescue points. In Proc. of the 6th Int’l
Conf. on Advances in Information and Computer
Security (2011), pp. 16–32.

[13] Sidiroglou, S., Laadan, O., Perez, C., Viennot,
N., Nieh, J., and Keromytis, A. D. ASSURE:
automatic software self-healing using rescue points. In
Proc. of the 14th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems
(2009), pp. 37–48.

[14] Subhraveti, D., and Nieh, J. Record and transplay:
partial checkpointing for replay debugging across
heterogeneous systems. In Proc. of the Int’l Conf. on
Measurement and Modeling of Computer Systems
(2011), pp. 109–120.

[15] Xu, W., Bhatkar, S., and Sekar, R.
Taint-enhanced policy enforcement: a practical
approach to defeat a wide range of attacks. In Proc. of
the 15th USENIX Security Symp. (2006), pp. 121–136.

[16] Zhao, C. C., Steffan, J. G., Amza, C., and
Kielstra, A. Compiler support for fine-grain
software-only checkpointing. In Proc. of the 21st Int’l
Conf. on Compiler Construction (2012), pp. 200–219.

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://hmmer.janelia.org
http://www.lighttpd.net/
http://nginx.net

	Introduction
	Checkpointing Techniques
	Shadow State

	Comparison
	Performance Overhead
	Memory Overhead
	Data Integrity

	Evaluation
	Macrobenchmarks
	Microbenchmarks

	Conclusion
	References

