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Abstract—Traditional live update systems offer little or no
automated support for state transfer between two different
program versions with changes in the program state. In this
paper, we report our efforts to build a safe and automated state
transfer framework for C programs that requires a minimal
number of program state annotations and handles common
structural state changes with no programmer assistance. To
handle more complex state transformations, the framework
includes a number of extension mechanisms designed to min-
imize the overall programming effort. Our experience with
real-world programs suggests that our framework can handle
all the standard C idioms and support safe and automated state
transfer for complex state changes. We believe our approach
is effective in several update scenarios and significantly raises
the bar on the security and reliability of live update.

I. INTRODUCTION

In recent years, the increasing demand for high availability
has fostered much research on live update, due to its ability
to apply software updates on a running system with no
service interruption. Traditional live update systems glue
code changes directly into a running program and employ
some indirection mechanism (compiler-based techniques [1],
[2], language support [3], or binary rewriting [4]–[7]) to
redirect execution to the new version. State changes are
handled by directly transforming the address space of the
original program, typically using object reallocation [2], [3],
[6], type wrapping [1] or shadow data structures [5], [7].

While effective for small security patches [4], [7], in-place
updates scale poorly with the complexity of the update. This
is particularly evident when state changes come into play.
First, state transfer is delegated entirely to the programmer,
who is forced to deal with a cross-version execution envi-
ronment and reason about the correctness of state transfer
code in all the possible update states. In particular, existing
solutions offer no support to automatically locate and read-
just pointers to updated data structures. If manual inspection
fails to identify these cases, the update can silently generate
pointers to stale types or objects, introducing subtle logical
errors or, worse, security vulnerabilities. Second, assuming
a fixed memory layout complicates or hampers nontrivial
state transformations and compiler optimizations, increases
version management complexity, and encourages memory
leakage (e.g., no reclaiming of stale static portions of the
state). Third, state transfer is neither checked for correctness
nor isolated in a sandboxed environment, thus making the
state transfer code inherently trusted. Finally, no generic

support is available for bug-fix updates and state transfer
code dealing with a tainted state (e.g., memory leakage
or state corruption). All these observations are particularly
critical for the security and reliability of live update.

We believe process-level live updates, first proposed by
Gupta [8], have the potential to solve many of the recurring
problems in existing solutions, with the state transferred
between two processes running different program versions.
Gupta’s work, however, still makes assumptions on the
memory layout of the processes and delegates state transfer
entirely to the programmer. Ekiden [9] is a recent step for-
ward in this direction, relaxing assumptions on the memory
layout but still requiring the programmer to manually write
serializers and deserializers for the state to transfer.

This paper presents a safe and automated state transfer
framework for C programs, which seeks to minimize the
programmer involvement in terms of: (i) state annotations
and (ii) custom state transfer code to handle pointers and
complex state transformations. Our framework operates at
the process level, to sandbox the execution of the (untrusted)
state transfer code in the new process and perform safe
rollback in case of runtime errors. In addition, our frame-
work supports automated state checking and tainted state
management, including automatic reclaiming of memory
leakages. We also support all the standard C idioms, which
involves several challenges including naming and pointer
ambiguity, as we explain later. We believe our framework is
an important step forward over existing solutions and sets
new standards for the security and reliability of live update.

II. STATE INSTRUMENTATION

Our state transfer framework requires detailed metadata
information on all the possible objects that make up the
program state. To record all the necessary metadata and
expose them to the runtime, we transform the original pro-
gram during the build process. To this end, our framework
includes a specialized compiler driver, designed to integrate
seamlessly with existing build systems. The transformation
is implemented as a link-time pass using the LLVM compiler
framework [10]. Our transformation pass covers the entirety
of the program state and the static libraries (shared libraries
are discussed later). To instrument the state in a fine-grained
manner and automate the state transfer process, we first
record metadata on the types (e.g., arrays or structs) used
in the program. This allows us to correctly introspect the



state at runtime and simplify reasoning about type transfor-
mations. We only record types for all the state objects that
play a role in the state transfer process.

Global variables. Global variables are an important part
of the program state. For this reason, our transformation pass
records metadata to describe and locate all the global and
static variables (including constants).

Functions. While functions are automatically created in
the new process and need not be transferred, they play an
important role in function pointer transfer. Hence, we record
metadata for all the functions whose address is taken.

String constants. Similar to functions, string constants
are immutable objects and need not be normally transferred.
To transfer string pointers correctly, however, we need to
record metadata for all the string constants available.

Dynamically allocated objects. Dynamically allocated
objects are a major source of state information and normally
need to be transferred to the new version. To correctly
introspect dynamically allocated objects or arrays, we need
to determine the appropriate type of each memory allocation
site in the code and create metadata for the corresponding
allocated objects at runtime. Our transformation pass can
automatically identify the correct type for all the standard
POSIX memory allocators and custom allocators that use
simple allocation wrappers. For more advanced custom
allocation schemes, e.g., region-based memory allocators,
the framework needs to be explicitly instructed to locate the
proper allocation wrappers correctly.

Local variables. Although local variables do not usually
carry any relevant state information, it is common for real
C programs to store portions of the state in long-lived
stack regions. Since we want our framework to work with
different live update models [11] and update point placement
strategies [1], we put no restriction on the number of local
variables that can be promoted to state objects. By default,
our framework creates metadata only for the local variables
in main, but it is possible to specify a custom set of
functions to instrument. Our pass can also be configured
to automatically identify the functions to instrument from
the set of update points, using static call-graph analysis.
Our focus is on long-running event-driven programs, where
update points are typically placed in the deepest long-lived
function (e.g., at the top of the event loop), but other
strategies are possible for complex multithreaded programs.
The only constraint we make on update points is a well-
defined mapping in each program version. This is to simplify
control flow transfer and avoid unnecessary ambiguity in
local variable transfer.

Shared libraries. Shared libraries can be instrumented
similar to the original program and the resulting metadata
made available at dynamic linking/loading time. This strat-
egy, however, has a serious impact on deployability. For
this reason, our framework also supports dynamic metadata
generation for uninstrumented ELF libraries. While the type
information is lost and fine-grained introspection is no
longer possible, this strategy is important for a number

of reasons. First, this is crucial for the precision of our
dynamic pointer analysis, detailed later. Second, assuming
no changes in the shared libraries after the update and
no internal references to application objects (e.g., library
pointers to application callbacks), automating library state
transfer is possible by remapping the libraries at the same
location in the new version and simply copying over the
data regions. Finally, the programmer can use the provided
metadata information to handle the more complicated cases,
e.g., by reinitializing the library state in the new version.

III. STATE OBJECTS PAIRING

Our framework defines a uniform naming scheme to
pair state objects in the old version to their counterparts
in the new version and transfer the data at the process
level correctly. The naming scheme is designed to be stable
(i.e., unchanged objects are always assigned the same name
in different versions), unambiguous (i.e., name clashing is
structurally prevented), and conservative (i.e., the default
pairing strategy only pairs objects with a well-defined map-
ping in the two versions). For this purpose, our scheme
uses both names and contextual information extracted from
the source code via static analysis. This approach provides
a well-defined default pairing strategy, which is easy to
understand and effective to handle common state changes
automatically. To handle the ambiguous cases (e.g., variable
renaming), the programmer can override the default pairing
strategy using state transfer extensions. We are also working
on a patch analysis tool to safely automate state transfer for
some of the more complex transformations.

Our default pairing strategy pairs global variables and
functions by name. Static global variables and static func-
tions are paired by name and by compilation unit to unam-
biguously identify their context and prevent name clashing.
Static and nonstatic local variables, in turn, are paired by
name and by function of declaration. Note that our naming
scheme (and the state transfer framework in general) is
resilient to compiler optimizations like inlining, since the
naming information is gathered from the original source
code before any optimizations are made.

The default pairing strategy for string constants considers
two cases: string initializers (i.e., constants commonly used
to initialize local or global pointers) and regular strings.
By default, string initializers follow the pairing strategy of
their parent pointer (i.e., the string initializer of a pointer
in the old version is paired with the string initializer of the
pointer counterpart in the new version). This strategy allows
us to automate state transfer of string pointers even in face
of initializer changes. For regular strings, pairing is simply
done basing on the content of the string, by default.

Pairing dynamically allocated objects is more challenging,
because they have no preexisting counterpart in the new
version. Our approach is to use static analysis to determine
the allocation context of each dynamically allocated object
and define a default pairing strategy accordingly. For each
allocation site, we record metadata on the parent function,



the pointer used to allocate memory, and a counter to
prevent name clashing in the ambiguous cases. By default,
dynamically allocated objects are paired (and automatically
reallocated in the new version when needed) only when an
exact match is found between the allocation sites in the
two versions. This conservative strategy reflects the intuition
that unpaired allocation sites translate to either dynamically
allocated objects no longer used in the new version or
complex changes that require programmer intervention.

IV. THE STATE TRANSFER PROCESS

The state transfer process begins when the old version
reaches a valid update point for a given available update
(as defined by the particular update model used). At that
point, a helper routine creates a fresh process image for
the new version and blocks waiting for state transfer events.
The new process starts executing and receives all the update-
specific information via command-line arguments. Control is
given to our framework right after registering state transfer
extensions (if any). Note that both the framework and all the
registered extensions run sandboxed in the new version.

When state transfer completes successfully, the new ver-
sion jumps to the update point counterpart (with a well-
defined mapping with the old update point) to resume execu-
tion. The old version is immediately cleaned up. Conversely,
when an error occurs during state transfer, the update is
promptly rollbacked. The new version is cleaned up and
control is given back to the old version to resume execution
as though the update never occurred. All the actions are
coordinated by an external monitor process, which arbitrates
control transfer and traces the execution of the new process
to detect runtime errors such as crashes, abnormal termina-
tions, and infinite loops.

To transfer the state from the old version to the new ver-
sion, our framework supports a pluggable IPC (Inter-Process
Communication) mechanism to copy memory regions from
the old process to the new one. We are experimenting with
both cooperative and uncooperative IPC mechanisms. Un-
cooperative mechanisms (e.g., tracing) are typically slower
but do not require the old version to be involved in the
state transfer process. Cooperative mechanisms (e.g., UNIX
domain sockets) require the old version to run an IPC server
to process memory copying requests issued by the new
version. Although potentially faster, this approach requires
some untrusted state transfer code running on the old ver-
sion. While typically small in size, this code can potentially
lower the safety guarantees provided by our framework. We
are carefully evaluating the different tradeoffs in our ongoing
work. Figure 1 depicts the resulting state transfer process.

Our design breaks down the state transfer process into
a number of different phases. State transfer extensions can
register handlers (i.e., callbacks) and override the default
behavior at any stage during the process.

Metadata transfer. In the first phase, the state transfer
framework transfers all the state metadata from the old
version to the (local) address space of the new version.

STATE
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Figure 1: The state transfer process.

The state metadata are generated by our instrumentation and
include all the necessary information to locate and describe
every state object in the old version. The metadata are based
on a fixed layout and placed at a known location, allowing
our framework to easily automate metadata transfer. With
both the old and the new metadata available locally, the
framework and the state transfer extensions can introspect
the state of the two versions in the subsequent phases.

State mapping. The outcome of this phase is a well-
defined mapping between the state objects in the old version
and their counterparts in the new version. When no state
transfer extension is registered, the framework automatically
follows the default pairing strategy described in Section III
and schedules all the state objects for transfer. Extensions
are allowed to override the default behavior by scheduling
only selected objects for transfer or adding new pairing rules.
The only constraint enforced is that each object in the old
version must be paired to at most one counterpart in the new
version. Extensions are also allowed to pair state objects
of different nature. For example, a long-lived local variable
can be paired to a global variable in the new version, or
a statically allocated buffer can be paired to a dynamically
allocated one in the new version. This is especially beneficial
for updates that originate from code refactoring.

State pre checking. Before transferring any data to the
new version, our framework checks the consistency of the
old state. This is important to ensure predictability and allow
for safe state transfer in the case of a tainted state. Our
default checking strategy is fully automated, but extensions
can be registered to enhance its accuracy or override the de-
fault behavior when tainted state objects are found (abnormal
termination). Our current checking strategy uses dynamic
pointer analysis to check the consistency of all the pointers
(see Section V). In our ongoing work, we are extending the
scope of our analysis and evaluating more complex state
invariants to provide additional safety guarantees.

Data transfer. In this phase, the framework processes
all the nonconstant state objects scheduled for transfer and
orderly migrates their data to the new version. All the
nontransferred state objects are simply left untouched, with
their values normally initialized in the new version. To auto-
mate the transfer, the framework introspects individual state
objects in the old version by walking their type recursively



and examining each inner state element found. Nonpointer
elements are normally transferred by value, while pointer
elements require a more careful transfer strategy, discussed
in the next section. Each recursive step requires the frame-
work to map the current state element to its counterpart
in the new version. When two paired state objects have
identical types, the mapping is straightforward. In case of
type changes, locating the state element counterpart (if any)
is more challenging. The default mapping strategy used
in the framework follows a conservative approach, aimed
at automating state transfer for many common structural
changes, like: (i) primitive type transformations, (ii) array
truncation or expansion, and (iii) addition, deletion, or
reordering of structs members. As usual, the programmer
can register extensions to override the default mapping
strategy or implement custom state transfer policies at the
element level. Extensions can also be used to transfer any
external state correctly, for example state shared with other
nonupdated processes or process-specific state not automat-
ically transferred with the fork() + exec() paradigm.

State post checking. The last phase performs state check-
ing on the new state. This is important to safeguard the
new version against potential state corruption introduced
by the untrusted state transfer code. Further, this allows
us to automatically detect violating assumptions in state
transfer. For example, consider a pointer in the old version
legitimately pointing to some global variable. Assume both
objects are transferred to the new version using an identity
type mapping, i.e., the pointer counterpart points to the
variable counterpart in the new version. Now consider the
case in which the global variable does not have its address
taken in the new version. Allowing the transfer would violate
this assumption in the new version and bring the program to
an invalid state when resuming execution. Our framework
can instead detect this and other violations and prevent
unwanted situations by immediately rolling back the update.

V. POINTER TRANSFER

A truly automated state transfer solution for C needs to
carefully handle all the pointers in the program for the trans-
fer to be predictable and safe. Failing to do so could result
in arbitrary state corruption in the new version, undermining
the security and reliability of live update. A corrupted state
may lead to a number of undesirable situations, including
silent data corruption and security vulnerabilities.

Unfortunately, many programming constructs allowed by
C introduce different forms of pointer ambiguity, making
pointer transfer particularly challenging. We have investi-
gated all the cases of pointer ambiguity commonly found in
well-formed C programs, including: casted pointers, interior
pointers, pointers as integers, integers as pointers, unions
with pointers, guard and dangling pointers. To handle these
cases correctly, our framework leverages a combination of
static and dynamic analysis, which requires programmer
intervention (i.e., callbacks or annotations) only in the un-
decidable cases. While annotations may seem to hinder the

automated nature of our framework, we see this as a feature
rather than a limitation. Annotations can compensate for the
manual effort to transfer portions of the state and readjust all
the pointers to updated data structures. Failing to do so could
lead to the security and reliability problems pointed out
earlier. In our experience with real-world operating system
code and server applications (e.g., lighttpd, proftpd,
exim), region-based allocators and unions with pointers
(discussed later) are frequently the only cases that require
explicit programmer intervention. In our experience, this
(normally one-time) effort is by far more bearable and
realistic than manual code inspection to establish the validity
of in-place updates with nontrivial state changes.

Pointers with a valid target. This is the common
scenario of a pointer to a valid static or dynamic state object
(target). To automate the transfer, our framework must locate
the target counterpart in the new version. Since our state
instrumentation provides accurate type information for all
the state objects, the transfer strategy can be solely based
on target-specific information with no assumption on the
original pointer type. This is crucial for our design to be
resilient to pointer casting and generic void* pointers.
To map a particular target element to its counterpart, our
framework resorts to the same mapping subsystem used
earlier to remap regular state elements. This guarantees that
state elements and their corresponding pointers are remapped
accordingly, even in case of type changes. In addition, this
significantly reduces the programming effort to write custom
mapping extensions. Finally, this allows our framework to
handle regular pointers and interior pointers (i.e., pointers
into the middle of a data structure) uniformly.

When used in conjunction with pointer casting, however,
interior pointers pose additional challenges. In particular,
pointers to the beginning of a struct cannot be easily
discriminated from pointers to its first element. This intro-
duces ambiguity in case of type changes. To address this
problem, our approach is to instrument the original code
and add padding at the beginning of each non-packed
struct (or union) type (i.e., type changes to packed
structures may still need programmer assistance). When
the target counterpart is found, the pointer is reinitialized
accordingly and the target is automatically scheduled for
transfer by default. This strategy preserves the structure
of arbitrarily complex data structures during the transfer.
When no counterpart is found, our framework requires the
programmer to resolve the ambiguity and transfer the pointer
correctly. Dynamically allocated objects that are not directly
or indirectly referenced by any transferred pointer are not
transferred or reallocated in the new version by default. This
allows our framework to structurally prevent any memory
leakage from propagating to the new version.

Integers as pointers. In real C programs, it is not uncom-
mon for integers to be stored as pointers to indicate special
values for particular pointer types (e.g., MAP_FAILED (-1)
used by mmap). Our framework uses static analysis to
mark all the pointers that can be assigned integer values



struct my_struct {
  int preferred_flags;
  union IXFER(my_u) u;
  void* dyn_user_data;
  PXFER(long) address;
} var;

(a) Version 1

struct my_struct2 {
  int preferred_flags;
  union IXFER(my_u) u;
  void* dyn_user_data;
  PXFER(long) address;
} var;

(a) Version 2

ptrcpy

ptrcpy

memcpy

memcpy

Figure 2: Type annotations for ambiguous transfer scenarios.

as integer candidates, while trying to determine their value
set. When the value set cannot be accurately identified, we
conservatively assume a value set of the form [−P, P ],
where P is the architecture-specific page size. These ranges
are reserved and commonly used to express special pointer
values. At transfer time, the framework checks if the value
of a given integer candidate matches any value in the value
set. The value is simply copied to the new version when
a match is found, otherwise the framework resorts to the
default transfer strategy.

Pointers as integers. Occasionally, programmers find it
convenient to store a memory address as an integer. This is
not uncommon, for instance, in state objects part of custom
memory management implementations. Unfortunately, this
is a case of unresolvable ambiguity, which no automated
static or dynamic analysis can easily settle in the general
case. For this reason, our framework requires the program-
mer to explicitly annotate these pointers in the source code.

Unions with pointers. C allows unions to be written
and read from using different layouts with no restriction.
Consequently, their runtime type cannot be determined au-
tomatically in the general case and our framework generally
requires programmer assistance to transfer unions correctly.
Fortunately, this is only required in case of layout changes
and for unions that contain pointers. To help the programmer
deal with unions and other ambiguous cases, our framework
supports variable and type annotations. An example of
type annotations is presented in Figure 2, with the IXFER
and PXFER annotations forcing the framework to memcpy
the union u (without introspecting it) and perform pointer
transfer of the integer address.

Guard pointers. Many programs use dedicated pointers
to mark buffer boundaries. For example, off-by-N pointers
may be used to mark the Nth element before or after the
buffer. Our pointer analysis supports accurate detection and
transfer of arbitrary guard pointers, as long as the original
code is instrumented with a padding of N elements before
and after each state buffer.

Dangling and invalid pointers. Dangling pointers (i.e.,
pointers to deallocated objects) are another case of interest.
While uncommon in a stable update state, identifying such
pointers is important to avoid unwanted behavior in the
general case. It may also be beneficial to expose knowledge
of dangling pointers to state transfer extensions that deal
with a tainted state. Our framework marks as invalid all the
pointers that cannot be recognized as one of the scenarios
above and aborts the transfer by default. This ensures
predictability and allows the framework to identify forms

of corruption in a tainted state. Currently, we approximate
identification of dangling pointers within the set of invalid
pointers (using knowledge of known heap and stack regions),
but we are planning to enhance the accuracy of our analysis
in future work. Uninitialized pointers, in contrast, are pre-
vented structurally by zeroing out newly allocated objects.

VI. CONCLUSION

In this paper, we presented a safe and automated state
transfer framework to support secure and reliable live up-
date. Our framework can handle pointers and all the other
standard C idioms, providing an effective mechanism to per-
form complex state updates between two program versions.
Our approach requires minimal programmer involvement
while allowing arbitrary customizations. Unlike existing
solutions, our design can support safe rollback in case of
runtime errors, ensure a safe and predictable state transfer
process, simplify tainted state management, and provide an
effective programming model for state transfer extensions.
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