
Vrije Universiteit Amsterdam

Master’s Thesis

Safe and Automatic Live Update for
Unix Applications

Author:

Călin Iorgulescu

Supervisor:

Professor Andrew S.

Tanenbaum

Second Reader:

Cristiano Giuffrida

Secure and Reliable Systems

Department of Computer Sciences

August 2013

http://www.vu.nl
http://cs.vu.nl

“The last thing one knows in constructing a work is what to put first.”

Blaise Pascal

VRIJE UNIVERSITEIT AMSTERDAM

Abstract

Safe and Automatic Live Update for Unix Applications

by Călin Iorgulescu

The accelerated pace of software development is continuously shaping the software en-

gineering world, with an ever-growing stream of updates being released every minute.

However, the integration of an update (even one that addresses a crucial problem) is

still slow and cumbersome due, in great part, to the potentially high risk of service dis-

ruption and downtime, which is unacceptable for many systems. For example, a study

from 2002 [1] showed that over 10% of security patches introduce new software bugs of

their own.

Live update is a technique that aims to eliminate the overhead and downtime of applying

an update, making the process seamless to both the clients of the service and the system

administrators. Unfortunately, current state-of-the-art techniques require considerable

manual effort, only support trivial updates, or are prone to errors and faults. Making

live update safe and reliable while offering support for generic programs and updates is

paramount for its widespread adoption.

This work proposes a new live update solution for generic Unix programs which mini-

mizes the engineering effort needed to deploy updates, while maximizing the fault tol-

erance of this process.

We validate our design by implementing it as a framework and evaluating the top 4 most

commonly used applications in the live update literature (Apache httpd, nginx, sshd and

vsftpd). Our measurements indicate that the framework does not violate any operating

system assumptions (e.g., no timeouts or dropped connections) and that the update

time is low given the complex nature of the tested programs (i.e., at most 1.2s update

time for the most complex updates). Furthermore, it correctly recovers from several

common fault types, achieving a 94% detection rate in the case of buffer overflows.

Based on our experiments, we observed that the implementation of some applications

can reduce the engineering effort needed for live update. Thus, we also formulate several

guidelines for developers that wish to make their applications more live update friendly.

http://www.vu.nl

Contents

Abstract ii

1 Background 1

1.1 The Live Update Problem . 1

1.2 The PROTEOS Model . 2

1.3 Key Challenges on Commodity Operating Systems 3

1.4 Our Approach . 4

1.5 Contribution . 6

1.6 Outline . 7

2 Mutable Checkpoint-Restart: Automating Live Update for Generic
Long-running C Programs 8

2.1 Introduction . 9

2.2 Background and Related Work . 10

2.3 Overview . 10

2.4 Profile Guided Quiescence Detection . 11

2.5 State-driven Mutable Record-replay . 13

2.6 Mutable GC-style Tracing . 15

2.7 Violating Assumptions . 17

2.8 Evaluation . 17

2.9 Conclusion . 20

3 Back to the Future: Fault-tolerant Live Update with Time-travelling
State Transfer 23

3.1 Introduction . 24

3.2 The State Transfer Problem . 25

3.3 System Overview . 27

3.4 Time-travelling State Transfer . 28

3.5 State Transfer Framework . 30

3.6 Evaluation . 32

3.7 Related Work . 36

3.8 Conclusion . 37

Bibliography 40

iii

Chapter 1

Background

The sheer volume of software updates today is only matched by the integration effort

they require. For example, in the case of the Linux kernel, there are on average 5.6 (with

a maximum of 6.8) patches applied to the trunk per hour [2]. Unfortunately, because of

the need to restart a service, or even the entire operating system, many organizations

cannot cope with the resulting downtime. This results in wider update windows that

can leave many systems dangerously exposed to security attacks: once a vulnerability

is disclosed, the number of attacks usually increases by up to 5 orders of magnitude

[3]. ”Rolling upgrades” is an existing enterprise solution which deploys an upgrade

incrementally in a large environment while masking service downtime through replication

[4]. However, this solution requires both hardware redundancy and engineering effort,

and still cannot handle services that need persistent program state. Furthermore, the

clashes between different running software versions can lead to conflicts, unless properly

handled [5].

1.1 The Live Update Problem

Live update is a solution which allows a user to properly face the increasing stream of

updates without losing existing work, while offering a revert mechanism in case undesir-

able behavior is encountered. The idea is to upgrade a running system on the fly, thus

removing the problem of downtime. However, in order for widespread adoption to be

possible, the update process needs to be reliable and easy to use. Unfortunately, most

of the existing techniques make strong assumptions about the updates and the system.

For example, Ksplice[6] focuses primarily on security patches for the kernel, without

automating state transfer directly. Other techniques such as Ginseng [7], Stump[8] or

Kitsune[9] require a considerable amount of manual effort in order to properly support

1

Chapter 1. Background 2

updates that exhibit data layout modifications, and scale poorly for very complex up-

dates. The consequences are two-fold: the release of an update is a lot more difficult,

and also the process is a lot less reliable.

In the following, we propose a model which takes into account the design of commodity

operating systems while properly handling the constraints imposed by the application.

We implement this model as a framework for generic C 32 bit programs and we evaluate

it for 4 common UNIX server applications (the Apache httpd Web server, the nginx

Web server, the OpenSSH server and the vsftpd server). We also perform an in-depth

analysis on the engineering effort required to deploy our technique in Section 2.8 and in

Section 3.6.

1.2 The PROTEOS Model

Our work was done in the context of the PROTEOS[10] project, which is a POSIX-

compliant research operating system written with live update support in mind. Up-

dates are performed at process level, allowing for arbitrarily complex changes to the

code and the data. It also introduces the concept of state quiescence which provides a

safe and stable environment in which to deploy these updates. The system server pro-

grams are event driven, allowing for a clear demarcation of the main request processing

loop, as well as the initialization routines. Program state transfer is based on link-time

instrumentation which also allows for common type transformations to be handled au-

tomatically. Finally, the system provides program version transparency as well as a

well defined interprocess communication mechanism, which allow the update to occur

seamlessly to the user.

The application code is instrumented using an LLVM pass which generates precise type

information for memory objects. The state transfer part of the update process behaves

as a precise tracing garbage collector, relocating and readjusting memory objects as

dictated by the data layout of the new version. Since PROTEOS does not use shared

libraries, the only cases not covered precisely are those of C unions containing pointers,

both explicit (i.e., regular union) and implicit (i.e., pointer stored as an integer variable).

For them, code annotations need to be created so that the framework may correctly

handle those memory objects.

The framework also keeps track of dynamically allocated memory objects at runtime

by intercepting the standard allocator calls. It properly reallocates them in the new

version, taking note of any size transformation that might have occurred. Dynamic

Chapter 1. Background 3

memory objects are identified by allocation site and only those objects whose call-sites

exist in the new version are transferred, thus eliminating possible garbage objects.

State quiescence is achieved by the annotation of safe update points, which are best

known by the developer. The design of PROTEOS allows for seamless integration of

these update points at the top of the main processing loop by using a single point of

entry for both update events and system events. Such behavior allows for significant

reduction of the execution overhead by removing the necessity of full stack instrumen-

tation. Instead, it is only necessary to provide type information for the frames of the

long-lived function. Furthermore, the interleaving of update events and system events

ensures that the state of the process is safe and consistent for an update.

1.3 Key Challenges on Commodity Operating Systems

In order to support generic C programs, we had to tackle several commonly occurring

issues, while no longer being able to rely on specialized support from the kernel. We

wanted to alter the target operating system as little as possible so as not to introduce

any potential cause for instability. What is more, we needed to extend the framework to

encompass different types of programming models, not just the event-driven one present

in the PROTEOS servers. We briefly mention bellow the most important challenges we

faced:

• Version Transparency: We needed to compensate for the lack of a unified IPC

mechanism with which to perform delegation of control. Further, we also needed to

account for unique process identifiers that discriminated between program versions.

• Shared Libraries: Most applications make use of shared libraries, either OS or

vendor provided. As such, we could not assume that instrumenting them was

sometimes (if ever) possible, so we needed to deal with a lot less precise view of

the memory objects.

• Multithreading Support: The use of threads leads to several non-obvious com-

plications in our design. We needed to account for scheduler non-determinism, as

well as for inter-thread synchronization mechanisms. Moreover, we addressed the

problem of possible deadlocks caused by resource contention during updating.

• Custom Memory Allocators: Many applications provide an internal imple-

mentation to improve the performance and usability of memory objects. Unfortu-

nately, this has a serious impact on our static analysis and can often lead to the

loss of necessary type information.

Chapter 1. Background 4

• Fast and Secure Memory Transfer: Without explicit support from the op-

erating system, we designed our own method to transfer memory objects across

processes without exposing a process’ address space in an insecure fashion.

1.4 Our Approach

Our Live Update framework is implemented as a dynamic library that is meant to be

preloaded by the target application, and that provides the runtime tools needed. In order

to address the aforementioned challenges, it implements a four-stage protocol: State

Quiescence, Control Flow Transfer, State Transfer and State Validation. We

briefly discuss each of these stages, both with respect to PROTEOS, as well as to the

key assumptions behind them.

Whereas reaching State Quiescence was straightforward in PROTEOS due to its

event-driven design and singular event entry point, this was not the case for other

operating systems or for multi-process, multi-threaded applications. Therefore, there

are 2 aspects we considered: establishing an update point and reaching quiescence in a

bounded time. The difficulty in the former emerged from the lack of demarcation between

initialization code and event processing code. We automated this process by using an

offline profiler capable of determining the long-lived tasks and the long-lived call stacks

of each such task. The profiler also determines the idle execution points that map over

the long-lived calls. These points would normally be blocking system calls used either for

receiving external events (e.g., waiting for incoming connections) or for synchronization.

Each such call would then have a special hook injected which would notify the framework

of a task’s quiescence. Furthermore, to eliminate the need for specialized support from

the kernel, our instrumentation transforms all such blocking system calls into their non-

blocking counterparts without exposing this to the application. This makes it possible

for the framework to temporarily suppress incoming external events, thus preserving

state consistency during an update.

The later aspect was complicated due the risk of deadlocking: simply blocking all tasks at

the predetermined quiescence points did not guarantee that all synchronization events

had completed. If such a deadlock were to occur, the new version would inherit the

inconsistencies of the old version and would not be able to correctly resume execution.

Our solution was the implementation of a runtime quiescence algorithm – basically a

particular case of Termination Detection – which ensured all synchronization events

were successfully completed before blocking, or that the update process was aborted

if quiescence was not reached within a given time limit. The algorithm used several

Read-Copy-Update cycles to guarantee deadlock-free quiescence.

Chapter 1. Background 5

Once the running application had reached quiescence, the new version process image

would be executed. However, we needed to ensure that the new version correctly re-

sumed execution from the same place as the old. This was achieved through Control

Flow Transfer. While PROTEOS correctly handled this part using the well defined

event entry point model, we needed to use State Quiescence to achieve execution

synchronization: we would allow the new version to initialize and then wait for it to

reach quiescence without allowing any external events to be received first. This also

guaranteed that the new version would recreate its own process model. Once this was

done, the processes were paired based on a unique callsite identifier created from the

callstack hash of the parent process.

During this stage, we also inherited the immutable objects from the old version. Im-

mutable objects are objects that cannot be altered across versions; they need to maintain

the same properties. For example, when updating an application that communicates

over a socket, the new version needs to use the same socket as the one opened in the

old version. In this case we say that the socket needs to be immutable. Other types

of immutable objects are: long-lived file descriptors, shared memory segments, mem-

ory objects that may have likely pointers to them (we will discuss this later on). To

facilitate this, we implemented a basic record and replay protocol which records the cre-

ation of such objects during the initialization of the old version. When the new version

initializes, our framework seamlessly replays the results by intercepting API calls and

returning recorded values where needed.

The State Transfer implementation from PROTEOS could not work correctly due

to the loss of type information for uninstrumented shared libraries internally managed

memory objects (i.e., by use of custom memory allocator). For the latter, the framework

also provides support for manual annotations by the developer. However, in order

to further automate the process, we implemented a best-effort strategy: conservative

likely pointer analysis. This technique scans the known memory objects (both with and

without precise type information) looking for values that could be valid pointers and

marks valid target objects as immutable. This ensures that they will not be relocated in

the new version, preserving the consistency of the found likely pointers. Those pointers

about which we already have precise information are not considered for the analysis.

Finally, this also solves the problem of typeless C unions, as pointer consistency is

guaranteed.

We classified immutable memory objects into 3 categories of interest: static objects

(i.e., defined in the .data, .rodata or .bss segments), dynamic mapped objects (e.g.,

memory mapped files) and dynamic allocated objects (i.e., allocated through the system

allocator). The static objects are fixed to their correspondent address using link-time

Chapter 1. Background 6

placement, and the dynamic mapped objects are fixed at runtime using the provided

POSIX API. In the case of dynamic allocated objects, the address fixing proved to be

non-trivial due to the allocator implementation which, in general, does not expose the

underlying allocation logic to the application. We chose to treat the allocator imple-

mentation as a blackbox, in order to support a wider variety of programs. Inheriting the

memory objects was problematic as well, since replaying the heap allocations at initial-

ization time required creating said objects before the process model of the new version

was formed. To mitigate this, we implemented a heap merging strategy which combined

all the immutable allocated objects across all the processes into a set of coherent objects

that could be properly replayed.

The State Validation stage detects and automatically recovers from arbitrary run-

time and memory errors. It relies on 2 elements: a detection algorithm and a reliable

computing base. For the former we relied on the fact that all transformation operations

done at update time can be reversed, and so we run a second update cycle after the

first completes (but without resuming execution yet). The second cycle updates the new

version of the application with the old version image, creating a reversed version. Be-

cause of the assumptions of the update process, the reversed version should exhibit the

same memory layout as the original version, provided there were no errors. Therefore,

we simply do a linear memory comparison of the reversed version and the old version.

If we find differences, we can infer that there has been state corruption and we abort

the update. The later part of the strategy enforces the requirement that, in order to be

reliable, the running application cannot fail in case the update process itself fails. We

achieve this by running a minimal amount of code on the old version during the update

process, which constitutes our reliable computing base. In our implementation, the RCB

is only 6% of the entire computing base.

If all steps complete and no errors are detected, the framework signals the new version

to resume execution and the old version to exit gracefully. In case the update is aborted,

for whatever reason, the old version simply resumes execution, while the new version is

destroyed.

1.5 Contribution

Due to the size and complexity of the project, the resulting work is a product of the

collaboration of multiple authors. Further we clearly and explicitly state the key con-

tributions of the Thesis author:

Chapter 1. Background 7

• The blackbox heap merging strategy and immutable memory object in-

heritance algorithm, as described in Section 2.5 under Immutable state objects.

• The immutable object marking algorithm and the implementation of the

likely pointer analysis, as described in Section 2.6 under Conservative GC-style

tracing.

• The memory object pairing algorithm, as described in Section 2.6 under

Precise GC-style tracing.

• The design and implementation of the fault-tolerant live update framework,

as described in Section 3.3, in Section 3.4 and in Section 3.5 under Shared Libraries.

• The design and implementation of the safe and fast inter-process memory

transfer protocol, as described in Section 3.4.

• The implementation of unique identifiers for externally allocated memory

objects.

1.6 Outline

The following 2 chapters of the Thesis represent the full, unedited and unabridged con-

tents of the 2 peer-reviewed conference papers that have resulted from this work. At the

time of writing, ”Mutable Checkpoint-Restart: Automating Live Update for Generic

Long-running C Programs” is under submission to the International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS)

2014, while ”Back to the Future: Fault-tolerant Live Update with Time-travelling State

Transfer” is to appear in proceedings of the 27th International Conference on Large

Installation and System Administration (LISA) 2013.

Chapter 2 describes the design and implementation of the State Quiescence, Control

Flow Transfer and State Transfer stages, with context and evaluation. Chapter 3

focuses primarily on the State Validation stage, presenting the assumptions and fault

model considered. It also briefly redescribes key issues from the State Transfer stage

in order to provide proper context.

Chapter 2

Mutable Checkpoint-Restart:

Automating Live Update for

Generic Long-running C

Programs

8

ASPLOS Submission #246– Confidential Draft – Do Not Distribute!!

Mutable Checkpoint-Restart: Automating Live Update
for Generic Long-running C Programs

Cristiano Giuffrida
Vrije Universiteit, Amsterdam

giuffrida@cs.vu.nl

Călin Iorgulescu
Vrije Universiteit, Amsterdam

calin.iorgulescu@cs.vu.nl

Andrew S. Tanenbaum
Vrije Universiteit, Amsterdam

ast@cs.vu.nl

Abstract
The pressing demand to deploy software updates without

stopping running programs has fostered much research on live
update systems in the past decades. Prior solutions, however,
either make strong assumptions on the nature of the update
or require extensive manual effort, factors which ultimately
discourage widespread adoption of live update techniques.

This paper presents Mutable Checkpoint-Restart (MCR),
a new live update technique for generic (multiprocess and
multithreaded) long-running C programs. Unlike prior solu-
tions, our techniques can support arbitrary software updates
and automate most of the common live update operations.
In particular, MCR seeks to address the key issues which
required significant manual effort in prior solutions using
three novel ideas: (i) Profile-guided quiescence detection;
(ii) State-driven mutable record-replay; (iii) Mutable garbage
collection-style tracing. Experimental results confirm that
our techniques can effectively automate problems previously
deemed difficult at the cost of modest performance and mem-
ory overhead. Our results also confirm that many programs
are more “live update-friendly” than others and cases that are
inherently hard to automate can be easily solved if live update
becomes a driving factor in future software design.

1. Introduction
The fast-paced evolution of modern software is on a collision
course with the pressing demand for highly available systems
that guarantee nonstop operation. Live update—also known as
dynamic software updating [55]—has increasingly gained mo-
mentum as a solution to the update-without-downtime problem,
that is, deploying software updates without stopping running
programs. Compared to the most common alternative—that
is, rolling upgrades [26]—live update systems require no re-
dundant hardware or software and can automatically preserve
program state across versions. Ksplice [12] is perhaps the best
known live update success story. According to its official web-
site, the Ksplice Uptrack tool has already been used to deploy
more than 2 million live updates on over 100,000 productions
systems at more than 700 companies.

Despite decades of research in the area—with the first paper
on the subject dating back to 1976 [27]—existing live update
systems still have important limitations. In-place live update
solutions [9,12,22,54,55] can transparently replace individual
functions in a running program, but are inherently limited in

the types of updates they can support without significant man-
ual effort. Ksplice, for instance, is explicitly tailored to small
security patches [4]. Prior whole-program live update solu-
tions [29,35,48], in turn, can efficiently support several classes
of updates, but require a nontrivial annotation effort which
increases the maintenance burden and ultimately discourages
widespread adoption of live update techniques.

This paper presents Mutable Checkpoint-Restart (MCR),
a new live update technique for arbitrary long-running C
programs. Drawing inspiration from traditional checkpoint-
restart, MCR checkpoints (i.e., freezes) the running version, al-
lows the new version to restart in a controlled way, and remaps
the old execution state into the new one. This approach builds
on kernel support for emerging userspace checkpoint-restart
techniques [2] and can allow arbitrary updates without altering
the structure of the program or its process model. Unlike tra-
ditional checkpoint-restart techniques [2,3,5,11,34], however,
mutability induced by version updates requires remapping pro-
gram checkpoints after restart, a hard problem [33] which we
seek to automate in the common cases. The MCR model, in
particular, helps pinpoint the three key challenges which re-
quired extensive manual effort in prior work: (i) how to obtain
consistent checkpoints which are intuitively “easy to remap”
after restart; (ii) how to remap the checkpointed control flow;
(iii) how to remap the checkpointed program state.

To automate these tasks, we introduce three novel ideas.
Profile-guided quiescence detection allows all the program
threads to safely block in a known control-flow configuration
with no code annotations required. To the best of our knowl-
edge, ours is the first automated quiescence detection protocol
for generic programs which is at the same time deadlock-free
and provides fast convergence. State-driven mutable record-
replay allows the new version to reinitialize in a controlled way
and remap the checkpointed control flow without interfering
with the old version or violating remapping invariants. To the
best of our knowledge, ours is the first automated control-flow
transfer strategy for generic programs that can also tolerate
changes in the process model. Mutable garbage collection-
style tracing allows the new version to remap the checkpointed
state even with partial information on global data structures.
To the best of our knowledge, ours is the first automated state
transfer strategy for generic programs that can conservatively
handle state changes without user-maintained annotations.

We have implemented our ideas in a MCR prototype for

Chapter 2. Mutable Checkpoint-Restart 9

long-running Linux C programs. Our evaluation on four popu-
lar server programs shows that our techniques yield: (i) low
engineering effort (334 LOC to prepare our programs for
MCR), (ii) realistic update times (< 1 s); (iii) low run-time
performance overhead in the default configuration (0-5%).

2. Background and Related Work
In the following, we focus on local live update solutions for
operating systems and long-running C programs, referring the
reader to [7, 26, 44, 66] for live update for distributed systems.

Quiescence detection. MCR relies on quiescence as a
way to restrict the number of valid control-flow configu-
rations at checkpointing time. Some approaches [48] re-
lax this constraint, but then automatically remapping all the
possible checkpointed control-flow configurations or sim-
ply allowing mixed-version execution [21, 22, 49] becomes
quickly intractable without extensive user intervention. Qui-
escence detection algorithms proposed in prior work operate
at the level of individual functions [9, 12, 28, 32] or generic
events [14, 15, 29, 54, 55, 60]. The former approach—known
for its weak consistency guarantees [29,36]—relies on passive
stack inspection [9,12,28,32], which cannot guarantee conver-
gence in bounded time [48, 49]. The latter approach relies on
either update-friendly system design [14, 29, 60]—rarely an
option for existing C programs—or explicit per-thread update
points [35, 48, 54, 55]—typically annotated at the top of long-
running loops. Two update point-based quiescence detection
strategies are dominant: free riding [48, 54]—allow threads
to run until they all happen to reach a valid update point at
the same time–and barrier synchronization [35]—block each
thread at the next valid update point. The first strategy can-
not guarantee convergence in bounded time. To mitigate this
problem, prior solutions suggest expanding the number of up-
date points using static analysis [54] or per-function update
points [48]. Both solutions can introduce substantial overhead
yet they still fail to guarantee convergence. The second strat-
egy, on the other hand, offers better convergence guarantees
but is inevitably deadlock prone [54]. In addition, all the prior
update point-based strategies require interrupting blocking
calls, which would otherwise delay quiescence indefinitely. To
address this problem, prior solutions suggest a combination
of annotations and either signals [35] or file descriptor injec-
tion [48]. The former strategy is more general, but inherently
race-prone and potentially disruptive for the program. Our
profile-guided quiescence detection protocol, in contrast, re-
quires no code annotations and is designed to provide efficient,
race-free, and deadlock-free quiescence in bounded time.

Control-flow transfer. MCR relies on control-flow transfer
as a way to remap the checkpointed control-flow configuration
after restart. Prior in-place live update models [9, 12, 14, 21,
22, 49, 54, 55] provide no support for control-flow transfer,
implicitly forbidding particular types of updates. Ksplice [12],
for instance, cannot easily support a simple update to a global
flag that changes the conditions under which kernel threads

prog-v2

libmcr.so

prog-v1

libmcr.so

mcr-ctl

UPDATE

Quiescence
Profiler

prog-v1.c

Profile
Data

ld.gold

mcr.llvm

libmcr.a

Build time Run time (v1) Run time (v2)

CHECKPOINT RESTART

REMAP

Figure 1: MCR overview.

enter a particular fast path. Failure to remap the latter may, for
instance, introduce silent data corruption or synchronization
issues—such as, deadlocks. Prior whole-program live update
models, in turn, implement control-flow transfer using system
design [29, 60], stack reconstruction [48], or manual control
migration [35]. The first option is overly restrictive for many
C programs. The second option forces the user to perform the
heroic effort of manually remapping all the possible control-
flow configurations across versions. The last option, finally,
reduces the effort by encouraging existing code path reuse,
but still delegates control-flow transfer completely to the user.
Our state-driven mutable record-replay strategy, in contrast,
automatically reuses existing code paths and frees the user
from the burden of reconstructing control flow and preserving
all the necessary remapping invariants.

State transfer. MCR relies on state transfer as a way to
remap the checkpointed program state after restart and apply
the necessary data structure transformations. Prior in-place
live update models either delegate state transfer entirely to the
user [9, 12, 14, 21, 22, 49] or provide simple type transformers
with no support for pointer transformations [54, 55]. Such
restrictions are inherent to the in-place live update model,
which advocates “patching” the existing state to directly adapt
it to the new version. Prior whole-program live update models,
in turn, either delegated mapping functions to the user [48,60]
or attempted to automatically reconstruct the state in the new
version using precise pointer traversal [29, 35]. The latter
strategy, however, requires a nontrivial annotation effort to
unambiguously identify all the global pointers correctly. Our
mutable GC-style tracing strategy, in contrast, does not require
state annotations and can gracefully handle uninstrumented
shared libraries and custom memory allocation schemes.

3. Overview

Figure 1 illustrates the typical MCR workflow. In a prelimi-
nary step, users allow our quiescence profiler to run the pro-
gram, identify all its quiescent points, and generate profile
data required by our quiescence detection protocol. This is a
relatively infrequent operation which should only be repeated
when the quiescent behavior of the program changes—we

2

Chapter 2. Mutable Checkpoint-Restart 10

envision programmers simply integrating quiescence profiling
as part of their standard regression test suite. Building the
program requires specifying standard compiler flags which in-
struct the GNU gold linker (ld.gold) to link the original code
against our static library (libmcr.a) and use an LLVM-based
link-time plugin [47] (mcr.llvm) for static instrumentation
purposes. The latter instruments the quiescent points iden-
tified in the profile data and prepares the program for our
mutable GC-style tracing strategy. Running the program re-
quires preloading our dynamic instrumentation shared library
(libmcr.so), which complements static instrumentation with
information available only at runtime (i.e., shared libraries)
and implements our mutable checkpoint-restart techniques.
When an update is available, the user can signal the running
version using a simple command-line tool (mcr-ctl). In re-
sponse to the event, our shared library checkpoints the running
program and allows the new version to restart from the old
checkpoint. This is done by (i) running the quiescence de-
tection protocol on the running version to obtain a consistent
checkpoint; (ii) starting the new version with all the informa-
tion required to perform state-driven mutable record-replay
and allowing the program to reinitialize; (iii) running the qui-
escence detection protocol on the new version to synchronize;
(iv) remap the program state from the old version using mu-
table GC-style tracing; (v) resume execution. Failure to com-
plete the restart phase due to unexpected errors simply causes
the old version to resume execution from the last checkpoint.
Note that this is in stark contrast to prior solutions for generic
userspace C programs [9, 22, 35, 48, 54, 55], which cannot
match MCR’s strong atomicity and isolation guarantees.

4. Profile-guided Quiescence Detection
Our profile-guided quiescence detection strategy stems from
two simple observations. First, the problem of transparently
synchronizing multiple threads in bounded time and in a
deadlock-free fashion is undecidable—that is, easily reducible
to the halting problem—absent extra information on thread
behavior. Second, every long-running program has a num-
ber of natural execution-stalling points [43]—that are obvious
choices to identify a globally quiescent configuration. The
key idea is to profile the program at runtime and automatically
identify quiescent points from all the stalling points observed.
We note a number of interesting stalling point properties in
server programs. First, they always originate from long-lived
blocking calls (e.g., accept) with well-known semantics. This
allows us to gather extra information on a stalling thread and
carefully control its behavior. Second, stalling points are often
found at the top of long-running loops, which prior work has
already largely recognized as ideal update points [35, 54, 55].
Third, even when stalling points are deeper in the call stack,
fine-grained control over them is clearly crucial to reach qui-
escence, a common problem in prior work [35, 48].

Quiescent points. To detect stalling points and the corre-
sponding long-lived loops, our profiler relies on standard pro-

filing techniques. Detecting long-lived loops is important to
identify all the long-lived stack variables that might carry state
information which needs to be remapped in the new version
after restart. Our profiling strategy leverages static instrumen-
tation to intercept all the function calls, library calls, and loop
entries/exits at runtime. Dynamic instrumentation tracks all
the processes and threads in the program and identify all the
classes of threads with the same stalling behavior. To detect
all the stalling points correctly, we rely on a test workload
able to drive the program into all the potential stalling states
(e.g., open idle connections, large file transfer, etc.). In our
experience, this workload is typically domain-specific—can
be reused across several applications of the same class—and
often trivial to extrapolate from existing regression test suites.
Even for very complex programs that may exhibit several
possible stalling states, we expect this approach to be more in-
tuitive, less error-prone, and more maintainable than manually
annotated update points used in prior work [35, 54, 55].

Per-thread stalling points are detected using statistical pro-
filing of library calls. Intuitively, a stalling point is simply
identified by the long-lived blocking call where a given thread
spends most of its time during the test workload. Loop profil-
ing is used to detect every thread’s deepest long-lived loop that
never terminates during the test workload. At the end of the
test run, our profiler produces not only instrumentation-ready
profile data, but also a human-readable report with all the short-
lived and long-lived classes of threads identified, their deep-
est long-lived loops, and their stalling points. Each stalling
point is automatically classified as persistent or volatile—that
is,whether it is already visible or not right after initialization—
and as external or internal—that is, whether the corresponding
blocking call is listening for external events (e.g., select) or
not (e.g., pthread_cond_wait). In addition, a policy de-
cides how each stalling point participates in our quiescence
detection protocol. Three options are possible: (i) quiescent
point—marks a valid quiescent state for a given thread to ac-
tively participate in our protocol; (ii) blocking point—allows
execution to stall indiscriminately before reaching the next qui-
escent point; (iii) cancellation point—allows returning an error
(e.g., EINTR) to the program at quiescence detection time. The
default policy is to promote all the persistent stalling points to
quiescent points and all the volatile ones to blocking points.
The rationale is to allow all the checkpointed control-flow
configurations that can be remapped in a fully automated way
using state-driven mutable record-replay after restart.

Instrumentation. Our static instrumentation relies on pro-
file data to transform all the stalling points identified in the dy-
namic call graph of the program. We currently use thread-local
flags to propagate call graph information to every long-lived
blocking call site and instrument stalling points correctly. In
particular, each call site is changed to invoke a wrapper func-
tion in our static library—which currently provides support
for many common blocking libc functions—in a way that it
allows what we refer to as unblockification. Unblockification

3

Chapter 2. Mutable Checkpoint-Restart 11

1: procedure COORDINATOR
2: Q← 1
3: repeat
4: A← 0
5: SYNCHRONIZE_RCU()
6: SYNCHRONIZE_RCU()
7: until A 6= 0
8: Q← 2
9: SYNCHRONIZE_RCU()

10: SYNCHRONIZE_RCU()

1: procedure QUIESCENTPOINT
2: if Q > 0 then
3: if Active then
4: A← 1
5: if Initiator or Q == 2 then
6: RCU_THREAD_OFFLINE()
7: THREAD_BLOCK()
8: RCU_THREAD_ONLINE()
9: THREAD_UNBLOCKED()

10: RCU_QUIESCENT_STATE()

Figure 2: Pseudocode of our quiescence detection protocol.

exposes the same library call semantics to the program, but
guarantees that every long-lived call never blocks execution
for more than a predetermined time, while periodically calling
our own hook at quiescence detection time. Prior work used
a similar wrapping strategy [48], but only as an alternative to
signals to unblock I/O calls on demand. Our goal, in contrast,
is to ensure that all the blocking calls are short-lived and fully
controllable by design at quiescence detection time.

Our unblockification design fulfills three key goals: (i) ef-
ficiency; (ii) low CPU utilization; (iii) low quiescence de-
tection latency. To implement our strategy efficiently, we
rely on standard timeout-based versions of library calls (e.g.,
sem_timedwait) and simply loop through repeated call in-
vocations until control must be given back to the program.
When a timeout-based version of the call is not available, we
resort to the nonblocking version of the call (e.g., nonblocking
accept) followed by a generic timeout-based call listening
for the relevant events (e.g., select). The latter strategy
guarantees a minimal number of mode switches are typically
incurred when the program is under heavy load and thus on
a performance-sensitive path. Our other goals highlight the
evident tradeoff between unblockification latency and CPU
utilization. In other words, short timeouts translate to very fast
loop iterations and frequent invocations of our hooks, but also
to high CPU utilization. To address this problem, our imple-
mentation dynamically adjusts the unblockification latency,
using low values that guarantee fast convergence at quiescence
detection time—currently 1 ms—and higher, more conserva-
tive values—currently 100 ms, which resulted in no visible
CPU utilization increase in our test programs—otherwise.

We note that unblockification is a semantics-preserving
transformation of the original program which ensures three
important properties. First, it guarantees that stalling point exe-
cution always revolves around short-lived loops with bounded
iteration latency even when a thread is blocked indefinitely.
Second, it provides a straightforward way to enforce our
stalling point policies (e.g., allow blocking behavior in case
of blocking points or call our hooks at the top of each short-
lived loop iteration in case of quiescent points). Third, it can
unambiguously identify internal or external events received
by long-lived blocking calls and pass this knowledge to our
hooks at quiescence detection time. These properties all serve
as a basis for our quiescence detection protocol.

Quiescence detection. Our quiescence detection protocol

is based on two key observations. First, long-running pro-
grams are naturally structured to allow threads waiting for
external events (e.g., a new service request or a timeout) to
block indefinitely. Second, in the face of no external events,
well-formed programs must normally reach a global quiescent
state—all the threads stalling at quiescent points—in bounded
time. Building on these observations, our protocol enforces
simple barrier synchronization for all the threads blocked on
external events—that is, initiator threads—and waits for all the
threads processing internal events—that is, internal threads—
to complete before detecting quiescence. When quiescence is
detected, no new event can be initiated and all the threads can
be safely blocked at their quiescent points. The next question
is how long to wait for internal events to complete without
blocking threads in a deadlock-prone fashion.

The naive solution is to scan the call stack of all the pro-
cesses and threads to verify they have all reached their quies-
cent points. This strategy, however, is not race-free in absence
of a consistent view of all the running threads. Worse, even
a globally consistent snapshot of all the call stacks is not suf-
ficient in the presence of asynchronous thread interactions.
Suppose a thread A signals a thread B blocked on a condition
variable and then reaches its next quiescent point. Before B
gets a chance to unblock and process the event, a global call
stack snapshot might mistakenly conclude that both threads
are idle at their quiescent points and detect quiescence.

This race, known as the “launch-in-transit hazard” [23], is
a recurring problem in the Distributed Termination Detection
(DTD) literature [23, 42, 52]. All the DTD solutions to this
problem rely on explicit event tracking [52], a costly solution
in a local context partially explored in prior work [48]. Fortu-
nately, unlike in DTD, we found that avoiding event tracking
is possible, given that local events propagate in bounded time.

The key idea is to wait for all the threads to reach a quiescent
point with no event received since the last quiescent point. This
strategy effectively reduces our original global quiescence de-
tection problem to a local quiescence detection problem—that
is, quiescing short-lived loop iterations. To address the latter,
we rely on RCU [50], a scalable, low-latency, and deadlock-
free local quiescence detection scheme. RCU-like solutions
to the problem of global quiescence detection were attempted
before [14, 15], but in much less ambitious architectures that
simply disallowed long-lived threads. Our implementation is
based on liburcu QSBR [24], the fastest known userspace
implementation for local quiescence detection with nearly zero
overhead. The implementation provides a synchronize_rcu
primitive, which allows a controller thread to wait for one qui-
escent period—that is, for all the threads to reach a quiescent
state at least once from the beginning of the period [24].

Our RCU-based instrumentation ensures threads atom-
ically enter a nonquiescent state at creation time (i.e.,
pthread_create blocks waiting for the new thread to com-
plete RCU registration), atomically traverse a quiescent state
at each quiescent point right before reaching the designated

4

Chapter 2. Mutable Checkpoint-Restart 12

Quiescent period

Publish

Time

Coordinator

Initiator 1

Internal 1

Internal 2

Initiator 2

Quiescent period

B Q B Q

Receive Report

B Q

B Q B Q

Enters an extended

quiescient state

M.send()

Reports an

active state

B Q B M.received() Q

Figure 3: A sample run of our quiescence detection protocol.

blocking call, and enter an extended quiescent state [24] at de-
stroy time or when our quiescence detection protocol dictates
them. This strategy allows our protocol to transparently deal
with an arbitrary number of short-lived and long-lived threads.
Figure 2 illustrates the simplified steps of our protocol.

The coordinator publishes a quiescence detection protocol
event (Q = 1) and sets a global active counter to 0. Next,
it waits for a first quiescent period to ensure the protocol is
visible to all the initiator and internal threads and a second
quiescent period to give any thread a chance to report an ac-
tive state—whether the last blocking (or thread creation) call
received an event. The entire sequence is repeated until qui-
escence is detected, that is, no thread was found active in the
last quiescent period. In the second phase, the coordinator
publishes a barrier event (Q = 2) and waits for 2 more periods
to ensure all the threads are safely blocked at their quiescent
points. Our quiescent point instrumentation, in turn, imple-
ments the thread-side protocol logic. When the protocol is in
progress (Q > 0), our hook reports an active state to the coor-
dinator (if any) and blocks the current thread if it is an initiator
thread or a barrier event is in progress. Lines 6–7 allow the cur-
rent thread to enter an extended quiescent state and block on a
condition variable. Lines 8–9, in contrast, allow the current
thread to leave an extended quiescent state and synchronize
before resuming execution—in case the coordinator decides to
abort the protocol, for example after a predetermined timeout.
Note the rcu_quiescent_state call at the bottom, the only
step executed also during regular execution, to mark all the
quiescent state transitions correctly. Figure 3 shows a sample
run of the first phase of our protocol (Q = 1), with two threads
reacting to the published protocol event after 2 grace periods.

Our protocol provides race-free and deadlock-free quies-
cence detection in only 2q+2 quiescent periods (with q = 1
if the program is already globally quiescent and otherwise
bounded by the length of the maximum internal event chain).
Our strategy leverages two well-known RCU uses: publish-
subscribe and “waiting for things to finish" [51]. A current
limitation of liburcu is its inability to support multiprocess
synchronize_rcu semantics. To address this issue, MCR
uses a process-shared active counter and requests a controller

thread in each process to complete the first phase of the proto-
col. In this phase, newly created processes simply cause the
entire protocol to restart. When all the per-process threads
complete, MCR transitions to the second phase of the protocol
and waits for all the controller threads to report quiescence.

5. State-driven Mutable Record-replay
Our control-flow transfer strategy faces the major challenge
of seamlessly remapping the control-flow configuration check-
pointed at quiescence time. Further, our design goals dictate
support for generic multiprocess/multithreaded programs and
version updates that may introduce changes in the process
model or long-lived thread behavior. To address this challenge,
the key observation is that programs tend to naturally recon-
struct their process hierarchy and control-flow configuration
correctly at initialization time. Following this intuition, the
idea is to allow the new version to reinitialize in a controlled
way and exploit existing code paths to remap the checkpointed
control flow correctly. Further, we note that initialization code
can often naturally reconstruct shared library state and reini-
tialize new data structures that were not part of the old version.
The latter observation shows that initialization code reuse is
beneficial to also minimize manual state transfer effort in the
common case of additive state changes introduced by updates.

Remapping control flow. Our strategy raises two main
challenges: (i) how to synchronize the initialization process
and avoid exposing the new version to external events which
would violate our atomicity and reversibility guarantees; (ii)
how to control the initialization process to prevent the new
version from clashing or destroying state inherited from the
checkpoint. MCR addresses the first challenge by allowing a
controller thread to reinitiate the quiescence detection proto-
col before starting initialization. This forces all the long-lived
threads to safely block at their quiescent points without re-
ceiving new external events. To address the second challenge,
MCR relies on record-replay of initialization-time operations.
This is marginally intrusive compared to full-execution record-
replay used in prior work for state reconstruction [57, 64, 65]
or multiversion execution [40]. Further, unlike traditional
record-replay [10, 31, 46, 56, 61, 62], MCR does not attempt
to deterministically replay execution, a strategy which would
otherwise forbid any initialization-time changes. The goal is
to replay the minimum number of operations to allow the new
version to preserve the checkpointed state, while executing
live the rest of the—arbitrarily different—initialization code.

We term this strategy state-driven mutable record-replay,
which draws inspiration from recent mutable record-replay
strategies [45, 67] but with at least two key differences. First,
our strategy is state-driven, in that we only replay operations
associated to immutable state objects inherited from the check-
point (e.g., file descriptors). This eliminates the need for
in-kernel replay to support transitions to live execution. Our
record-replay implementation—part of our preloaded library—
is simply based on library call interception at initialization

5

Chapter 2. Mutable Checkpoint-Restart 13

time. Second, we allow nondeterministic multithreaded exe-
cution not to restrict behavioral changes across versions and
enforce partial ordering of related operations similar to [67]
only when strictly necessary—currently only for file descriptor
operations used for synchronization purposes.

Mapping operations. Our record-replay strategy adopts a
conservative mapping and conflict resolution strategy. For
instance, if the new version is changed to omit a previously
recorded operation to replay, we immediately flag a conflict.
This strategy aims to unambiguously reinitialize the state while
conservatively detecting complex changes that inevitably re-
quire user intervention—since the replay surface is small, we
expect unnecessary conflicts to be minimal. This is in contrast
to prior techniques that rely on best-fit exploration strategies
to map record-replay operations and resolve conflicts [67].

To enforce a conservative mapping strategy in presence of
reordering of operations due to nondeterminism or arbitrary
version changes, MCR relies on call stack IDs. The latter
are version-agnostic hashes—combined to per-call stack in-
cremental counters—obtained from the call stack of a thread
performing an operation considered for replay. Call stack
IDs can conservatively discriminate individual thread opera-
tions and are more robust to addition/deletion/reordering of
library calls—and changes to their arguments—than mapping
schemes based on global or partial orderings of operations.
The tradeoff is that unnecessary conflicts may arise in case
of initialization function refactoring (e.g., renaming). In our
experience, these cases are relatively rare. In addition, best-fit
matching strategies may quickly suggest to the user how to
resolve the conflict. To detect and tolerate benign changes to
library call arguments across versions, MCR follows pointer
arguments similar to [67], but relies, when possible, on track-
ing information provided by our mutable GC-style tracing
instrumentation to better recognize equivalent call arguments.

Immutable state objects. Our state-driven mutable record-
replay strategy currently records all the initialization-time
operations and replays only those affecting immutable state
objects after restart. Immutable state objects are objects inher-
ited from the checkpoint that carry state information which
must be conservatively preserved after restart. In other words,
these are the only objects allowed to violate the mutable MCR
semantics. Our current implementation supports three main
classes of immutable objects: (i) file descriptors inherited from
the checkpoint—immutable since they may carry associated
in-kernel state; (ii) immutable memory objects identified by
our mutable GC-style tracing strategy—immutable due to par-
tial knowledge on global pointers; (iii) process and thread
IDs—immutable since they carry process-specific information
that may be stored in memory. Others are possible as well.

Mapping and preserving immutable objects inherited from
the checkpointed version at replay time is challenging in a mul-
tiprocess context. The problem is exacerbated by the need to
avoid unnecessary—and potentially expensive—object track-
ing during normal execution. Consider the naive solution for

file descriptors—but similar considerations apply to other im-
mutable objects as well. This may allow every process in the
new version to simply inherit all the file descriptors from its
old checkpointed counterpart at process creation time. There
are two main problems with this approach which we found to
be unacceptably common causes of unnecessary conflicts or
ambiguity. First, the multiprocess nature of the initialization
process may result in a checkpointed file descriptor ID clash-
ing with a file descriptor ID already inherited from the parent
process at initialization time. Second, file descriptors IDs may
be reused during or after initialization, which means we can
no longer unambiguously determine whether a checkpointed
file descriptor ID matches an ID logged in the record phase
when enforcing our state-driven replay strategy.

MCR addresses these challenges by enforcing two key prin-
ciples: global inheritance and global separability. Global
inheritance allows the first process in the new version to in-
herit all the immutable objects from the checkpointed process
hierarchy before starting the initialization process. The idea
is to preallocate all the necessary immutable objects to avoid
identifier clashing and seamlessly propagate all the objects
down the new process hierarchy for replay purposes. All
the immutable objects that do not participate in replay oper-
ations in a given process are simply cleaned up at the end of
the initialization. Global separability, in turn, allows all the
immutable objects created at initialization time to have glob-
ally unique identifiers, preventing the ambiguity introduced
by reuse. Note that this is not necessary for immutable ob-
jects created after initialization, which are not target of replay
operations and can simply be inherited from the checkpoint.

MCR enforces these properties in different ways for differ-
ent classes of immutable objects. Immutable static memory
objects (e.g., global variables)—preinherited using a linker
script—naturally guarantee global inheritance and separability
by design. Immutable dynamic memory objects (e.g., heap ob-
jects) are inherited using global reallocation—as detailed later.
Separability is enforced by deferring global deallocations at
the end of initialization and explicitly flagging initialization-
time allocations in allocator metadata maintained by our mu-
table GC-style tracing strategy—which also provides support
for deferred deallocations. Immutable file descriptors are in-
herited using UNIX domain sockets. Separability is enforced
by intercepting initialization-time file descriptor (fd) creation
events to (i) allocate new fd IDs in a reserved range at the
end of the fd space and (ii) prevent initialization-time reuse.
Immutable process and thread IDs are handled similarly to file
descriptors, except they cannot be simply inherited from the
checkpoint or their creation operations simply replayed. To
enforce global inheritance, MCR intercepts initialization-time
process and thread creation events and relies on Linux names-
paces [17] to force the kernel to assign a specific ID. This strat-
egy follows the same approach adopted by emerging userspace
checkpoint-restart techniques for Linux programs [2].

Another key challenge is how to implement global reallo-

6

Chapter 2. Mutable Checkpoint-Restart 14

cation of immutable dynamic memory objects, which need to
preserve their memory address after restart. MCR addresses
this challenge using different strategies, coalescing overlap-
ping memory objects into superobjects at reallocation time—
deallocated later when no longer in use. Shared libraries are
copied and prelinked—simply using the prelink tool [41]—
in a separate directory before restart. We instruct the dynamic
linker to use our copies, allowing the libraries to be remapped
at the same virtual address in spite of address space layout
randomization (ASLR). This also allows MCR to reallocate
all the dynamically loaded libraries correctly using dlopen.
Memory mapped objects are remapped at the same address
using standard library interfaces (e.g., MAP_FIXED). Note that
to provide the strongest isolation guarantees, we also envision
memory mappings shared with the checkpoint to be “shad-
owed” during initialization and remapped correctly at the end,
a strategy that our current prototype does not yet fully support.

Global reallocation of heap objects poses the greatest chal-
lenge, given that standard allocator interfaces provide no
support for this purpose. MCR addresses this problem by
leveraging the intuition that common allocator implementa-
tions behave similarly to a buffer allocator for an ordered
sequence of allocations in a fresh heap state. MCR imple-
ments this strategy for ptmalloc [30]—the standard glibc
allocator—using a single malloc arena, but we believe a rela-
tively allocator-independent implementation is possible assum-
ing predictable allocation behavior and malloc header size—
currently inferred by gaps between dummy allocations per-
formed at startup. We also envision this abstraction to become
part of standard allocator interfaces once MCR is deployed—
similar to ptmalloc’s existing get_state and set_state
primitives for traditional process checkpoint-restart.

6. Mutable GC-style Tracing
Our state transfer strategy faces the major challenge of remap-
ping all the state objects (i.e., data structures) from the check-
pointed state in presence of even complex state transforma-
tions. Further, our goals dictate eliminating the need for anno-
tations in all the common real-world C programs. To address
this challenge, we make three key observations. First, an-
notations in prior program-level state transfer work [29, 35]
were necessary to compensate for C’s lack of rigorous type
semantics, which prevents accurate program state identifi-
cation. Not surprisingly, prior work has demonstrated that
annotationless program-level state transfer is possible for man-
aged languages like Java [63]. Second, similar problems are
already well-understood in the garbage collection (GC) litera-
ture [13, 37, 58]. In particular, the problem of remapping the
program state in face of full-coverage state transformations
faces the very same challenges of a precise and moving tracing
garbage collector for C [58]. By precise, we refer to the ability
to accurately identify object types, necessary to apply on-the-
fly type transformations. By moving, we refer to the ability to
relocate objects, necessary to support arbitrary state changes

0x9da74b8

0x9da6100

...

0x806a038

0x806a02c 0x9da68e8 0x9da74b8-1

10

0x806a038

0x9da68e8 -2 0x000000 0x000000

5

0x0000000x000000

[char x4] char a[8] [char x4]

[int] [int] [int]

{bt_t*} {bt_t*} {int}

{bt_t*} {bt_t*} {int} bt_t bt

...
...

10

0x9f19830

0x9da6100 20
...

0x806a038

0x804a044 0x9da68e8 0x9da74b8-1

0x806a038

0x9e1a400 5

-2

[char x4] char a[8] [char x4]

[int] [int] [int]

...
...

0

0

0
{bt_t*} {bt_t*} {int} bt_t bt {T}

20

{bt_t*} {bt_t*} {int}

0x9da6104 0x9da6104

{T} {bt_t*} {int} {bt_t*}

0x0000000x000000

0x0000000x000000

30

{bt_t*} {int} {T} {bt_t*}

30

Run time (v1) Run time (v2)

Figure 4: State remapping using mutable GC-style tracing.

in the new version—introduced by state transformations, com-
piler optimizations, or ASLR. Prior work [58] identified many
real-world scenarios in which annotations are necessary in
this context, such as: explicit or implicit unions, nonstandard
allocation schemes, uninstrumented libraries, pointers as inte-
gers. Third, conservative garbage collectors are well-known
solutions to all these problems in the GC literature [18, 19], in
that they do not require any explicit type information at the
cost, however, of being unable to relocate objects.

Remapping program state. Our observations hint at the
key idea behind mutable GC-style tracing: trace all the state
objects to remap using a precise GC-style strategy when pos-
sible, resort to a conservative GC-style strategy in face of
incomplete or ambiguous type information. To implement this
strategy, MCR gracefully relaxes the original full-coverage
state transformation requirement, marking the necessary ob-
jects as immutable—they cannot be relocated after restart—
and forbidding updates to certain objects when ambiguous
type information is found. This strategy allows the user to
tradeoff the annotation effort against the number of data struc-
ture changes that can be seamlessly remapped by MCR. When
unsupported state change are detected, MCR raises a conflict
that must be manually resolved by the user. We envision users
deploying an annotationless version of MCR at first, and then
incrementally add annotations only on the data structures that
change more often if their experience with the system gen-
erates an undesirable number of conflicts. Even with a fully
annotated state, our conservative strategy can help the user
identify missing annotations or other problematic cases.

Our mutable GC-style tracing strategy is exemplified in Fig-
ure 4. MCR relies on the accurate type information available
to precisely reconstruct the binary tree bt in the checkpoint
and remap all the nodes and pointers with their new types (T)
correctly after restart. The array a, in turn, is conservatively
scanned for pointers, which are found to point into a heap-
allocated array and a itself. As a result, both arrays are marked
as immutable and remapped at the same locations after restart.

Precise GC-style tracing. There are two main strategies to
implement precise GC-style tracing: (i) type-aware traversal
functions generated by the frontend compiler [13,35,37] or (ii)
data type tags [29]—hybrid approaches are also possible [58].
The former is generally more space- and time-efficient, but the
latter can better deal with polymorphic behavior and provide

7

Chapter 2. Mutable Checkpoint-Restart 15

more flexible run-time type management. MCR implements
the latter strategy to simplify type management and seamlessly
switch from precise to conservative tracing when needed.

Similar to prior precise strategies based on data type
tags [29,58], we rely on static instrumentation to store tracking
and type information for all the relevant static objects (i.e., stat-
ic/global variables, constants, functions, etc.) and change all
the allocator invocations to call wrapper functions in our static
library and maintain data type tags in in-band metadata. Static
analysis determines the allocated type on a per-callsite basis,
similar to [58]. We also borrowed the tracking technique for
generic stack variables, maintaining a stack-allocated linked
list of overlay metadata nodes [58]. While inspired by prior
approaches, our instrumentation has a number of unique prop-
erties. First, ambiguous cases like unions require no explicit
annotations [29] or tagging [58]—which may not be sufficient
in many real programs—given that our tracing strategy can be
made conservative when needed. Similarly, we do not require
full allocator instrumentation for complex custom allocation
schemes. Our precise analysis can currently only support stan-
dard allocator abstractions (i.e., malloc) or—if annotations
are provided—simple region-based allocation schemes [16].
For more complex unsupported allocator abstractions, our
static type analysis resorts to fully conservative behavior. Fi-
nally, stack variable tracking—expensive for full-execution
coverage—is limited to all the functions that profiling found
active on the long-lived call stack of some quiescent thread.

The tracing strategy is implemented in our preloaded library.
It operates in each new quiescent process after restart, paral-
lelizing the state transfer operations in a multiprocess context.
Each process requests a central coordinator to connect to its
checkpointed counterpart (if any) identified by the same call
stack ID. Once a pipe is established with the checkpointed pro-
cess, MCR creates a fast read-only shared memory channel to
transfer over all the tracking and type information from the old
version. Starting from root data and stack objects, MCR traces
pointer chains to reconstruct the entire checkpointed state and
remap each object found in the traversal to the new version—
while reallocating objects and applying type transformations
as needed, similar to [29, 35]. We also allow user-specified
traversal callbacks to handle complex state transformations,
similar to [29]. Unlike prior approaches, however, the MCR
model dictates a more comprehensive cross-version object
matching strategy (i.e., variable x in the checkpoint should be
remapped to variable x in the new version). We use symbol
names to match static objects and allocation site information to
match dynamic objects that need to be reallocated in the new
version. Dynamic objects already reallocated at initialization
time are matched by their call stack ID. Individual threads,
finally, are matched based on their long-lived loops and their
stack variables remapped using symbol names.

Conservative GC-style tracing. Our conservative GC-style
strategy operates obliviously to its precise counterpart. The
idea is to first perform a (partly) conservative analysis to iden-

tify all the remapping invariants and later allow precise GC-
style tracing to implement state transfer without worrying
about type ambiguity—pointers not explicitly exposed by the
type information available are never traversed and the data
simply copied over as is. Our conservative strategy seeks to
identify two possible remapping invariants for every object in
the old version: immutability—the object cannot be relocated
after restart—and nonupdatability—the object cannot be au-
tomatically type-transformed by our precise tracing strategy
after restart (a conflict is generated in case of type changes).

To identify such invariants, MCR operates similarly to a
conservative garbage collector [18,19], scanning opaque mem-
ory areas looking for likely pointers—that is, aligned memory
words that point to a valid live object in memory. Objects
referenced by likely pointers are marked as immutable and
nonupdatable—we could restrict the latter to only interior
pointers, but we have not implemented this option yet. Ob-
jects that contain likely pointers are marked as nonupdatable—
again, we could restrict the latter to only certain type changes,
but we have not implemented this option yet. Note that, un-
like prior approaches, our strategy is only partly conservative:
MCR traverses the state using our precise GC-style strategy
by default and switches to a conservative analysis only when
it encounters opaque memory areas. Further, when possible,
our dynamic points-to analysis uses the precise pointed-object
information to reject illegal (i.e., unaligned) likely pointers.

Run-time policies decide when a traversed memory area
must be treated as opaque. Our default is to do so for explicit
unions, pointer-sized integers, char arrays—often used to
implement implicit unions—and uninstrumented allocator
operations, but different program-driven policies are possi-
ble. Currently, we do not conservatively analyze nor transfer
shared library state by default, since we have observed that
most real-world programs already reinitialize shared libraries
and their state correctly at initialization time. Nonetheless, the
user can instruct MCR to transfer–and conservatively analyze—
the static/dynamic state of particular uninstrumented shared
libraries in an opaque way, when needed. Dynamic instrumen-
tation included in our preloaded library implements tracking
for shared libraries and their dynamically allocated objects.

Our tracing strategy raises two issues: accuracy—how con-
servative is the analysis in determining updatability coverage—
and timing—when to perform the analysis. In our experience,
the former is rarely an issue in real-world programs. Prior
work has reported that even fully conservative GC rarely suf-
fers from type-accuracy problems on 64-bit architectures—
although more issues have been reported on 32-bit architec-
tures [38]. Other studies confirm type accuracy is marginal
compared to liveness accuracy [39]. In our context, liveness
accuracy problems are only to be expected for uninstrumented
allocator abstractions that aggressively use free lists—or other
forms of reuse. These cases can be easily identified and com-
pensated by annotations/instrumentation, if necessary. As for
the latter, our analysis should be normally performed after

8

Chapter 2. Mutable Checkpoint-Restart 16

Quiescence profiling Updates Changes Engineering effort

SL LL Ext Int Per Vol Num LOC Fun Var Type Ann LOC ST LOC

Apache httpd 2 8 6 2 5 3 5 10,844 829 28 48 18 302
nginx 1 2 1 1 2 0 25 9,681 711 51 54 22 335
vsftpd 0 5 5 0 1 4 5 5,830 305 121 35 0 21
OpenSSH 3 3 3 0 1 2 5 14,370 894 84 33 0 135

Table 1: Overview of all the programs and updates used in our evaluation.

checkpointing the old version. This strategy, however, would
block the running version for the time to relink the program
and prelink the shared libraries to remap nonrelocatable im-
mutable objects (e.g., global variables). Fortunately, we have
observed very stable immutable behavior for such objects. As
a result, our current strategy is to simply run the analysis and
the relinking operations offline. If a mismatch is ever found
after quiescence—although we have never encountered this
scenario in practice—we could expand the set of immutable
objects, resume execution, allow relinking operations in the
background, and repeat the entire procedure until convergence.

7. Violating Assumptions

We report on the key issues that might allow programs found
“in the wild” to violate MCR’s annotationless semantics—
excluding annotations required by complex semantic updates.
The intention is to foster future research in the field, but also
allow programmers to design more “live update-friendly” (and
better) software. Profile-guided quiescence might require ex-
tra manual effort in the following cases: (i) missing stalling
points in profile data (i.e., not covered by the test workload)—
weakens convergence guarantees; (ii) misclassified stalling
points in profile data (e.g., an external library call used to syn-
chronize internal events)—weakens convergence or deadlock
guarantees; (iii) overly conservative stalling point policies
(i.e., promoting a semi-persistent stalling point to a blocking
point)—weakens convergence guarantees. The latter is the
only case we found to be relatively common in practice. In
the worst case, this requires extra control-flow remapping op-
erations not automatically performed by MCR. A possible
solution is to extend our record-replay strategy to code paths
leading to volatile quiescent points, but this may also introduce
nontrivial run-time overhead. While annotations are possible,
we believe these cases are better dealt with at design time.
Purely event-driven servers (e.g., nginx) are an example, with
only persistent quiescent points allowed during execution.

Further, state-driven mutable record-replay might require
extra manual effort in the following cases: (i) unsupported
immutable objects (e.g., process-specific IDs with no names-
pace support, such as System V shared memory IDs, stored
into a global variable); (ii) nondeterministic process model be-
havior (e.g.„ a server dynamically adjusting worker processes
depending on the load); (iii) nonreplayed operations actively
trying to violate MCR semantics (e.g., a server aborting initial-
ization when detecting another running instance). We believe

these cases to be relatively common, the last two in particular—
Apache httpd being an example. While the last case is trivial
to address at design time, the others require better run-time
support and more sophisticated process mapping strategies.

Finally, mutable GC-style tracing shares a number prob-
lematic cases that require extra manual effort with prior GC
strategies for C [58]. Examples include storing a pointer on
persistent storage or relying on specialized encoding to store
pointer values in memory. In the MCR model, these cases are
best described as examples of immutable objects not supported
by our run-time system. While seemingly uncommon and easy
to tackle at design time, we found 1 real-world program (i.e.,
nginx) using pointer encoding in our evaluation.

8. Evaluation

We have implemented MCR on Linux (x86), with support
for generic userspace C programs. Static instrumentation—
implemented in C++ using the LLVM v3.3 API [47]—
accounts for 728 (quiescence profiler) and 8064 LOC 1

(other MCR components). MCR instrumentation relies on
a static library, implemented in C in 4,531 LOC. Dynamic
instrumentation—implemented in C in a preloaded shared
library—accounts for 3,476 (quiescence profiler) and 21,133
LOC (other MCR components). The mcr-ctl tool, which al-
lows users to signal updates to the MCR backend using UNIX
domain sockets, is implemented in C in 493 LOC.

We evaluated MCR on a workstation running Linux v3.5.0
(x86) and equipped with a 4-core 3.0 Ghz AMD Phenom II
X4 B95 processor and 8 GB of RAM. For our evaluation, we
considered the two most popular open-source web servers—
Apache httpd (v.2.2.23) and nginx (v0.8.54)—and, for com-
parison purposes, a popular ftp server—vsftpd (v1.1.0)—and
a popular ssh server—the OpenSSH daemon (v3.5p1). The
former [22, 35, 36, 48, 55] and the latter [22, 36, 55] are by far
the most used programs (and versions) in prior live update
solutions. We configured our programs (and benchmarks) with
their default settings and instructed Apache httpd to use the
worker module with 2 servers and 25 worker threads without
dynamically adjusting its process model. We benchmarked
our programs using the Apache benchmark (AB) [1] (Apache
httpd and nginx), the FTP benchmark included in pyftpdlib [6]
(vsftpd), and the built-in test suite (OpenSSH). We repeated
all our experiments 11 times and report the median.

1Source lines of code reported by David Wheeler’s SLOCCount.

9

Chapter 2. Mutable Checkpoint-Restart 17

Precise pointers Likely pointers

Total Static Dynamic Lib Total Static Dynamic Lib

Ptr Src Targ Src Targ Targ Ptr Src Targ Src Targ Targ

Apache httpd 2,373 2,272 2,151 101 219 3 16,252 185 2,050 16,067 14,201 1
nginx 1,242 1,226 1,214 16 26 2 4,049 51 293 3,998 3,755 1
nginxreg 2,049 1,226 1,455 823 592 2 3,522 51 149 3,471 3,372 1
vsftpd 149 148 131 1 4 14 6 6 0 0 6 0
OpenSSH 237 226 211 11 19 7 56 5 16 51 32 8

Table 2: Mutable GC-style tracing statistics aggregated after the execution of our benchmarks.

Our evaluation answers 4 key questions: (i) Engineering ef-
fort: How much engineering effort is required to adopt MCR?
(ii) Performance: Does MCR yield low run-time overhead?
(iii) Update time: Does MCR yield reasonable update time?
(iv) Memory usage: How much memory does MCR use?

Engineering effort. To evaluate the engineering effort re-
quired to deploy our techniques, we first prepared our test
programs for MCR and profiled their quiescent points. To put
together an appropriate execution-stalling workload for our
quiescence profiler, we used three simple test scripts. The first
script—used for Apache httpd and nginx—opens a number of
long-lived HTTP connections and issues one HTTP request
for a very large file in parallel. The second and third scripts—
used for OpenSSH and vsftpd, respectively—open a number of
long-lived SSH (or FTP) connections—in authentication/post-
authentication state–and, for vsftpd, issue one FTP request
for a very large file in parallel. Note that our workload is not
meant to be necessarily general—Apache httpd, for instance,
supports plugins that can potentially create an arbitrary num-
ber of new volatile stalling points—but rather to cover all the
common stalling points stressed by the execution of our bench-
marks. Next, we considered a number of incremental releases
following our original program versions, and prepared them
for MCR. In particular, we selected 5 updates for Apache httpd
(v2.2.23-v2.3.8), vsftpd (v1.1.0-v2.0.2), and OpenSSH (v3.5-
v3.8), and 25 updates for nginx (v0.8.54-v1.0.15)—nginx’s
tight release cycle generally produces incremental patches
that are much smaller than those of all the other programs
considered. Table 1 presents our findings.

The first six grouped columns summarize the data generated
by our quiescence profiler. The first two columns detail the
number of short-lived and long-lived thread classes identified
during the test workload. The short-lived thread classes de-
tected derive from deamonification (all the programs except
vsftpd), initialization tasks (httpd), or exec()ing other helper
programs (OpenSSH). The long-lived thread classes detected,
in turn, originated a total of 18 stalling points, 15 of which are
external (Ext). OpenSSH and vsftpd’s simple process model
resulted in no internal stalling point (Int) and only 1 persistent
stalling point (Per) associated to the master process. Finally,
all the server programs reported volatile stalling points (Vol)
with the exception of nginx, given its rigorous event-driven
programming model. The profile data reported was used as is

for our quiescence instrumentation without extra annotations.
The second two grouped columns provide an overview of

the updates considered for each program and the number of
LOC added, deleted, or modified by them. As shown in the
table, we manually processed more than 40,000 LOC across
the 40 updates considered. The third group shows the number
of functions, variables, and types changed (i.e., added, deleted,
or modified) by the updates, with a total of 2,739, 284, and 170
changes (respectively). The fourth group, finally, shows the
engineering effort (LOC) in terms of annotations required to
prepare our programs using the default stalling point policies
and the extra state transfer code required by our updates.

As shown in the table, the annotation effort required by
MCR is low. Apache httpd required only 8 LOC to prevent the
server from aborting prematurely after actively detecting its
own running instance and 10 LOC to ensure deterministic cus-
tom allocation behavior. Both changes were necessary to allow
our state-driven mutable record-replay to complete correctly.
Further, nginx required 22 LOC to annotate a number of global
pointers using special data encoding—storing metadata in the
2 least significant bits. The latter is necessary for our mutable
GC-style tracing strategy to interpret pointer values correctly.
Supporting all the other nonpersistent quiescent points profiled
with no application redesign, on the other hand, required an
extra 82 LOC for vsftpd, 49 LOC for OpenSSH, and 163 LOC
for Apache httpd. In addition, we had to manually write 793
LOC to allow state transfer to complete correctly across all the
updates considered. The extra code was necessary to imple-
ment complex state changes that could not be automatically
remapped by MCR. Moreover, two of our test programs rely on
custom allocation schemes. nginx uses regions [16] and slab-
like allocations [20]. Apache httpd uses nested regions [16].
Instrumenting custom allocation schemes—other than regular
libc allocations—increases updatability, but also introduces
extra complexity and overhead. To analyze the tradeoff, we
allowed MCR to instrument only nginx’s region allocator us-
ing 1 extra annotation—nested regions and slabs are not yet
supported by our instrumentation—and instructed our tracing
strategy to produce aggregated quiescent-time statistics—for
both precisely and conservatively identified program pointers—
after the execution of our benchmarks (Table 2).

In the two cases, the table reports the total number of point-
ers detected (Ptr), per-region source pointers (Src), and per-

10

Chapter 2. Mutable Checkpoint-Restart 18

Unblock +SInstr +DInstr +QDetect

Apache httpd 0.977 1.040 1.043 1.047
nginx 1.000 1.000 1.000 1.000
nginxreg 1.000 1.175 1.192 1.186
vsftpd 1.024 1.027 1.028 1.028
OpenSSH 0.999 0.999 1.001 1.001

Table 3: Benchmark run time normalized against the baseline.

region pointed target objects (Targ). Objects are classified
into Static (e.g., global variables, but also strings, which
attracted the vast majority of likely pointers into static ob-
jects), Dynamic (e.g., heap objects), Lib (i.e., static/dynamic
shared library objects). We draw three main conclusions from
our analysis. First, there are many (23,885) legitimate cases
of likely pointers—we sampled a number of cases to check
for accuracy—which cannot be ignored at state transfer time.
Prior whole-program strategies would delegate this heroic ef-
fort entirely to the user. Second, we note a number of program
pointers into shared library state (28+11). This confirms the
importance of marking shared library objects as immutable
if library state transfer is desired. Finally, our results con-
firm the impact of allocator instrumentation. Apache httpd’s
uninstrumented allocations produce the highest number of
likely pointers (16,067), with nginx following with 3,998. Our
(partial) allocator instrumentation on nginx (nginxreg) can mit-
igate, but not eliminate this problem (3,471 likely pointers).
Further, even in the case of a fully instrumented allocator (vs-
ftpd and OpenSSH), we still note a number of likely pointers
originating from legitimate type-unsafe idioms (6 and 56, re-
spectively), which suggests annotations in prior solutions can
hardly be eliminated even in the optimistic cases. Overall, we
regard MCR as a major step forward over prior solutions: (i)
much less annotation effort is required to deploy MCR and
support updates; (ii) much less inspection effort is required to
identify issues with pointers, allocators, and shared libraries.

Performance. To evaluate the run-time overhead imposed
by MCR, we measured the time to complete the execution
of our benchmarks compared to the baseline. We configured
the Apache benchmark to issue 100,000 requests and retrieve
a 1 KB HTML file. We configured the pyftpdlib benchmark
to allow 100 users and retrieve a 1 MB file. In all the ex-
periments, we observed marginal CPU utilization increase
(i.e., < 3%). Run-time overhead results, in turn, are shown in
Table 3. We comment on results for uninstrumented region
allocators first. As expected, unblockification alone (Unblock)
introduces marginal run-time overhead (2.4% in the worst case
for vsftpd). The reported speedups are well within the noise
caused by memory layout changes [53]. When combined with
our static instrumentation (+SInstr), the overhead is somewhat
more visible (4% worst-case overhead for Apache httpd). The
latter originates from our allocator instrumentation, which
maintains in-band metadata for mutable GC-style tracing. The
overhead is fairly stable when adding our dynamic instru-
mentation (+DInstr)—which also tracks all the allocations

 0

 100

 200

 300

 400

 500

 10 20 30 40 50 60 70 80 90 100

Q
ui

es
ce

nc
e

tim
e

(m
s)

Number of worker threads

 Apache benchmark
 Idle

Figure 5: Quiescence time vs. number of worker threads.

from shared libraries, other than maintaining process hierarchy
metadata. Finally, our quiescence detection instrumentation
(+QDetect)—which essentially only introduces extra RCU
calls to mark per-thread quiescent states—introduces, as ex-
pected, marginal overhead. This translates to the final 4.7%
worst-case overhead (Apache httpd) for the entire solution.

To further investigate the overhead on allocator operations,
we instrumented all the SPEC CPU2006 benchmarks with our
static and dynamic allocator instrumentation. We reported
a 5% worst-case overhead across all the benchmarks, with
the exception of perlbench (36% worst-case overhead), a
memory-intensive benchmark which essentially provides a mi-
crobenchmark for our instrumentation. Our results confirm the
impact of allocator instrumentation on run-time performance.
This is also evidenced by the cost of our region instrumen-
tation on nginx, which incurs 19.2% overhead in the worst
case (nginxreg in Table 3). While our implementation may be
poorly optimized for nginx’s allocation behavior, this extra
cost does evidence the tradeoff between precision of our GC-
style tracing strategy and run-time performance, which MCR
users should take into account when deploying our solution.

Our results demonstrate that MCR overhead is generally
lower [49] or comparable [35, 54, 55] to prior solutions. The
extra costs (unblockification and allocator instrumentation)
provide much better quiescence guarantees and drastically
simplify state transfer. For example, the tag-free traversal
strategy proposed in [35] would eliminate the overhead on
allocator operations, but at the cost of no support for interior
or void* pointers without pervasive user annotations.

Update time. To evaluate the update time—the time the
program is unavailable during the update—we analyzed its
three main components in detail: (i) quiescence time; (ii)
control-flow transfer time; (ii) state transfer time. To evaluate
quiescence time, we allowed our quiescence detection proto-
col to complete during the execution of our benchmarks or
during idle time. We found that programs with only external
quiescent points—vsftpd and OpenSSH—or rarely activated
internal points—nginx, whose master process is only activated
for crash recovery purposes—always converge in comparable
time in a workload-independent way (around 125 ms, with
the first 100 ms directly attributable to our default unblockifi-

11

Chapter 2. Mutable Checkpoint-Restart 19

Static Run-time Update-time

Apache httpd 2.187 2.100 7.685
nginx 2.358 4.111 4.656
nginxreg 2.358 4.330 4.829
vsftpd 3.352 5.836 14.170
OpenSSH 2.480 3.047 11.814

Table 4: Memory usage normalized against the baseline.

cation latency), given that our protocol is essentially reduced
to barrier synchronization. Apache httpd is more interesting,
with several live internal points interacting across its worker
threads. Figure 5 depicts the time Apache httpd requires to qui-
esce for an increasing number of worker threads, resulting in
a maximum quiescent time of 184 ms with 25 threads (default
value) and 427 ms with 100 threads (Apache httpd’s recom-
mended maximum value). The figure confirms our protocol
scales well with the number of threads and converges quickly
even under heavy load once external events are blocked. Both
properties stem from our RCU-based design.

To evaluate control-flow transfer time, we measured the
time to complete state-driven mutable record-replay across
versions. We found that both the record and replay phase
complete in comparable time (less than 40 ms), with mod-
est overhead (1-45%) compared to the original initializa-
tion time across all our test programs. Finally, to evaluate
state transfer time, we allowed a user to connect to our test
programs—similar to the experimental setup adopted in prior
solutions [35]—and measured the time to remap the state
across versions using mutable GC-style tracing. Figure 6 de-
picts the resulting time as a function of the number of type
transformations (%) we artificially injected into the new pro-
gram version—using a source-to-source transformation, simi-
lar to [29]. Despite an average of 365,830 type transformations
operated by our precise GC-style tracing strategy at 100%
coverage, we observed a relatively low impact on state trans-
fer time (462 ms in the worst case for Apache httpd). This
behavior stems from optimizations operated in our tracing
strategy, which relies on lookup tables and splay trees—an
idea borrowed by bounds checkers [8, 25, 59]—to efficiently
remap objects/types and pointers, respectively. While gener-
ally higher than prior solutions, we believe our update time to
be sustainable for most programs and more optimizations pos-
sible. The benefit is full-coverage multiprocess state transfer
able to conservatively handle C’s ambiguous type semantics.

Memory usage. MCR instrumentation leads to larger binary
sizes and run-time memory footprints. This stems from mu-
table GC-style tracing metadata, process hierarchy metadata,
the in-memory log used for state-driven mutable record-replay,
and the libraries required to support all our techniques.

Table 4 evaluates the MCR impact on our test programs.
The static memory overhead (235.2% worst-case overhead for
vsftpd) measures the impact of our static instrumentation on
the original binary size. The run-time overhead (483.6% worst-
case overhead for vsftpd), in turn, measures the impact of static

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

S
ta

te
 tr

an
sf

er
 ti

m
e

(m
s)

Type transformation coverage (%)

Apache httpd
nginx
vsftpd

OpenSSH

Figure 6: State transfer time vs. type transformation coverage.

and instrumentation (and support libraries) on the resident
set size (RSS) observed at runtime, right after initialization—
we found the overhead to be lower or comparable during
the execution of our benchmarks. The update-time overhead,
finally, shows the maximum RSS overhead we observed at
update time, accounting for an extra running instance of the
program and auxiliary data structures allocated for mutable
GC-style tracing (1317.0% worst-case overhead for vsftpd).

As expected, MCR requires more memory than prior in-
place live update solutions, while being, at the same time,
comparable to other whole-program solutions that rely on data
type tags. A tag-free tracing implementation such as the one
proposed in [35] would help reduce the overhead in this case
as well, but also impose all the important limitations discussed
earlier. MCR favors annotationless semantics over memory
usage, given the increasingly low cost of RAM in these days.

9. Conclusion

This paper presented Mutable Checkpoint-Restart (MCR), a
new live update technique for generic long-running C pro-
grams. MCR’s design goals dictate support for arbitrary soft-
ware updates and minimal annotation effort for real-world
multiprocess and multithreaded programs. To achieve these
ambitious goals, the MCR model carefully decomposes the
live update problem into three well-defined tasks: (i) check-
point the running version; (ii) remap control flow after restart;
(iii) remap program state after restart. For each of these tasks,
MCR introduces novel ideas to drastically reduce the number
of annotations and provide effective solutions to previously
deemed difficult problems. Profile-guided quiescence detec-
tion relies on long-lived blocking call profiling to identify
quiescent points in the program and implement the first race-
free and deadlock-free generic quiescence detection protocol
with convergence guarantees. State-driven mutable record-
replay builds on well-established record-replay techniques to
reuse existing code paths and implement the first automated
control-flow transfer strategy that tolerates changes to the pro-
cess model and long-lived thread behavior. Mutable GC-style
tracing combines well-established precise and conservative
garbage collection techniques to implement the first automated
state transfer strategy that can safely reconstruct and transform

12

Chapter 2. Mutable Checkpoint-Restart 20

the program state after restart even without full annotation
and instrumentation coverage. Our experience with programs
found “in the wild” shows that our techniques are practical, ef-
ficient, and significantly raise the bar in terms of deployability,
reliability, and maintenance effort over all the prior solutions.

References
[1] Apache benchmark (AB)

http://httpd.apache.org/docs/2.0/programs/ab.html.
[2] CRIU. http://criu.org.
[3] Cryopid2. http://sourceforge.net/projects/cryopid2.
[4] Ksplice performance on security patches.

http://www.ksplice.com/cve-evaluation.
[5] OpenVZ. http://wiki.openvz.org.
[6] pyftpdlib. https://code.google.com/p/pyftpdlib.
[7] Sameer Ajmani, Barbara Liskov, Liuba Shrira, and Dave Thomas.

Modular software upgrades for distributed systems. In Proc. of the
20th European Conf. on Object-Oriented Programming, pages 452–
476, 2006.

[8] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.
Baggy bounds checking: An efficient and backwards-compatible de-
fense against out-of-bounds errors. In Proc. of the 18th USENIX
Security Symp., pages 51–66, 2009.

[9] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz.
OPUS: Online patches and updates for security. In Proc. of the 14th
USENIX Security Symp., pages 19–19, 2005.

[10] Gautam Altekar and Ion Stoica. ODR: Output-deterministic replay for
multicore debugging. In Proc. of the 22nd ACM Symp. on Operating
Systems Principles, pages 193–206, 2009.

[11] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent
checkpointing for cluster computations and the desktop. In Proc. of
the IEEE Int’l Symp. on Parallel and Distributed Processing, pages
1–12, 2009.

[12] Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic rebootless ker-
nel updates. In Proc. of the Fourth ACM European Conf. on Computer
Systems, pages 187–198, 2009.

[13] J. Baker, A. Cunei, T. Kalibera, F. Pizlo, and J. Vitek. Accurate garbage
collection in uncooperative environments revisited. Concurr. Comput.:
Pract. Exper., 21(12):1572–1606, 2009.

[14] Andrew Baumann, Jonathan Appavoo, Robert W. Wisniewski,
Dilma Da Silva, Orran Krieger, and Gernot Heiser. Reboots are for
hardware: Challenges and solutions to updating an operating system
on the fly. In Proc. of the USENIX Annual Tech. Conf., pages 1–14,
2007.

[15] Andrew Baumann, Gernot Heiser, Jonathan Appavoo, Dilma Da Silva,
Orran Krieger, Robert W. Wisniewski, and Jeremy Kerr. Providing
dynamic update in an operating system. In Proc. of the USENIX Annual
Tech. Conf., page 32, 2005.

[16] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Recon-
sidering custom memory allocation. In Proc. of the 17th ACM Conf. on
Object-Oriented Programming, Systems, Languages, and Applications,
pages 1–12, 2002.

[17] E. W. Biederman. Multiple instances of the global Linux namespaces.
In Proc. of the Linux Symposium, 2006.

[18] Hans-J. Boehm. Bounding space usage of conservative garbage collec-
tors. In Proc. of the 29th ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, pages 93–100, 2002.

[19] Hans-Juergen Boehm. Space efficient conservative garbage collection.
In Proc. of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 197–206, 1993.

[20] Jeff Bonwick. The slab allocator: An object-caching kernel memory
allocator. In Proc. of the USENIX Summer Tech. Conf., page 6, 1994.

[21] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang, and Pen-Chung
Yew. Live updating operating systems using virtualization. In Proc.
of the Second Int’l Conf. on Virtual Execution Environments, pages
35–44, 2006.

[22] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew.
POLUS: A POwerful live updating system. In Proc. of the 29th Int’l
Conf. on Software Eng., pages 271–281, 2007.

[23] Ronald F. DeMara, Yili Tseng, and Abdel Ejnioui. Tiered algorithm
for distributed process quiescence and termination detection. IEEE
Trans. Parallel Distrib. Syst., 18(11):1529–1538, 2007.

[24] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R.
Dagenais, and Jonathan Walpole. User-level implementations of read-
copy update. IEEE Trans. Parallel Distrib. Syst., 23(2):375–382, 2012.

[25] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array
bounds checking for C with very low overhead. In Proc. of the 28th
Int’l Conf. on Software Eng., pages 162–171, 2006.

[26] Tudor Dumitras and Priya Narasimhan. Why do upgrades fail and what
can we do about it?: Toward dependable, online upgrades in enterprise
system. In Proc. of the 10th Int’l Conf. on Middleware, pages 1–20,
2009.

[27] R. S. Fabry. How to design a system in which modules can be changed
on the fly. In Proc. of the Second Int’l Conf. on Software Eng., pages
470–476, 1976.

[28] Ophir Frieder and Mark E. Segal. On dynamically updating a computer
program: From concept to prototype. J. Syst. Softw., 14(2):111–128,
1991.

[29] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Safe
and automatic live update for operating systems. In Proc. of the 18th
Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems, pages 279–292, 2013.

[30] Wolfram Gloger. ptmalloc. http://www.malloc.de/en.
[31] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming

Wu, M. Frans Kaashoek, and Zheng Zhang. R2: An application-level
kernel for record and replay. In Proc. of the 8th USENIX Symp. on
Operating Systems Design and Implementation, page 193–208, 2008.

[32] Deepak Gupta and Pankaj Jalote. On-line software version change
using state transfer between processes. Softw. Pract. and Exper.,
23(9):949–964, 1993.

[33] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A formal frame-
work for on-line software version change. IEEE Trans. Softw. Eng.,
22(2):120–131, 1996.

[34] Paul H. Hargrove and Jason C. Duell. Berkeley lab checkpoint/restart
(BLCR) for Linux clusters. Journal of Physics: Conference Series,
46(1):494, 2006.

[35] C. M Hayden, E. K Smith, M. Denchev, M. Hicks, and J. S Foster.
Kitsune: Efficient, general-purpose dynamic software updating for C.
In Proc. of the ACM Conf. on Object-Oriented Programming, Systems,
Languages, and Appilcations, 2012.

[36] C.M. Hayden, E.K. Smith, E.A. Hardisty, M. Hicks, and J.S. Foster.
Evaluating dynamic software update safety using systematic testing.
IEEE Trans. Softw. Eng., 38(6):1340–1354, 2012.

[37] Fergus Henderson. Accurate garbage collection in an uncooperative
environment. In Proc. of the 3rd Int’l Symp. on Memory management,
pages 150–156, 2002.

[38] Martin Hirzel and Amer Diwan. On the type accuracy of garbage
collection. In Proc. of the 2nd Int’l Symp. on Memory Management,
pages 1–11, 2000.

[39] Martin Hirzel, Amer Diwan, and Johannes Henkel. On the usefulness
of type and liveness accuracy for garbage collection and leak detection.
ACM Trans. Program. Lang. Syst., 24(6):593–624, 2002.

[40] Petr Hosek and Cristian Cadar. Safe software updates via multi-version
execution. In Proc. of the Int’l Conf. on Software Engineering, pages
612–621, 2013.

[41] Jakub Jelinek. Prelink
http://people.redhat.com/jakub/prelink.pdf.

[42] Paul Johnson and Neeraj Mittal. A distributed termination detection
algorithm for dynamic asynchronous systems. In Proc. of the 29th
IEEE Int’l Conf. on Distributed Computing Systems, pages 343–351,
2009.

[43] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The power
of procrastination: Detection and mitigation of execution-stalling mali-
cious code. In Proc. of the 18th ACM Conf. on Computer and Commu-
nications Security, pages 285–296, 2011.

[44] Jeff Kramer and Jeff Magee. The evolving philosophers problem:
Dynamic change management. IEEE Trans. Softw. Eng., 16(11):1293–
1306, 1990.

[45] Ilia Kravets and Dan Tsafrir. Feasibility of mutable replay for auto-
mated regression testing of security updates. In Workshop on Runtime
Environments, Systems, Layering and Virtualized Environments, 2012.

[46] Oren Laadan, Nicolas Viennot, and Jason Nieh. Transparent,
lightweight application execution replay on commodity multiprocessor
operating systems. In Proc. of the Int’l Conf. on Measurement and
Modeling of Computer Systems, pages 155–166, 2010.

[47] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proc. of the Int’l Symp.
on Code Generation and Optimization, page 75, 2004.

13

Chapter 2. Mutable Checkpoint-Restart 21

[48] K. Makris and R. Bazzi. Immediate multi-threaded dynamic software
updates using stack reconstruction. In Proc. of the USENIX Annual
Tech. Conf., pages 397–410, 2009.

[49] Kristis Makris and Kyung Dong Ryu. Dynamic and adaptive updates
of non-quiescent subsystems in commodity operating system kernels.
In Proc. of the Second ACM European Conf. on Computer Systems,
pages 327–340, 2007.

[50] Paul E. McKenney and John D. Slingwine. Read-copy update: Using
execution history to solve concurrency problems. In Proc. of the 10th
Int’l Conf. Parallel and Distributed Computing and Systems, pages
509–518, 1998.

[51] Paul E. McKenney and Jonathan Walpole. What is RCU, fundamen-
tally? http://lwn.net/Articles/262464.

[52] Neeraj Mittal, S. Venkatesan, and Sathya Peri. A family of optimal
termination detection algorithms. Distributed Computing, 20(2):141–
162, 2007.

[53] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Producing wrong data without doing anything obviously
wrong! In Proc. of the 14th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems, pages 265–276,
2009.

[54] Iulian Neamtiu and Michael Hicks. Safe and timely updates to multi-
threaded programs. In Proc. of the ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, pages 13–24, 2009.

[55] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Prac-
tical dynamic software updating for C. In Proc. of the ACM SIGPLAN
Conf. on Programming Language Design and Implementation, pages
72–83, 2006.

[56] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini
Kaushik, Kyu H. Lee, and Shan Lu. PRES: Probabilistic replay with
execution sketching on multiprocessors. In Proc. of the 22nd ACM
Symp. on Operating Systems Principles, pages 177–192, 2009.

[57] Shaya Potter and Jason Nieh. Reducing downtime due to system
maintenance and upgrades. In Proc. of the 19th USENIX Systems
Administration Conf., pages 6–6, 2005.

[58] Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. Precise
garbage collection for C. In Proc. of the Int’l Symp. on Memory
management, pages 39–48, 2009.

[59] Olatunji Rowase and Monica S. Lam. A practical dynamic buffer
overflow detector. In Proc. of the 11th Annual Symp. on Network and
Distr. System Security, pages 159–169, 2004.

[60] Maxim Siniavine and Ashvin Goel. Seamless kernel updates. In Proc.
of the 43rd Int’l Conf. on Dependable Systems and Networks, 2013.

[61] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews,
and Yuanyuan Zhou. Flashback: a lightweight extension for roll-
back and deterministic replay for software debugging. In Proc. of the
USENIX Annual Tech. Conf., page 3, 2004.

[62] Dinesh Subhraveti and Jason Nieh. Record and transplay: Partial
checkpointing for replay debugging across heterogeneous systems. In
Proc. of the Int’l Conf. on Measurement and Modeling of Computer
Systems, pages 109–120, 2011.

[63] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dy-
namic software updates: a VM-centric approach. In Proc. of the ACM
SIGPLAN Conf. on Programming Language Design and Implementa-
tion, pages 1–12, 2009.

[64] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and
Henry M. Levy. Recovering device drivers. ACM Trans. Comput. Syst.,
24(4):333–360, 2006.

[65] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving
the reliability of commodity operating systems. ACM Trans. Comput.
Syst., 23(1):77–110, 2005.

[66] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt.
Tranquility: A low disruptive alternative to quiescence for ensuring
safe dynamic updates. IEEE Trans. Softw. Eng., 33(12):856–868, 2007.

[67] Nicolas Viennot, Siddharth Nair, and Jason Nieh. Transparent mutable
replay for multicore debugging and patch validation. In Proc. of the
18th Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems, pages 127–138, 2013.

14

Chapter 2. Mutable Checkpoint-Restart 22

Chapter 3

Back to the Future:

Fault-tolerant Live Update with

Time-travelling State Transfer

23

Back to the Future: Fault-tolerant Live Update
with Time-traveling State Transfer

Cristiano Giuffrida Călin Iorgulescu Anton Kuijsten Andrew S. Tanenbaum
Vrije Universiteit, Amsterdam

{giuffrida, calin.iorgulescu, akuijst, ast}@cs.vu.nl

Abstract

Live update is a promising solution to bridge the need
to frequently update a software system with the pressing
demand for high availability in mission-critical environ-
ments. While many research solutions have been pro-
posed over the years, systems that allow software to be
updated on the fly are still far from reaching widespread
adoption in the system administration community. We
believe this trend is largely motivated by the lack of tools
to automate and validate the live update process. A ma-
jor obstacle, in particular, is represented by state transfer,
which existing live update tools largely delegate to the
programmer despite the great effort involved.

This paper presents time-traveling state transfer, a
new automated and fault-tolerant live update technique.
Our approach isolates different program versions into
independent processes and uses a semantics-preserving
state transfer transaction—across multiple past, future,
and reversed versions—to validate the program state of
the updated version. To automate the process, we com-
plement our live update technique with a generic state
transfer framework explicitly designed to minimize the
overall programming effort. Our time-traveling tech-
nique can seamlessly integrate with existing live update
tools and automatically recover from arbitrary run-time
and memory errors in any part of the state transfer code,
regardless of the particular implementation used. Our
evaluation confirms that our update techniques can with-
stand arbitrary failures within our fault model, at the cost
of only modest performance and memory overhead.

1 Introduction

In the era of pervasive and cloud computing, we are
witnessing a major paradigm shift in the way software
is developed and released. The growing demand for
new features, performance enhancements, and security
fixes translates to more and more frequent software up-

dates made available to the end users. In less than a
decade, we quickly transitioned from Microsoft’s “Patch
Tuesday” [39] to Google’s “perpetual beta” development
model [67] and Facebook’s tight release cycle [61], with
an update interval ranging from days to a few hours.

With more frequent software updates, the standard
halt-update-restart cycle is irremediably coming to an
impasse with our growing reliance on nonstop software
operations. To reduce downtime, system administrators
often rely on “rolling upgrades” [29], which typically
update one node at a time in heavily replicated software
systems. While in widespread use, rolling upgrades have
a number of important shortcomings: (i) they require re-
dundant hardware, which may not be available in particu-
lar environments (e.g., small businesses); (ii) they cannot
normally preserve program state across versions, limit-
ing their applicability to stateless systems or systems that
can tolerate state loss; (iii) in heavily replicated software
systems, they lead to significant update latency and high
exposure to “mixed-version races” [30] that can cause in-
sidious update failures. A real-world example of the lat-
ter has been reported as “one of the biggest computer er-
rors in banking history”, with a single-line software up-
date mistakenly deducting about $15 million from over
100,000 customers’ accounts [43].

Live update—the ability to update software on the
fly while it is running with no service interruption—
is a promising solution to the update-without-downtime
problem which does not suffer from the limitations of
rolling upgrades. A key challenge with this approach is
to build trustworthy update systems which come as close
to the usability and reliability of regular updates as possi-
ble. A significant gap is unlikely to encourage adoption,
given that experience shows that administrators are often
reluctant to install even regular software updates [69].

Surprisingly, there has been limited focus on automat-
ing and validating generic live updates in the litera-
ture. For instance, traditional live update tools for C
programs seek to automate only basic type transforma-

Chapter 3. Back to the Future 24

tions [62, 64], while more recent solutions [48] make lit-
tle effort to spare the programmer from complex tasks
like pointer transfer (§5). Existing live update validation
tools [45–47], in turn, are only suitable for offline testing,
add no fault-tolerant capabilities to the update process,
require manual effort, and are inherently update timing-
centric. The typical strategy is to verify that a given
test suite completes correctly—according to some man-
ually selected [45, 46] or provided [47] specification—
regardless of the particular time when the update is ap-
plied. This testing method stems from the extensive fo-
cus on live update timing in the literature [44].

Much less effort has been dedicated to automating and
validating state transfer (ST), that is, initializing the state
of a new version from the old one (§2). This is some-
what surprising, given that ST has been repeatedly rec-
ognized as a challenging and error-prone task by many
researchers [13, 22, 23, 57] and still represents a major
obstacle to the widespread adoption of live update sys-
tems. This is also confirmed by the commercial success
of Ksplice [11]—already deployed on over 100,000 pro-
duction servers [4]—explicitly tailored to small security
patches that hardly require any state changes at all (§2).

In this paper, we present time-traveling state trans-
fer (TTST), a new live update technique to automate
and validate generic live updates. Unlike prior live up-
date testing tools, our validation strategy is automated
(manual effort is never strictly required), fault-tolerant
(detects and immediately recovers from any faults in
our fault model with no service disruption), state-centric
(validates the ST code and the full integrity of the fi-
nal state), and blackbox (ignores ST internals and seam-
lessly integrates with existing live update tools). Further,
unlike prior solutions, our fault-tolerant strategy can be
used for online live update validation in the field, which
is crucial to automatically recover from unforeseen up-
date failures often originating from differences between
the testing and the deployment environment [25]. Unlike
commercial tools like Ksplice [11], our techniques can
also handle complex updates, where the new version has
significantly different code and data than the old one.

To address these challenges, our live update tech-
niques use two key ideas. First, we confine different pro-
gram versions into independent processes and perform
process-level live update [35]. This strategy simplifies
state management and allows for automated state reason-
ing and validation. Note that this is in stark contrast with
traditional in-place live update strategies proposed in the
literature [10–12,22,23,58,62,64], which “glue” changes
directly into the running version, thus mixing code and
data from different versions in memory. This mixed ex-
ecution environment complicates debugging and testing,
other than introducing address space fragmentation (and
thus run-time performance overhead) over time [35].

Second, we allow two process-level ST runs using the
time-traveling idea. With time travel, we refer to the
ability to navigate backward and forward across program
state versions using ST. In particular, we first allow a for-
ward ST run to initialize the state of the new version from
the old one. This is already sufficient to implement live
update. Next, we allow a second backward run which im-
plements the reverse state transformation from the new
version back to a copy of the old version. This is done to
validate—and safely rollback when necessary—the ST
process, in particular to detect specific classes of pro-
gramming errors (i.e., memory errors) which would oth-
erwise leave the new version in a corrupted state. To this
end, we compare the program state of the original ver-
sion against the final state produced by our overall trans-
formation. Since the latter is semantics-preserving by
construction, we expect differences in the two states only
in presence of memory errors caused by the ST code.

Our contribution is threefold. First, we analyze the
state transfer problem (§2) and introduce time-traveling
state transfer (§3, §4), an automated and fault-tolerant
live update technique suitable for online (or offline) val-
idation. Our TTST strategy can be easily integrated into
existing live update tools described in the literature, al-
lowing system administrators to seamlessly transition to
our techniques with no extra effort. We present a TTST
implementation for user-space C programs, but the prin-
ciples outlined here are also applicable to operating sys-
tems, with the process abstraction implemented using
lightweight protection domains [72], software-isolated
processes [53], or hardware-isolated processes and mi-
crokernels [50, 52]. Second, we complement our tech-
nique with a TTST-enabled state transfer framework
(§5), explicitly designed to allow arbitrary state transfor-
mations and high validation surface with minimal pro-
gramming effort. Third, we have implemented and eval-
uated the resulting solution (§6), conducting fault injec-
tion experiments to assess the fault tolerance of TTST.

2 The State Transfer Problem

The state transfer problem, rigorously defined by Gupta
for the first time [41], finds two main formulations in
the literature. The traditional formulation refers to the
live initialization of the data structures of the new ver-
sion from those of the old version, potentially operat-
ing structural or semantic data transformations on the
fly [13]. Another formulation also considers the execu-
tion state, with the additional concern of remapping the
call stack and the instruction pointer [40, 57]. We here
adopt the former definition and decouple state transfer
(ST) from control-flow transfer (CFT), solely concerned
with the execution state and subordinate to the particu-
lar update mechanisms adopted by the live update tool

Chapter 3. Back to the Future 25

--- a/ drivers /md/dm - crypt .c
+++ b/ drivers /md/dm - crypt .c
@@ -690,6 +690,8 @@ bad3:

bad2:
crypto_free_tfm (tfm);

bad1:
+ /* Must zero key material before freeing */
+ memset(cc, 0, sizeof(*cc) + cc->key size * sizeof(u8));

kfree (cc);
return -EINVAL ;

}
@@ -706,6 +708,9 @@ static void crypt dtr(...)

cc -> iv_gen_ops ->dtr(cc);
crypto_free_tfm (cc ->tfm);
dm_put_device (ti , cc ->dev);

+
+ /* Must zero key material before freeing */
+ memset(cc, 0, sizeof(*cc) + cc->key size * sizeof(u8));

kfree (cc);
}

Listing 1: A security patch to fix an information disclo-
sure vulnerability (CVE-2006-0095) in the Linux kernel.

considered—examples documented in the literature in-
clude manual control migration [40, 48], adaptive func-
tion cloning [58], and stack reconstruction [57].

We illustrate the state transfer problem with two up-
date examples. Listing 1 presents a real-world security
patch which fixes an information disclosure vulnerabil-
ity (detailed in CVE-2006-0095 [5]) in the md (Mul-
tiple Device) driver of the Linux kernel. We sampled
this patch from the dataset [3] originally used to evalu-
ate Ksplice [11]. Similar to many other common secu-
rity fixes, the patch considered introduces simple code
changes that have no direct impact on the program state.
The only tangible effect is the secure deallocation [24]
of sensitive information on cryptographic keys. As a re-
sult, no state transformations are required at live update
time. For this reason, Ksplice [11]—and other similar
in-place live update tools—can deploy this update online
with no state transfer necessary, allowing the new ver-
sion to reuse the existing program state as is. Redirecting
function invocations to the updated functions and resum-
ing execution is sufficient to deploy the live update.

Listing 2 presents a sample patch providing a reduced
test case for common code and data changes found in
real-world updates. The patch introduces a number of
type changes affecting a global struct variable (i.e.,
var)—with fields changed, removed, and reordered—
and the necessary code changes to initialize the new data
structure. Since the update significantly changes the in-
memory representation of the global variable var, state
transfer—using either automatically generated mapping
functions or programmer-provided code—is necessary to
transform the existing program state into a state compat-
ible with the new version at live update time. Failure to
do so would leave the new version in an invalid state af-
ter resuming execution. Section 5 shows how our state

--- a/ example .c
+++ b/ example .c
@@ -1,13 +1,12 @@
struct s {

int count ;
- char str[3];
- short id;
+ int id;
+ char str[2];

union u u;
- void *ptr;

int addr;
- short *inner ptr;
+ int *inner ptr;

} var;

void example_init (char *str) {
- snprintf(var.str, 3, "%s", str);
+ snprintf(var.str, 2, "%s", str);

}

Listing 2: A sample patch introducing code and data
changes that require state transfer at live update time.

transfer strategy can effectively automate this particular
update, while traditional live update tools would largely
delegate this major effort to the programmer.

State transfer has already been recognized as a hard
problem in the literature. Qualitatively, many researchers
have described it as “tedious implementation of the trans-
fer code” [13], “tedious engineering efforts” [22], “te-
dious work” [23]. Others have discussed speculative [14,
16, 37, 38] and practical [63] ST scenarios which are
particularly challenging (or unsolvable) even with pro-
grammer intervention. Quantitatively, a number of user-
level live update tools for C programs (Ginseng [64],
STUMP [62], and Kitsune [48]) have evaluated the ST
manual effort in terms of lines of code (LOC). Table 1
presents a comparative analysis, with the number of up-
dates analyzed, initial source changes to implement their
live update mechanisms (LU LOC), and extra LOC to
apply all the updates considered (ST LOC). In the last
column, we report a normalized ST impact factor (Norm
ST IF), measured as the expected ST LOC necessary af-
ter 100 updates normalized against the initial LU LOC.

As the table shows, the measured impacts are compa-
rable (the lower impact in Kitsune stems from the greater
initial annotation effort required by program-level up-
dates) and demonstrate that ST increasingly (and heav-
ily) dominates the manual effort in long-term deploy-

#Upd LU LOC ST LOC Norm ST IF

Ginseng 30 140 336 8.0x
STUMP 13 186 173 7.1x
Kitsune 40 523 554 2.6x

Table 1: State transfer impact (normalized after 100 up-
dates) for existing user-level solutions for C programs.

Chapter 3. Back to the Future 26

Reversed Version

TTST Control LibTTST Control Lib

ST Framework Lib

Instrumented Program

Live Update Lib

Future Version

TTST Control LibTTST Control Lib

ST Framework Lib

Instrumented Program

Live Update Lib
Past Version

TTST Control LibTTST Control Lib

ST Framework Lib

Instrumented Program

Live Update Lib

ST

CFT

5

ST

CFTSTART

TIME-TRAVELING

STATE TRANSFER COMPLETED

FORWARD

TRANSFER

1

2 5

4
3

6
7

9

8

STATE DIFF

10

BACKWARD

TRANSFER

BACK TO THE FUTURE

Figure 1: Time-traveling state transfer overview. The numbered arrows indicate the order of operations.

ment. Worse yet, any LOC-based metric underestimates
the real ST effort, ignoring the atypical and error-prone
programming model with nonstandard entry points, un-
conventional data access, and reduced testability and de-
buggability. Our investigation motivates our focus on au-
tomating and validating the state transfer process.

3 System Overview

We have designed our TTST live update technique with
portability, extensibility, and interoperability in mind.
This vision is reflected in our modular architecture,
which enforces a strict separation of concerns and can
support several possible live update tools and state trans-
fer implementations. To use TTST, users need to stat-
ically instrument the target program in preparation for
state transfer. In our current prototype, this is accom-
plished by a link-time transformation pass implemented
using the LLVM compiler framework [56], which guar-
antees pain-free integration with existing GNU build
systems using standard configure flags. We envision
developers of the original program (i.e., users of our
TTST technique) to gradually integrate support for our
instrumentation into their development model, thus re-
leasing live update-enabled software versions that can
be easily managed by system administrators using sim-
ple tools. For this purpose, our TTST prototype in-
cludes ttst-ctl, a simple command-line tool that trans-
parently interacts with the running program and allows
system administrators to deploy live updates using our
TTST technique with minimal effort. This can be sim-
ply done by using the following command-line syntax:
$ ttst-ctl `pidof program` ./new.bin
Runtime update functionalities, in turn, are imple-

mented by three distinct libraries, transparently linked
with the target program as part of our instrumentation

process. The live update library implements the update
mechanisms specific to the particular live update tool
considered. In detail, the library is responsible to pro-
vide the necessary update timing mechanisms [46] (e.g.,
start the live update when the program is quiescent [46]
and all the external events are blocked) and CFT imple-
mentation. The ST framework library, in turn, imple-
ments the logic needed to automate state transfer and ac-
commodate user-provided ST code. The TTST control
library, finally, implements the resulting time-traveling
state transfer process, with all the necessary mechanisms
to coordinate the different process versions involved.

Our TTST technique operates across three process in-
stances. The first is the original instance running the old
software version (past version, from now on). This in-
stance initiates, controls, and monitors the live update
process, in particular running the only trusted library
code in our architecture with respect to our fault model
(§4). The second is a newly created instance running
the new software version (future version, from now on).
This instance is instructed to reinitialize its state from the
past version. The third process instance is a clone of the
past version created at live update time (reversed version,
from now on). This instance is instructed to reinitialize
its state from the future version. Figure 1 depicts the re-
sulting architecture and live update process.

As shown in the figure, the update process is started
by the live update library in the past version. This hap-
pens when the library detects that an update is available
and all the necessary update timing restrictions (e.g., qui-
escence [46]) are met. The start event is delivered to
the past version’s TTST control library, which sets out
to initiate the time-traveling state transfer transaction.
First, the library locates the new program version on
the file system and creates the process instances for the
future and reversed versions. Next, control is given to
the future version’s TTST control library, requesting to

Chapter 3. Back to the Future 27

complete a forward state transfer run from the past ver-
sion. In response, the library instructs the live update and
ST framework libraries to perform ST and CFT, respec-
tively. At the end of the process, control is given to the
reversed version, where the TTST control library repeats
the same steps to complete a backward state transfer run
from the future version. Finally, the library notifies back
the past version, where the TTST control library is wait-
ing for TTST events. In response, the library performs
state differencing between the past and reversed version
to validate the TTST transaction and detect state corrup-
tion errors violating the semantics-preserving nature of
the transformation. In our fault model, the past version
is always immutable and adopted as a oracle when com-
paring the states. If the state is successfully validated
(i.e., the past and reversed versions are identical), con-
trol moves back to the future version to resume execu-
tion. The other processes are automatically cleaned up.

When state corruption or run-time errors (e.g.,
crashes) are detected during the TTST transaction, the
update is immediately aborted with the past version
cleaning up the other instances and immediately resum-
ing execution. The immutability of the past version’s
state allows the execution to resume exactly in the same
state as it was right before the live update process started.
This property ensures instant and transparent recovery
in case of arbitrary TTST errors. Our recovery strategy
enables fast and automated offline validation and, more
importantly, a fault-tolerant live update process that can
immediately and automatically rollback failed update at-
tempts with no consequences for the running program.

4 Time-traveling State Transfer

The goal of TTST is to support a truly fault-tolerant
live update process, which can automatically detect and
recover from as many programming errors as possible,
seamlessly support several live update tools and state
transfer implementations, and rely on a minimal amount
of trusted code at update time. To address these chal-
lenges, our TTST technique follows a number of key
principles: a well-defined fault model, a large state val-
idation surface, a blackbox validation strategy, and a
generic state transfer interface.

Fault model. TTST assumes a general fault model
with the ability to detect and recover from arbitrary run-
time errors and memory errors introducing state corrup-
tion. In particular, run-time errors in the future and re-
versed versions are automatically detected by the TTST
control library in the past version. The process abstrac-
tion allows the library to intercept abnormal termination
errors in the other instances (e.g., crashes, panics) using
simple tracing. Synchronization errors and infinite loops
that prevent the TTST transaction from making progress,

in turn, are detected with a configurable update timeout
(5s by default). Memory errors, finally, are detected by
state differencing at the end of the TTST process.

Our focus on memory errors is motivated by three key
observations. First, these represent an important class of
nonsemantic state transfer errors, the only errors we can
hope to detect in a fully automated fashion. Gupta’s for-
mal framework has already dismissed the possibility to
automatically detect semantic state transfer errors in the
general case [41]. Unlike memory errors, semantic er-
rors are consistently introduced across forward and back-
ward state transfer runs and thus cannot automatically be
detected by our technique. As an example, consider an
update that operates a simple semantic change: renum-
bering all the global error codes to use different value
ranges. If the user does not explicitly provide additional
ST code to perform the conversion, the default ST strat-
egy will preserve the same (wrong) error codes across
the future and the reversed version, with state differenc-
ing unable to detect any errors in the process.

Second, memory errors can lead to insidious la-
tent bugs [32]—which can cause silent data corrup-
tion and manifest themselves potentially much later—
or even introduce security vulnerabilities. These errors
are particularly hard to detect and can easily escape the
specification-based validation strategies adopted by all
the existing live update testing tools [45–47].

Third, memory errors are painfully common in patho-
logically type-unsafe contexts like state transfer, where
the program state is treated as an opaque object which
must be potentially reconstructed from the ground up, all
relying on the sole knowledge available to the particular
state transfer implementation adopted.

Finally, note that, while other semantic ST errors can-
not be detected in the general case, this does not pre-
clude individual ST implementations from using addi-
tional knowledge to automatically detect some classes of
errors in this category. For example, our state transfer
framework can detect all the semantic errors that violate
automatically derived program state invariants [33] (§5).

State validation surface. TTST seeks to validate the
largest possible portion of the state, including state ob-
jects (e.g., global variables) that may only be accessed
much later after the live update. To meet this goal,
our state differencing strategy requires valid forward and
backward transfer functions for each state object to val-
idate. Clearly, the existence and the properties of such
functions for every particular state object are subject to
the nature of the update. For example, an update drop-
ping a global variable in the new version has no de-
fined backward transfer function for that variable. In
other cases, forward and backward transfer functions ex-
ist but cannot be automatically generated. Consider the
error code renumbering update exemplified earlier. Both

Chapter 3. Back to the Future 28

State Diff Fwd ST Bwd ST Detected

Unchanged 3 STF STF Auto
Structural chg 3 STF STF Auto
Semantic chg 3 User User 1 Auto 1

Dropped 3 - - Auto
Added 7 Auto/User - STF

1Optional

Table 2: State validation and error detection surface.

the forward and backward transfer functions for all the
global variables affected would have to be manually pro-
vided by the user. Since we wish to support fully auto-
mated validation by default (mandating extra manual ef-
fort is likely to discourage adoption), we allow TTST to
gracefully reduce the state validation surface when back-
ward transfer functions are missing—without hampering
the effectiveness of our strategy on other fully transfer-
able state objects. Enforcing this behavior in our de-
sign is straightforward: the reversed version is originally
cloned from the past version and all the state objects that
do not take part in the backward state transfer run will
trivially match their original counterparts in the state dif-
ferencing process (unless state corruption occurs).

Table 2 analyzes TTST’s state validation and error de-
tection surface for the possible state changes introduced
by a given update. The first column refers to the nature
of the transformation of a particular state object. The
second column refers to the ability to validate the state
object using state differencing. The third and fourth col-
umn characterize the implementation of the resulting for-
ward and backward transfer functions. Finally, the fifth
column analyzes the effectiveness in detecting state cor-
ruption. For unchanged state objects, state differenc-
ing can automatically detect state corruption and transfer
functions are automatically provided by the state transfer
framework (STF). Note that unchanged state objects do
not necessarily have the same representation in the dif-
ferent versions. The memory layout of an updated ver-
sion does not generally reflect the memory layout of the
old version and the presence of pointers can introduce
representation differences for some unchanged state ob-
jects between the past and future version. State objects
with structural changes exhibit similar behavior, with a
fully automated transfer and validation strategy. With
structural changes, we refer to state changes that affect
only the type representation and can be entirely arbi-
trated from the STF with no user intervention (§5). This
is in contrast with semantic changes, which require user-
provided transfer code and can only be partially auto-
mated by the STF (§5). Semantic state changes high-
light the tradeoff between state validation coverage and
the manual effort required by the user. In a traditional

live update scenario, the user would normally only pro-
vide a forward transfer function. This behavior is seam-
lessly supported by TTST, but the transferred state ob-
ject will not be considered for validation. If the user pro-
vides code for the reverse transformation, however, the
transfer can be normally validated with no restriction. In
addition, the backward transfer function provided can be
used to perform a cold rollback from the future version
to the past version (i.e., live updating the new version
into the old version at a later time, for example when the
administrator experiences an unacceptable performance
slowdown in the updated version). Dropped state objects,
in turn, do not require any explicit transfer functions and
are automatically validated by state differencing as dis-
cussed earlier. State objects that are added in the update
(e.g., a new global variable), finally, cannot be automat-
ically validated by state differencing and their validation
and transfer is delegated to the STF (§5) or to the user.

Blackbox validation. TTST follows a blackbox val-
idation model, which completely ignores ST internals.
This is important for two reasons. First, this provides the
ability to support many possible updates and ST imple-
mentations. This also allows one to evaluate and com-
pare different STFs. Second, this is crucial to decouple
the validation logic from the ST implementation, mini-
mizing the amount of trusted code required by our strat-
egy. In particular, our design goals dictate the minimiza-
tion of the reliable computing base (RCB), defined as the
core software components that are necessary to ensure
correct implementation behavior [26]. Our fault model
requires four primary components in the RCB: the update
timing mechanisms, the TTST arbitration logic, the run-
time error detection mechanisms, and the state differenc-
ing logic. All the other software components which run
in the future and reversed versions (e.g., ST code and
CFT code) are fully untrusted thanks to our design.

The implementation of the update timing mechanisms
is entirely delegated to the live update library and its size
subject to the particular live update tool considered. We
trust that every reasonable update timing implementation
will have a small RCB impact. For the other TTST com-
ponents, we seek to reduce the code size (and complex-
ity) to the minimum. Luckily, our TTST arbitration logic
and run-time error detection mechanisms (described ear-
lier) are straightforward and only marginally contribute
to the RCB. In addition, TTST’s semantics-preserving
ST transaction and structural equivalence between the fi-
nal (reversed) state and the original (past) state ensure
that the memory images of the two versions are always
identical in error-free ST runs. This drastically simpli-
fies our state differencing strategy, which can be imple-
mented using trivial word-by-word memory comparison,
with no other knowledge on the ST code and marginal
RCB impact. Our comparison strategy examines all the

Chapter 3. Back to the Future 29

function STATE DIFF(pid1, pid2)
a← addr start
while a < shadow start do

m1← IS MAPPED WRITABLE(a, pid1)
m2← IS MAPPED WRITABLE(a, pid2)
if m1 or m2 then

if m1 6= m2 then
return true

if MEMPAGECMP(a, pid1, pid2) 6= 0 then
return true

a← a+ page size
return f alse

Figure 2: State differencing pseudocode.

writable regions of the address space excluding only pri-
vate shadow stack/heap regions (mapped at the end of
the address space) in use by the TTST control library.
Figure 2 shows the pseudocode for this simple strategy.

State transfer interface. TTST’s state transfer inter-
face seeks to minimize the requirements and the effort to
implement the STF. In terms of requirements, TTST de-
mands only a layout-aware and user-aware STF seman-
tic. By layout-aware, we refer to the ability of the STF to
preserve the original state layout when requested (i.e., in
the reversed version), as well as to automatically identify
the state changes described in Table 2. By user-aware,
we refer to the ability to allow the user to selectively
specify new forward and backward transfer functions
and candidate state objects for validation. To reduce
the effort, TTST offers a convenient STF programming
model, with an error handling-friendly environment—
our fault-tolerant design encourages undiscriminated use
of assertions—and a generic interprocess communica-
tion (IPC) interface. In particular, TTST implements an
IPC control interface to coordinate the TTST transaction
and an IPC data interface to grant read-only access to
the state of a given process version to the others. These
interfaces are currently implemented by UNIX domain
sockets and POSIX shared memory (respectively), but
other IPC mechanisms can be easily supported. The cur-
rent implementation combines fast data transfer with a
secure design that prevents impersonation attacks (access
is granted only to the predetermined process instances).

5 State Transfer Framework

Our state transfer framework seeks to automate all the
possible ST steps, leaving only the undecidable cases
(e.g., semantic state changes) to the user. The imple-
mentation described here optimizes and extends our prior
work [33–36] to the TTST model. We propose a STF
design that resembles a moving, mutating, and interpro-

cess garbage collection model. By moving, we refer to
the ability to relocate (and possibly reallocate) static and
dynamic state objects in the next version. This is to al-
low arbitrary changes in the memory layout between ver-
sions. By mutating, we refer to the ability to perform
on-the-fly type transformations when transferring every
given state object from the previous to the next version.
Interprocess, finally, refers to our process-level ST strat-
egy. Our goals raise 3 major challenges for a low-level
language like C. First, our moving requirement requires
precise object and pointer analysis at runtime. Second,
on-the-fly type transformations require the ability to dy-
namically identify, inspect, and match generic data types.
Finally, our interprocess strategy requires a mechanism
to identify and map state objects across process versions.

Overview. To meet our goals, our STF uses a combi-
nation of static and dynamic ST instrumentation. Our
static instrumentation, implemented by a LLVM link-
time pass [56], transforms each program version to gen-
erate metadata information that surgically describes the
entirety of the program state. In particular, static meta-
data, which provides relocation and type information
for all the static state objects (e.g., global variables,
strings, functions with address taken), is embedded di-
rectly into the final binary. Dynamic metadata, which
provides the same information for all the dynamic state
objects (e.g., heap-allocated objects), is, in turn, dy-
namically generated/destroyed at runtime by our allo-
cation/deallocation site instrumentation—we currently
support malloc/mmap-like allocators automatically
and standard region-based allocators [15] using user-
annotated allocator functions. Further, our pass can dy-
namically generate/destroy local variable metadata for a
predetermined number of functions (e.g., main), as dic-
tated by the particular update model considered. Finally,
to automatically identify and map objects across process
versions, our instrumentation relies on version-agnostic
state IDs derived from unambiguous naming and contex-
tual information. In detail, every static object is assigned
a static ID derived by its source name (e.g., function
name) and scope (e.g., static variable module). Every
dynamic object, in turn, is assigned a static ID derived
by allocation site information (e.g., caller function name
and target pointer name) and an incremental dynamic ID
to unambiguously identify allocations at runtime.

Our ID-based naming scheme fulfills TTST’s layout-
awareness goal: static IDs are used to identify state
changes and to automatically reallocate dynamic objects
in the future version; dynamic IDs are used to map dy-
namic objects in the future version with their existing
counterparts in the reversed version. The mapping pol-
icy to use is specified as part of generic ST policies,
also implementing other TTST-aware extensions: (i)
randomization (enabled in the future version): perform

Chapter 3. Back to the Future 30

Next Version

Shared Libraries

ST Framework Lib

Metadata
Data

Instrumented Code

Previous Version

Shared Libraries
Data

ST Framework Lib

Metadata

Instrumented Code

R
un

 ti
m

e

Li
nk

 ti
m

e

Instrumented Program

Instrumented Code
ST Framework Lib

Data
Metadata

Instrumented Code

Original Program

Data
Code

Static Instrumentation

Metadata Transfer

INIT
DONE

Shared Lib DataTransfer

Data Transfer

INIT
1

2

5

3

4

Figure 3: State transfer framework overview.

fine-grained address space randomization [34] for all the
static/dynamically reallocated objects, used to amplify
the difference introduced by memory errors in the over-
all TTST transaction; (ii) validation (enabled in the re-
versed version): zero out the local copy of all the mapped
state objects scheduled for automated transfer to detect
missing write errors at validation time.

Our dynamic instrumentation, included in a preloaded
shared library (ST framework library), complements the
static pass to address the necessary run-time tasks: type
and pointer analysis, metadata management for shared
libraries, error detection. In addition, the ST framework
library implements all the steps of the ST process, as de-
picted in Figure 3. The process begins with an initializa-
tion request from the TTST control library, which spec-
ifies the ST policies and provides access to the TTST’s
IPC interface. The next metadata transfer step transfers
all the metadata information from the previous version
to a metadata cache in the next version (local address
space). At the end, the local state objects (and their meta-
data) are mapped into the external objects described by
the metadata cache and scheduled for transfer according
to their state IDs and the given ST policies. The next
two data transfer steps complete the ST process, trans-
ferring all the data to reinitialize shared library and pro-
gram state to the next version. State objects scheduled
for transfer are processed one at a time, using metadata
information to locate the objects and their internal repre-
sentations in the two process versions and apply pointer
and type transformations on the fly. The last step per-
forms cleanup tasks and returns control to the caller.

State transfer strategy. Our STF follows a well-
defined automated ST strategy for all the mapped state
objects scheduled for transfer, exemplified in Figure 4.
As shown in the figure—which reprises the update exam-
ple given earlier (§ 2)—our type analysis automatically
and recursively matches individual type elements be-

tween object versions by name and representation, iden-
tifying added/dropped/changed/identical elements on the
fly. This strategy automates ST for common structural
changes, including: primitive type changes, array ex-
pansion/truncation, and addition/deletion/reordering of
struct members. Our pointer analysis, in turn, imple-
ments a generic pointer transfer strategy, automatically
identifying (base and interior) pointer targets in the previ-
ous version and reinitializing the pointer values correctly
in the next version, in spite of type and memory layout
changes. To perform efficient pointer lookups, our anal-
ysis organizes all the state objects with address taken in a
splay tree, an idea previously explored by bounds check-
ers [9, 27, 70]. We also support all the special pointer
idioms allowed by C (e.g., guard pointers) automatically,
with the exception of cases of “pointer ambiguity” [36].

To deal with ambiguous pointer scenarios (e.g.,
unions with inner pointers and pointers stored as inte-
gers) as well as more complex state changes (e.g., se-
mantic changes), our STF supports user extensions in the
form of preprocessor annotations and callbacks. Figure 4
shows an example of two ST annotations: IXFER (force
memory copying with no pointer transfer) and PXFER
(force pointer transfer instead of memory copying). Call-
backs, in turn, are evaluated whenever the STF maps or
traverses a given object or type element, allowing the
user to override the default mapping behavior (e.g., for
renamed variables) or express sophisticated state trans-
formations at the object or element level. Callbacks can
be also used to: (i) override the default validation poli-
cies, (ii) initialize new state objects; (iii) instruct the STF
to checksum new state objects after initialization to de-
tect memory errors at the end of the ST process.

Shared libraries. Uninstrumented shared libraries
(SLs) pose a major challenge to our pointer transfer strat-
egy. In particular, failure to reinitialize SL-related point-
ers correctly in the future version would introduce er-

Chapter 3. Back to the Future 31

struct s,{,//old
memcpy

ptrcpy

int,count;

char,str[3];

short id;

PXFER(int),addr;

void,*ptr;

union IXFER(u),u;

short,*inner_ptr;

ptrcpy

castcpy

memcpy

0

7

4a\04

0

0x...7f

{12,32}

mvar.id

},var;

int,count;

int id;,

char,str[2];

int new_element;

PXFER(int),addr;

union IXFER(u),u;

int,*inner_ptr;

*

struct s,{,//new

},var;

0

4aa\04

7

0x...4f

0x...3f

{12,32}

mvar.id

x

Figure 4: Automated state transfer example for the data structure presented in Listing 2.

rors after live update. To address this challenge, our STF
distinguishes 3 scenarios: (i) program/SL pointers into
static SL state; (ii) program/SL pointers into dynamic
SL state; (iii) SL pointers into static or dynamic program
state. To deal with the first scenario, our STF instructs
the dynamic linker to remap all the SLs in the future ver-
sion at the same addresses as in the past version, allow-
ing SL data transfer (pointer transfer in particular) to be
implemented via simple memory copying. SL reloca-
tion is currently accomplished by prelinking the SLs on
demand when starting the future version, a strategy sim-
ilar to “retouching” for mobile applications [19]. To ad-
dress the second scenario, our dynamic instrumentation
intercepts all the memory management calls performed
by SLs and generates dedicated metadata to reallocate
the resulting objects at the same address in the future
version. This is done by restoring the original heap lay-
out (and content) as part of the SL data transfer phase.
To perform heap randomization and type transformations
correctly for all the program allocations in the future ver-
sion, in turn, we allow the STF to deallocate (and re-
allocate later) all the non-SL heap allocations right af-
ter SL data transfer. To deal with the last scenario, we
need to accurately identify all the SL pointers into the
program state and update their values correctly to re-
flect the memory layout of the future version. Luckily,
these cases are rare and we can envision library devel-
opers exporting a public API that clearly marks long-
lived pointers into the program state once our live up-
date technique is deployed. A similar API is desirable
to mark all the process-specific state (e.g., libc’s cached
pids) that should be restored after ST—note that share-
able resources like file descriptors are, in contrast, au-
tomatically transferred by the fork/exec paradigm. To
automate the identification of these cases in our current
prototype, we used conservative pointer analysis tech-
niques [17, 18] under stress testing to locate long-lived
SL pointers into the program state and state differencing
at fork points to locate process-specific state objects.

Error detection. To detect certain classes of seman-
tic errors that escape TTST’s detection strategy, our

STF enforces program state invariants [33] derived
from all the metadata available at runtime. Unlike
existing likely invariant-based error detection tech-
niques [6,28,31,42,68], our invariants are conservatively
computed from static analysis and allow for no false pos-
itives. The majority of our invariants are enforced by our
dynamic pointer analysis to detect semantic errors during
pointer transfer. For example, our STF reports invariant
violation (and aborts ST by default) whenever a pointer
target no longer exists or has its address taken (accord-
ing to our static analysis) in the new version. Another
example is a transferred pointer that points to an illegal
target type according to our static pointer cast analysis.

6 Evaluation

We have implemented TTST on Linux (x86), with sup-
port for generic user-space C programs using the ELF
binary format. All the platform-specific components,
however, are well isolated in the TTST control library
and easily portable to other operating systems, archi-
tectures, and binary formats other than ELF. We have
integrated address space randomization techniques de-
veloped in prior work [34] into our ST instrumentation
and configured them to randomize the location of all the
static and dynamically reallocated objects in the future
version. To evaluate TTST, we have also developed a
live update library mimicking the behavior of state-of-
the-art live update tools [48], which required implement-
ing preannotated per-thread update points to control up-
date timing, manual control migration to perform CFT,
and a UNIX domain sockets-based interface to receive
live update commands from our ttst-ctl tool.

We evaluated the resulting solution on a workstation
running Linux v3.5.0 (x86) and equipped with a 4-core
3.0Ghz AMD Phenom II X4 B95 processor and 8GB of
RAM. For our evaluation, we first selected Apache httpd
(v.2.2.23) and nginx (v0.8.54), the two most popular
open-source web servers. For comparison purposes, we
also considered vsftpd (v1.1.0) and the OpenSSH dae-

Chapter 3. Back to the Future 32

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

U
pd

at
e

tim
e

(m
s)

Type transformation coverage (%)

Apache httpd (TTST)
nginx (TTST)
vsftpd (TTST)

OpenSSH (TTST)

Figure 5: Update time vs. type transformation coverage.

mon (v3.5p1), a popular open-source ftp and ssh server,
respectively. The former [23,45,48,49,57,63,64] and the
latter [23,45,64] are by far the most used server programs
(and versions) in prior work in the field. We annotated all
the programs considered to match the implemented live
update library as described in prior work [45, 48]. For
Apache httpd and nginx, we redirected all the calls to
custom allocation routines to the standard allocator in-
terface (i.e., malloc/free calls), given that our current
instrumentation does not yet support custom allocation
schemes based on nested regions [15] (Apache httpd) and
slab-like allocations [20] (nginx). To evaluate our pro-
grams, we performed tests using the Apache benchmark
(AB) [1] (Apache httpd and nginx), dkftpbench [2] (vs-
ftpd), and the provided regression test suite (OpenSSH).
We configured our programs and benchmarks using the
default settings. We repeated all our experiments 21
times and reported the median—with negligible standard
deviation measured across multiple test runs.

Our evaluation answers five key questions: (i) Perfor-
mance: Does TTST yield low run-time overhead and
reasonable update times? (ii) Memory usage: How much
memory do our instrumentation techniques use? (iii)
RCB size: How much code is (and is not) in the RCB?
(iv) Fault tolerance: Can TTST withstand arbitrary fail-
ures in our fault model? (v) Engineering effort: How
much engineering effort is required to adopt TTST?

Performance. To evaluate the run-time overhead im-
posed by our update mechanisms, we first ran our bench-
marks to compare our base programs with their instru-
mented and annotated versions. Our experiments showed
no appreciable performance degradation. This is ex-
pected, since update points only require checking a flag
at the top of long-running loops and metadata is ef-
ficiently managed by our ST instrumentation. In de-
tail, our static metadata—used only at update time—
is confined in a separate ELF section so as not to dis-
rupt locality. Dynamic metadata management, in turn,
relies on in-band descriptors to minimize the overhead

Type httpd nginx vsftpd OpenSSH

Static 2.187 2.358 3.352 2.480
Run-time 3.100 3.786 4.362 2.662
Forward ST 3.134 5.563 6.196 4.126
TTST 3.167 7.340 8.031 5.590

Table 3: TTST-induced memory usage (measured stati-
cally or at runtime) normalized against the baseline.

on allocator operations. To evaluate the latter, we in-
strumented all the C programs in the SPEC CPU2006
benchmark suite. The results evidenced a 4% aver-
age run-time overhead across all the benchmarks. We
also measured the cost of our instrumentation on 10,000
malloc/free and mmap/munmap repeated glibc alloca-
tor operations—which provide worst-case results, given
that common allocation patterns generally yield poorer
locality. Experiments with multiple allocation sizes
(0-16MB) reported a maximum overhead of 41% for
malloc, 9% for free, 77% for mmap, and 42% for
munmap. While these microbenchmark results are useful
to evaluate the impact of our instrumentation on alloca-
tor operations, we expect any overhead to be hardly vis-
ible in real-world server programs, which already strive
to avoid expensive allocations on the critical path [15].

When compared to prior user-level solutions, our
performance overhead is much lower than more intru-
sive instrumentation strategies—with worst-case mac-
robenchmark overhead of 6% [64], 6.71% [62], and
96.4% [57]—and generally higher than simple binary
rewriting strategies [10, 23]—with worst-case function
invocation overhead estimated around 8% [58]. Unlike
prior solutions, however, our overhead is strictly isolated
in allocator operations and never increases with the num-
ber of live updates deployed over time. Recent program-
level solutions that use minimal instrumentation [48]—
no allocator instrumentation, in particular—in turn, re-
port even lower overheads than ours, but at the daunting
cost of annotating all the pointers into heap objects.

We also analyzed the impact of process-level TTST
on the update time—the time from the moment the up-
date is signaled to the moment the future version re-
sumes execution. Figure 5 depicts the update time—
when updating the master process of each program—as
a function of the number of type transformations oper-
ated by our ST framework. For this experiment, we im-
plemented a source-to-source transformation able to au-
tomatically change 0-1,327 type definitions (adding/re-
ordering struct fields and expanding arrays/primitive
types) for Apache httpd, 0-818 type definitions for nginx,
0-142 type definitions for vsftpd, and 0-455 type defini-
tions for OpenSSH between versions. This forced our ST
framework to operate an average of 1,143,981, 111,707,

Chapter 3. Back to the Future 33

Component RCB Other

ST instrumentation 1,119 8,211
Live update library 235 147
TTST control library 412 2,797
ST framework 0 13,311
ttst-ctl tool 0 381

Total 1,766 26,613

Table 4: Source lines of code (LOC) and contribution to
the RCB size for every component in our architecture.

1,372, and 206,259 type transformations (respectively)
at 100% coverage. As the figure shows, the number of
type transformations has a steady but low impact on the
update time, confirming that the latter is heavily domi-
nated by memory copying and pointer analysis—albeit
optimized with splay trees. The data points at 100%
coverage, however, are a useful indication of the upper
bound for the update time, resulting in 1263 ms, 180 ms,
112 ms, and 465 ms (respectively) with our TTST update
strategy. Apache httpd reported the longest update times
in all the configurations, given the greater amount of state
transferred at update time. Further, TTST update times
are, on average, 1.76x higher than regular ST updates
(not shown in figure for clarity), acknowledging the im-
pact of backward ST and state differencing on the update
time. While our update times are generally higher than
prior solutions, the impact is bearable for most programs
and the benefit is stateful fault-tolerant version updates.

Memory usage. Our state transfer instrumentation
leads to larger binary sizes and run-time memory foot-
prints. This stems from our metadata generation strategy
and the libraries required to support live update. Table 3
evaluates the impact on our test programs. The static
memory overhead (235.2% worst-case overhead for vs-
ftpd) measures the impact of our ST instrumentation on
the binary size. The run-time overhead (336.2% worst-
case overhead for vsftpd), in turn, measures the impact of
instrumentation and support libraries on the virtual mem-
ory size observed at runtime, right after server initial-
ization. These measurements have been obtained start-
ing from a baseline virtual memory size of 234 MB for
Apache httpd and less than 6 MB for all the other pro-
grams. The third and the fourth rows, finally, show
the maximum virtual memory overhead we observed
at live update time for both regular (forward ST only)
and TTST updates, also accounting for all the transient
process instances created (703.1% worst-case overhead
for vsftpd and TTST updates). While clearly program-
dependent and generally higher than prior live update
solutions, our measured memory overheads are modest
and, we believe, realistic for most systems, also given
the increasingly low cost of RAM in these days.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Branch Uninit. Pointer Overflow Leakage

Fa
ul

t I
nj

ec
tio

n
R

es
ul

ts
 (%

) Successful Update
 Timeout
 Abnormal Termination
 State Differences

Figure 6: TTST behavior in our automated fault injec-
tion experiments for varying fault types.

RCB size. Our TTST update technique is carefully de-
signed to minimize the RCB size. Table 4 lists the LOC
required to implement every component in our architec-
ture and the contributions to the RCB. Our ST instru-
mentation requires 1,119 RCB LOC to perform dynamic
metadata management at runtime. Our live update library
requires 235 RCB LOC to implement the update tim-
ing mechanisms and interactions with client tools. Our
TTST control library requires 412 RCB LOC to arbitrate
the TTST process, implement run-time error detection,
and perform state differencing—all from the past ver-
sion. Our ST framework and ttst-ctl tool, in contrast,
make no contribution to the RCB. Overall, our design
is effective in producing a small RCB, with only 1,766
LOC compared to the other 26,613 non-RCB LOC. En-
couragingly, our RCB is even substantially smaller than
that of other systems that have already been shown to be
amenable to formal verification [54]. This is in stark con-
trast with all the prior solutions, which make no effort to
remove any code from the RCB.

Fault tolerance. We evaluated the fault tolerance
of TTST using software-implemented fault injection
(SWIFI) experiments. To this end, we implemented an-
other LLVM pass which transforms the original program
to inject specific classes of software faults into predeter-
mined code regions. Our pass accepts a list of target pro-
gram functions/modules, the fault types to inject, and a
fault probability φ—which specifies how many fault lo-
cations should be randomly selected for injection out of
all the possible candidates found in the code. We config-
ured our pass to randomly inject faults in the ST code,
selecting φ = 1%—although we observed similar results
for other φ values—and fault types that matched com-
mon programming errors in our fault model. In detail,
similar to prior SWIFI strategies that evaluated the ef-
fectiveness of fault-tolerance mechanisms against state
corruption [65], we considered generic branch errors
(branch/loop condition flip or stuck-at errors) as well as

Chapter 3. Back to the Future 34

Updates Changes Engineering effort

LOC Fun Var Ty ST Ann LOC Fwd ST LOC Bwd ST LOC

Apache httpd 5 10,844 829 28 48 79 302 151
nginx 25 9,681 711 51 54 24 335 0
vsftpd 5 5,830 305 121 35 0 21 21
OpenSSH 5 14,370 894 84 33 0 135 127

Total 40 40,725 2,739 284 170 103 793 299

Table 5: Engineering effort for all the updates analyzed in our evaluation.

common memory errors, such as uninitialized reads (em-
ulated by missing initializers), pointer corruption (em-
ulated by corrupting pointers with random or off-by-1
values), buffer overflows (emulated by extending the size
passed to data copy functions, e.g., memcpy, by 1-100%),
and memory leakage (emulated by missing deallocation
calls). We repeated our experiments 500 times for each
of the 5 fault types considered, with each run starting a
live update between randomized program versions and
reporting the outcome of our TTST strategy. We report
results only for vsftpd—although we observed similar re-
sults for the other programs—which allowed us to collect
the highest number of fault injection samples per time
unit and thus obtain the most statistically sound results.

Figure 6 presents our results breaking down the data
by fault type and distribution of the observed outcomes—
that is, update succeeded or automatically rolled back af-
ter timeout, abnormal termination (e.g., crash), or past-
reversed state differences detected. As expected, the dis-
tribution varies across the different fault types consid-
ered. For instance, branch and initialization errors pro-
duced the highest number of updates aborted after a time-
out (14.6% and 9.2%), given the higher probability of in-
finite loops. The first three classes of errors considered,
in turn, resulted in a high number of crashes (51.1%,
on average), mostly due to invalid pointer dereferences
and invariants violations detected by our ST framework.
In many cases, however, the state corruption introduced
did not prevent the ST process from running to comple-
tion, but was nonetheless detected by our state differenc-
ing technique. We were particularly impressed by the
effectiveness of our validation strategy in a number of
scenarios. For instance, state differencing was able to
automatically recover from as many as 471 otherwise-
unrecoverable buffer overflow errors. Similar is the case
of memory leakages—actually activated in 22.2% of the
runs—with any extra memory region mapped by our
metadata cache and never deallocated immediately de-
tected at state diffing time. We also verified that the fu-
ture (or past) version resumed execution correctly after
every successful (or aborted) update attempt. When sam-
pling the 533 successful cases, we noted the introduction

of irrelevant faults (e.g., missing initializer for an unused
variable) or no faults actually activated at runtime. Over-
all, our TTST technique was remarkably effective in de-
tecting and recovering from a significant number of ob-
served failures (1,967 overall), with no consequences for
the running program. This is in stark contrast with all the
prior solutions, which make no effort in this regard.

Engineering effort. To evaluate the engineering ef-
fort required to deploy TTST, we analyzed a number
of official incremental releases following our original
program versions and prepared the resulting patches for
live update. In particular, we considered 5 updates for
Apache httpd (v2.2.23-v2.3.8), vsftpd (v1.1.0-v2.0.2),
and OpenSSH (v3.5-v3.8), and 25 updates for nginx
(v0.8.54-v1.0.15), given that nginx’s tight release cycle
generally produces incremental patches that are much
smaller than those of the other programs considered.
Table 5 presents our findings. The first two grouped
columns provide an overview of our analysis, with the
number of updates considered for each program and the
number of lines of code (LOC) added, deleted, or mod-
ified in total by the updates. As shown in the table,
we manually processed more than 40,000 LOC across
the 40 updates considered. The second group shows the
number of functions, variables, and types changed (i.e.,
added, deleted, or modified) by the updates, with a to-
tal of 2,739, 284, and 170 changes (respectively). The
third group, finally, shows the engineering effort in terms
of LOC required to prepare our test programs and our
patches for live update. The first column shows the one-
time annotation effort required to integrate our test pro-
grams with our ST framework. Apache httpd and nginx
required 79 and 2 LOC to annotate 12 and 2 unions with
inner pointers, respectively. In addition, nginx required
22 LOC to annotate a number of global pointers using
special data encoding—storing metadata information in
the 2 least significant bits. The latter is necessary to en-
sure precise pointer analysis at ST time. The second and
the third column, in turn, show the number of lines of
state transfer code we had to manually write to complete
forward ST and backward ST (respectively) across all the
updates considered. Such ST extensions were necessary

Chapter 3. Back to the Future 35

to implement complex state changes that could not be
automatically handled by our ST framework.

A total of 793 forward ST LOC were strictly neces-
sary to prepare our patches for live update. An extra 299
LOC, in turn, were required to implement backward ST.
While optional, the latter is important to guarantee full
validation surface for our TTST technique. The much
lower LOC required for backward ST (37.7%) is easily
explained by the additive nature of typical state changes,
which frequently entail only adding new data structures
(or fields) and thus rarely require extra LOC in our back-
ward ST transformation. The case of nginx is particularly
emblematic. Its disciplined update strategy, which limits
the number of nonadditive state changes to the minimum,
translated to no manual ST LOC required to implement
backward ST. We believe this is particularly encouraging
and can motivate developers to deploy our TTST tech-
niques with full validation surface in practice.

7 Related Work

Live update systems. We focus on local live update
solutions for generic and widely deployed C programs,
referring the reader to [7, 8, 29, 55, 74] for distributed
live update systems. LUCOS [22], DynaMOS [58], and
Ksplice [11] have applied live updates to the Linux ker-
nel, loading new code and data directly into the run-
ning version. Code changes are handled using binary
rewriting (i.e., trampolines). Data changes are handled
using shadow [11, 58] or parallel [22] data structures.
OPUS [10], POLUS [23], Ginseng [64], STUMP [62],
and Upstare [57] are similar live update solutions for
user-space C programs. Code changes are handled us-
ing binary rewriting [10, 23], compiler-based instrumen-
tation [62,64], or stack reconstruction [57]. Data changes
are handled using parallel data structures [23], type
wrapping [62, 64], or object replacement [57]. Most
solutions delegate ST entirely to the programmer [10,
11, 22, 23, 58], others generate only basic type trans-
formers [57, 62, 64]. Unlike TTST, none of these so-
lutions attempt to fully automate ST—pointer transfer, in
particular—and state validation. Further, their in-place
update model hampers isolation and recovery from ST
errors, while also introducing address space fragmenta-
tion over time. To address these issues, alternative update
models have been proposed. Prior work on process-level
live updates [40, 49], however, delegates the ST burden
entirely to the programmer. In another direction, Kit-
sune [48] encapsulates every program in a hot swappable
shared library. Their state transfer framework, however,
does not attempt to automate pointer transfer without
user effort and no support is given to validate the state or
perform safe rollback in case of ST errors. Finally, our
prior work [34,35] demonstrated the benefits of process-

level live updates in component-based OS architectures,
with support to recover from run-time ST errors but no
ability to detect a corrupted state in the updated version.

Live update safety. Prior work on live update safety
is mainly concerned with safe update timing mecha-
nisms, neglecting important system properties like fault
tolerance and RCB minimization. Some solutions rely
on quiescence [10–13] (i.e., no updates to active code),
others enforce representation consistency [62, 64, 71]
(i.e., no updated code accessing old data). Other re-
searchers have proposed using transactions in local [63]
or distributed [55, 74] contexts to enforce stronger tim-
ing constraints. Recent work [44], in contrast, suggests
that many researchers may have been overly concerned
with update timing and that a few predetermined update
points [34, 35, 48, 49, 62, 64] are typically sufficient to
determine safe and timely update states. Unlike TTST,
none of the existing solutions have explicitly addressed
ST-specific update safety properties. Static analysis pro-
posed in OPUS [10]—to detect unsafe data updates—
and Ginseng [64]—to detect unsafe pointers into updated
objects—is somewhat related, but it is only useful to dis-
allow particular classes of (unsupported) live updates.

Update testing. Prior work on live update testing [45–
47] is mainly concerned with validating the correctness
of an update in all the possible update timings. Correct
execution is established from manually written specifica-
tions [47] or manually selected program output [45, 46].
Unlike TTST, these techniques require nontrivial man-
ual effort, are only suitable for offline testing, and fail to
validate the entirety of the program state. In detail, their
state validation surface is subject to the coverage of the
test programs or specifications used. Their testing strat-
egy, however, is useful to compare different update tim-
ing mechanisms, as also demonstrated in [45]. Other re-
lated work includes online patch validation, which seeks
to efficiently compare the behavior of two (original and
patched) versions at runtime. This is accomplished by
running two separate (synchronized) versions in paral-
lel [21, 51, 59] or a single hybrid version using a split-
and-merge strategy [73]. These efforts are complemen-
tary to our work, given that their goal is to test for errors
in the patch itself rather than validating the state trans-
fer code required to prepare the patch for live update.
Complementary to our work are also efforts on upgrade
testing in large-scale installations, which aim at creat-
ing sandboxed deployment-like environments for testing
purposes [75] or efficiently testing upgrades in diverse
environments using staged deployment [25]. Finally,
fault injection has been previously used in the context of
update testing [29, 60, 66], but only to emulate upgrade-
time operator errors. Our evaluation, in contrast, presents
the first fault injection campaign that emulates realistic
programming errors in the ST code.

Chapter 3. Back to the Future 36

8 Conclusion

While long recognized as a hard problem, state transfer
has received limited attention in the live update literature.
Most efforts focus on automating and validating update
timing, rather than simplifying and shielding the state
transfer process from programming errors. We believe
this is a key factor that has discouraged the system ad-
ministration community from adopting live update tools,
which are often deemed impractical and untrustworthy.

This paper presented time-traveling state transfer, the
first fault-tolerant live update technique which allows
generic live update tools for C programs to automate and
validate the state transfer process. Our technique com-
bines the conventional forward state transfer transforma-
tion with a backward (and logically redundant) trans-
formation, resulting in a semantics-preserving manipu-
lation of the original program state. Observed deviations
in the reversed state are used to automatically identify
state corruption caused by common classes of program-
ming errors (i.e., memory errors) in the state transfer (li-
brary or user) code. Our process-level update strategy, in
turn, guarantees detection of other run-time errors (e.g.,
crashes), simplifies state management, and prevents state
transfer errors to propagate back to the original version.
The latter property allows our framework to safely re-
cover from errors and automatically resume execution in
the original version. Further, our modular and blackbox
validation design yields a minimal-RCB live update sys-
tem, offering a high fault-tolerance surface in both online
and offline validation runs. Finally, we complemented
our techniques with a generic state transfer framework,
which automates state transformations with minimal pro-
gramming effort and can detect additional semantic er-
rors using statically computed invariants. We see our
work as the first important step toward truly practical and
trustworthy live update tools for system administrators.

9 Acknowledgments

We would like to thank our shepherd, Mike Ciavarella,
and the anonymous reviewers for their comments. This
work has been supported by European Research Council
under grant ERC Advanced Grant 2008 - R3S3.

References

[1] Apache benchmark (AB). http://httpd.apache.
org/docs/2.0/programs/ab.html.

[2] dkftpbench. http://www.kegel.com/dkftpbench.

[3] Ksplice performance on security patches.
http://www.ksplice.com/cve-evaluation.

[4] Ksplice Uptrack. http://www.ksplice.com.

[5] Vulnerability summary for CVE-2006-0095.
http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2006-0095.

[6] ADVE, S. V., ADVE, V. S., AND ZHOU, Y. Using likely
program invariants to detect hardware errors. In Proc.
of the IEEE Int’l Conf. on Dependable Systems and Net-
works (2008).

[7] AJMANI, S., LISKOV, B., AND SHRIRA, L. Scheduling
and simulation: How to upgrade distributed systems. In
Proc. of the Ninth Workshop on Hot Topics in Operating
Systems (2003), vol. 9, pp. 43–48.

[8] AJMANI, S., LISKOV, B., SHRIRA, L., AND THOMAS,
D. Modular software upgrades for distributed systems.
In Proc. of the 20th European Conf. on Object-Oriented
Programming (2006), pp. 452–476.

[9] AKRITIDIS, P., COSTA, M., CASTRO, M., AND HAND,
S. Baggy bounds checking: An efficient and backwards-
compatible defense against out-of-bounds errors. In Proc.
of the 18th USENIX Security Symp. (2009), pp. 51–66.

[10] ALTEKAR, G., BAGRAK, I., BURSTEIN, P., AND

SCHULTZ, A. OPUS: Online patches and updates for
security. In Proc. of the 14th USENIX Security Symp.
(2005), vol. 14, pp. 19–19.

[11] ARNOLD, J., AND KAASHOEK, M. F. Ksplice: Auto-
matic rebootless kernel updates. In Proc. of the Fourth
ACM European Conf. on Computer Systems (2009),
pp. 187–198.

[12] BAUMANN, A., APPAVOO, J., WISNIEWSKI, R. W.,
SILVA, D. D., KRIEGER, O., AND HEISER, G. Reboots
are for hardware: Challenges and solutions to updating
an operating system on the fly. In Proc. of the USENIX
Annual Tech. Conf. (2007), pp. 1–14.

[13] BAUMANN, A., HEISER, G., APPAVOO, J., DA SILVA,
D., KRIEGER, O., WISNIEWSKI, R. W., AND KERR,
J. Providing dynamic update in an operating system. In
Proc. of the USENIX Annual Tech. Conf. (2005), p. 32.

[14] BAZZI, R. A., MAKRIS, K., NAYERI, P., AND SHEN, J.
Dynamic software updates: The state mapping problem.
In Proc. of the Second Int’l Workshop on Hot Topics in
Software Upgrades (2009), p. 2.

[15] BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S.
Reconsidering custom memory allocation. In Proc. of the
17th ACM Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications (2002), pp. 1–12.

[16] BLOOM, T., AND DAY, M. Reconfiguration and mod-
ule replacement in Argus: Theory and practice. Software
Engineering J. 8, 2 (1993), 102–108.

[17] BOEHM, H.-J. Space efficient conservative garbage col-
lection. In Proc. of the ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (1993),
pp. 197–206.

[18] BOEHM, H.-J. Bounding space usage of conservative
garbage collectors. In Proc. of the 29th ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages
(2002), pp. 93–100.

Chapter 3. Back to the Future 37

[19] BOJINOV, H., BONEH, D., CANNINGS, R., AND

MALCHEV, I. Address space randomization for mobile
devices. In Proc. of the Fourth ACM Conf. on Wireless
network security (2011), pp. 127–138.

[20] BONWICK, J. The slab allocator: An object-caching ker-
nel memory allocator. In Proc. of the USENIX Summer
Technical Conf. (1994), p. 6.

[21] CADAR, C., AND HOSEK, P. Multi-version software up-
dates. In Proc. of the Fourth Int’l Workshop on Hot Topics
in Software Upgrades (2012), pp. 36–40.

[22] CHEN, H., CHEN, R., ZHANG, F., ZANG, B., AND

YEW, P.-C. Live updating operating systems using vir-
tualization. In Proc. of the Second Int’l Conf. on Virtual
Execution Environments (2006), pp. 35–44.

[23] CHEN, H., YU, J., CHEN, R., ZANG, B., AND YEW, P.-
C. POLUS: A POwerful live updating system. In Proc.
of the 29th Int’l Conf. on Software Eng. (2007), pp. 271–
281.

[24] CHOW, J., PFAFF, B., GARFINKEL, T., AND ROSEN-
BLUM, M. Shredding your garbage: Reducing data life-
time through secure deallocation. In Proc. of the 14th
USENIX Security Symp. (2005), pp. 22–22.

[25] CRAMERI, O., KNEZEVIC, N., KOSTIC, D., BIAN-
CHINI, R., AND ZWAENEPOEL, W. Staged deployment
in Mirage, an integrated software upgrade testing and dis-
tribution system. In Proc. of the 21st ACM Symp. on Op-
erating Systems Principles (2007), pp. 221–236.

[26] DÖBEL, B., HÄRTIG, H., AND ENGEL, M. Operating
system support for redundant multithreading. In Proc.
of the 10th Int’l Conf. on Embedded software (2012),
pp. 83–92.

[27] DHURJATI, D., AND ADVE, V. Backwards-compatible
array bounds checking for C with very low overhead. In
Proc. of the 28th Int’l Conf. on Software Eng. (2006),
pp. 162–171.

[28] DIMITROV, M., AND ZHOU, H. Unified architectural
support for soft-error protection or software bug detec-
tion. In Proc. of the 16th Int’l Conf. on Parallel Architec-
ture and Compilation Techniques (2007), pp. 73–82.

[29] DUMITRAS, T., AND NARASIMHAN, P. Why do up-
grades fail and what can we do about it?: Toward depend-
able, online upgrades in enterprise system. In Proc. of the
10th Int’l Conf. on Middleware (2009), pp. 1–20.

[30] DUMITRAS, T., NARASIMHAN, P., AND TILEVICH, E.
To upgrade or not to upgrade: Impact of online upgrades
across multiple administrative domains. In Proc. of the
ACM Conf. on Object-Oriented Programming, Systems,
Languages, and Appilcations (2010), pp. 865–876.

[31] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G.,
AND NOTKIN, D. Dynamically discovering likely pro-
gram invariants to support program evolution. In Proc. of
the 21st Int’l Conf. on Software Eng. (1999), pp. 213–224.

[32] FONSECA, P., LI, C., AND RODRIGUES, R. Finding
complex concurrency bugs in large multi-threaded appli-
cations. In Proc. of the Sixth ACM European Conf. on
Computer Systems (2011), pp. 215–228.

[33] GIUFFRIDA, C., CAVALLARO, L., AND TANENBAUM,
A. S. Practical automated vulnerability monitoring using
program state invariants. In Proc. of the Int’l Conf. on
Dependable Systems and Networks (2013).

[34] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM,
A. S. Enhanced operating system security through ef-
ficient and fine-grained address space randomization. In
Proc. of the 21st USENIX Security Symp. (2012), p. 40.

[35] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM,
A. S. Safe and automatic live update for operating sys-
tems. In Proceedings of the 18th Int’l Conf. on Architec-
tural Support for Programming Languages and Operat-
ing Systems (2013), pp. 279–292.

[36] GIUFFRIDA, C., AND TANENBAUM, A. Safe and auto-
mated state transfer for secure and reliable live update. In
Proc. of the Fourth Int’l Workshop on Hot Topics in Soft-
ware Upgrades (2012), pp. 16–20.

[37] GIUFFRIDA, C., AND TANENBAUM, A. S. Cooperative
update: A new model for dependable live update. In Proc.
of the Second Int’l Workshop on Hot Topics in Software
Upgrades (2009), pp. 1–6.

[38] GIUFFRIDA, C., AND TANENBAUM, A. S. A taxonomy
of live updates. In Proc. of the 16th ASCI Conf. (2010).

[39] GOODFELLOW, B. Patch tuesday. http://www.
thetechgap.com/2005/01/strongpatch_tue.html.

[40] GUPTA, D., AND JALOTE, P. On-line software version
change using state transfer between processes. Softw.
Pract. and Exper. 23, 9 (1993), 949–964.

[41] GUPTA, D., JALOTE, P., AND BARUA, G. A formal
framework for on-line software version change. IEEE
Trans. Softw. Eng. 22, 2 (1996), 120–131.

[42] HANGAL, S., AND LAM, M. S. Tracking down software
bugs using automatic anomaly detection. In Proc. of the
24th Int’l Conf. on Software Eng. (2002), pp. 291–301.

[43] HANSELL, S. Glitch makes teller machines take twice
what they give. The New York Times (1994).

[44] HAYDEN, C., SAUR, K., HICKS, M., AND FOSTER, J.
A study of dynamic software update quiescence for multi-
threaded programs. In Proc. of the Fourth Int’l Workshop
on Hot Topics in Software Upgrades (2012), pp. 6–10.

[45] HAYDEN, C., SMITH, E., HARDISTY, E., HICKS, M.,
AND FOSTER, J. Evaluating dynamic software update
safety using systematic testing. IEEE Trans. Softw. Eng.
38, 6 (2012), 1340–1354.

[46] HAYDEN, C. M., HARDISTY, E. A., HICKS, M., AND

FOSTER, J. S. Efficient systematic testing for dynam-
ically updatable software. In Proc. of the Second Int’l
Workshop on Hot Topics in Software Upgrades (2009),
pp. 1–5.

[47] HAYDEN, C. M., MAGILL, S., HICKS, M., FOSTER,
N., AND FOSTER, J. S. Specifying and verifying the
correctness of dynamic software updates. In Proc. of the
Fourth Int’l Conf. on Verified Software: Theories, Tools,
Experiments (2012), pp. 278–293.

Chapter 3. Back to the Future 38

[48] HAYDEN, C. M., SMITH, E. K., DENCHEV, M., HICKS,
M., AND FOSTER, J. S. Kitsune: Efficient, general-
purpose dynamic software updating for C. In Proc. of the
ACM Conf. on Object-Oriented Programming, Systems,
Languages, and Appilcations (2012).

[49] HAYDEN, C. M., SMITH, E. K., HICKS, M., AND FOS-
TER, J. S. State transfer for clear and efficient runtime
updates. In Proc. of the Third Int’l Workshop on Hot Top-
ics in Software Upgrades (2011), pp. 179–184.

[50] HERDER, J. N., BOS, H., GRAS, B., HOMBURG, P.,
AND TANENBAUM, A. S. Reorganizing UNIX for relia-
bility. In Proc. of the 11th Asia-Pacific Conf. on Advances
in Computer Systems Architecture (2006), pp. 81–94.

[51] HOSEK, P., AND CADAR, C. Safe software updates via
multi-version execution. In Proc. of the Int’l Conf. on
Software Engineering (2013), pp. 612–621.

[52] HÄRTIG, H., HOHMUTH, M., LIEDTKE, J., WOLTER,
J., AND SCHÖNBERG, S. The performance of
microkernel-based systems. In Proc. of the 16th ACM
Symp. on Oper. Systems Prin. (1997), pp. 66–77.

[53] HUNT, G. C., AND LARUS, J. R. Singularity: Rethink-
ing the software stack. SIGOPS Oper. Syst. Rev. 41, 2
(2007), 37–49.

[54] KLEIN, G., ELPHINSTONE, K., HEISER, G., AN-
DRONICK, J., COCK, D., DERRIN, P., ELKADUWE,
D., ENGELHARDT, K., KOLANSKI, R., NORRISH, M.,
SEWELL, T., TUCH, H., AND WINWOOD, S. seL4: For-
mal verification of an OS kernel. In Proc. of the 22nd
ACM Symp. on Oper. Systems Prin. (2009), pp. 207–220.

[55] KRAMER, J., AND MAGEE, J. The evolving philoso-
phers problem: Dynamic change management. IEEE
Trans. Softw. Eng. 16, 11 (1990), 1293–1306.

[56] LATTNER, C., AND ADVE, V. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proc. of the Int’l Symp. on Code Generation and
Optimization (2004), p. 75.

[57] MAKRIS, K., AND BAZZI, R. Immediate multi-threaded
dynamic software updates using stack reconstruction. In
Proc. of the USENIX Annual Tech. Conf. (2009), pp. 397–
410.

[58] MAKRIS, K., AND RYU, K. D. Dynamic and adaptive
updates of non-quiescent subsystems in commodity oper-
ating system kernels. In Proc. of the Second ACM Euro-
pean Conf. on Computer Systems (2007), pp. 327–340.

[59] MAURER, M., AND BRUMLEY, D. TACHYON: Tandem
execution for efficient live patch testing. In Proc. of the
21st USENIX Security Symp. (2012), p. 43.

[60] NAGARAJA, K., OLIVEIRA, F., BIANCHINI, R., MAR-
TIN, R. P., AND NGUYEN, T. D. Understanding and
dealing with operator mistakes in internet services. In
Proc. of the 6th USENIX Symp. on Operating Systems De-
sign and Implementation (2004), pp. 5–5.

[61] NEAMTIU, I., AND DUMITRAS, T. Cloud software up-
grades: Challenges and opportunities. In Proc. of the Int’l
Workshop on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems (2011), pp. 1–10.

[62] NEAMTIU, I., AND HICKS, M. Safe and timely updates
to multi-threaded programs. In Proc. of the ACM SIG-
PLAN Conf. on Programming Language Design and Im-
plementation (2009), pp. 13–24.

[63] NEAMTIU, I., HICKS, M., FOSTER, J. S., AND

PRATIKAKIS, P. Contextual effects for version-consistent
dynamic software updating and safe concurrent program-
ming. In Proc. of the ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (2008),
pp. 37–49.

[64] NEAMTIU, I., HICKS, M., STOYLE, G., AND ORIOL,
M. Practical dynamic software updating for C. In Proc.
of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation (2006), pp. 72–83.

[65] NG, W. T., AND CHEN, P. M. The systematic improve-
ment of fault tolerance in the Rio file cache. In Proc. of
the 29th Int’ll Symp. on Fault-Tolerant Computing (1999),
p. 76.

[66] OLIVEIRA, F., NAGARAJA, K., BACHWANI, R., BIAN-
CHINI, R., MARTIN, R. P., AND NGUYEN, T. D. Un-
derstanding and validating database system administra-
tion. In Proc. of the USENIX Annual Tech. Conf. (2006),
pp. 213–228.

[67] O’REILLY, T. What is Web 2.0. http://oreilly.
com/pub/a/web2/archive/what-is-web-20.html.

[68] PATTABIRAMAN, K., SAGGESE, G. P., CHEN, D.,
KALBARCZYK, Z. T., AND IYER, R. K. Automated
derivation of application-specific error detectors using dy-
namic analysis. IEEE Trans. Dep. Secure Comput. 8, 5
(2011), 640–655.

[69] RESCORLA, E. Security holes... who cares? In Proc. of
the 12th USENIX Security Symp. (2003), vol. 12, pp. 6–6.

[70] ROWASE, O., AND LAM, M. S. A practical dynamic
buffer overflow detector. In Proc. of the 11th Annual
Symp. on Network and Distr. System Security (2004),
pp. 159–169.

[71] STOYLE, G., HICKS, M., BIERMAN, G., SEWELL, P.,
AND NEAMTIU, I. Mutatis mutandis: Safe and pre-
dictable dynamic software updating. ACM Trans. Pro-
gram. Lang. Syst. 29, 4 (2007).

[72] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M.
Improving the reliability of commodity operating sys-
tems. ACM Trans. Comput. Syst. 23, 1 (2005), 77–110.

[73] TUCEK, J., XIONG, W., AND ZHOU, Y. Efficient on-
line validation with delta execution. In Proc. of the 14th
Int’l Conf. on Architectural support for programming lan-
guages and operating systems (2009), pp. 193–204.

[74] VANDEWOUDE, Y., EBRAERT, P., BERBERS, Y., AND

D’HONDT, T. Tranquility: A low disruptive alternative
to quiescence for ensuring safe dynamic updates. IEEE
Trans. Softw. Eng. 33, 12 (2007), 856–868.

[75] ZHENG, W., BIANCHINI, R., JANAKIRAMAN, G. J.,
SANTOS, J. R., AND TURNER, Y. JustRunIt:
Experiment-based management of virtualized data cen-
ters. In Proc. of the USENIX Annual Tech. Conf. (2009),
p. 18.

Chapter 3. Back to the Future 39

Bibliography

[1] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and A. Shostack. Timing

the application of security patches for optimal uptime. Proceedings of LISA, 2(16):

233–242, 2002.

[2] Jonathan Corbet, Greg Kroah-Hartman, and Amanda McPherson. Linux Kernel

Development – How Fast it is Going, Who is Doing It, What They are Doing, and

Who is Sponsoring It. Technical report, The Linux Foundation, March 2012. URL

http://go.linuxfoundation.org/who-writes-linux-2012.

[3] Leyla Bilge and Tudor Dumitras. Before we knew it: an empirical study of zero-day

attacks in the real world. In Proceedings of the 2012 ACM conference on Computer

and communications security, pages 833–844. ACM, 2012.

[4] Tudor Dumitraş and Priya Narasimhan. Why do upgrades fail and what can we do

about it?: toward dependable, online upgrades in enterprise system. In Proceedings

of the 10th ACM/IFIP/USENIX International Conference on Middleware, page 18.

Springer-Verlag New York, Inc., 2009.

[5] Tudor Dumitras, Priya Narasimhan, and Eli Tilevich. To upgrade or not to upgrade:

impact of online upgrades across multiple administrative domains. In ACM Sigplan

Notices, volume 45, pages 865–876. ACM, 2010.

[6] Jeff Arnold and M Frans Kaashoek. Ksplice: Automatic rebootless kernel updates.

In Proceedings of the 4th ACM European conference on Computer systems, pages

187–198. ACM, 2009.

[7] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical dynamic

software updating for C, volume 41. ACM, 2006.

[8] Iulian Neamtiu and Michael Hicks. Safe and timely updates to multi-threaded

programs. In ACM Sigplan Notices, volume 44, pages 13–24. ACM, 2009.

[9] Christopher M Hayden, Edward K Smith, Michail Denchev, Michael Hicks, and

Jeffrey S Foster. Kitsune: Efficient, general-purpose dynamic software updating for

40

http://go.linuxfoundation.org/who-writes-linux-2012

Bibliography 41

c. In Proceedings of the ACM international conference on Object oriented program-

ming systems languages and applications, pages 249–264. ACM, 2012.

[10] Cristiano Giuffrida, Anton Kuijsten, and Andrew S Tanenbaum. Safe and auto-

matic live update for operating systems. In Proceedings of the eighteenth interna-

tional conference on Architectural support for programming languages and operating

systems, pages 279–292. ACM, 2013.

	Abstract
	1 Background
	1.1 The Live Update Problem
	1.2 The PROTEOS Model
	1.3 Key Challenges on Commodity Operating Systems
	1.4 Our Approach
	1.5 Contribution
	1.6 Outline

	2 Mutable Checkpoint-Restart: Automating Live Update for Generic Long-running C Programs
	2.1 Introduction
	2.2 Background and Related Work
	2.3 Overview
	2.4 Profile Guided Quiescence Detection
	2.5 State-driven Mutable Record-replay
	2.6 Mutable GC-style Tracing
	2.7 Violating Assumptions
	2.8 Evaluation
	2.9 Conclusion

	3 Back to the Future: Fault-tolerant Live Update with Time-travelling State Transfer
	3.1 Introduction
	3.2 The State Transfer Problem
	3.3 System Overview
	3.4 Time-travelling State Transfer
	3.5 State Transfer Framework
	3.6 Evaluation
	3.7 Related Work
	3.8 Conclusion

	Bibliography

