
Building a File-Based Storage Stack:

Modularity and Flexibility in Loris

Ph.D. Thesis

Raja Appuswamy

VU University Amsterdam, 2014

This work was supported by the European Research Council Advanced Grant

227874.

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.

ASCI dissertation series number 307.

Copyright © 2014 Raja Appuswamy

ISBN 978-90-5383-087-1

Printed by Wöhrmann Print Service

VRIJE UNIVERSITEIT

BUILDING A FILE-BASED STORAGE STACK:

MODULARITY AND FLEXIBILITY IN LORIS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan

de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus

prof.dr. F.A. van der Duyn Schouten,

in het openbaar te verdedigen

ten overstaan van de promotiecommissie

van de Faculteit der Exacte Wetenschappen

op maandag 2 juni 2014 om 11.45 uur

in de aula van de universiteit,

De Boelelaan 1105

door

Raja Appuswamy

geboren te Chennai, Tamilnadu, India

promotor: prof.dr. A.S. Tanenbaum

“Today, most software exists, not to solve a problem,

but to interface with other software”

I.O.Angell

Table of Contents

ACKNOWLEDGEMENTS 13

1 Introduction 17

1.1 Evolution of File and Storage Systems 18

1.1.1 File Systems . 18

1.1.2 Logical Addressing and RAID 19

1.1.3 Volume Management . 20

1.1.4 User-Level Metadata Management 21

1.1.5 Second-Level Flash Integration 21

1.2 Retiring the Traditional Stack 22

1.3 Introducing Loris . 23

1.4 Contributions of this Thesis . 25

1.5 Organization of this Thesis . 26

2 Loris 29

2.1 Introduction . 30

2.2 Problems with the Traditional Storage Stack 31

2.2.1 Reliability . 31

2.2.2 Flexibility . 33

2.2.3 Heterogeneity Issues . 34

2.3 Solutions Proposed in the Literature 35

2.4 The Design of Loris . 36

2.4.1 The Physical Layer . 37

2.4.2 The Logical Layer . 39

2.4.3 The Cache Layer . 41

2.4.4 The Naming Layer . 42

2.5 The Advantages of Loris . 43

2.5.1 Reliability . 43

2.5.2 Flexibility . 44

2.5.3 Heterogeneity . 45

2.6 Evaluation . 45

7

8 TABLE OF CONTENTS

2.6.1 Test Setup . 46

2.6.2 Evaluating Reliability and Availability 46

2.6.3 Performance Evaluation 49

2.7 Conclusion . 53

3 Volume Management 55

3.1 Introduction . 56

3.2 Problems with existing approaches 57

3.2.1 Lack of Flexibility . 57

3.2.2 Lack of support for heterogeneous devices 58

3.3 The Loris storage stack . 60

3.3.1 Physical layer . 60

3.3.2 Logical layer . 61

3.3.3 Cache and naming layers 61

3.4 File volume virtualization in Loris 62

3.4.1 File pools: Our new storage model 62

3.4.2 Infrastructure support for file pools 63

3.4.3 Infrastructure support for file volume virtualization 64

3.5 New functionality: file volume snapshoting in Loris 65

3.5.1 Division of labor . 66

3.5.2 Physical layer(1): Copy-based snapshoting 66

3.5.3 Physical layer(2): Copy-on-write-based snapshoting 67

3.5.4 File volume snapshoting in the logical layer 71

3.6 New functionality: Unifying file snapshoting and version creation

policies . 74

3.6.1 Version volumes . 75

3.6.2 Open-close versioning in the naming layer 76

3.7 New functionality: Version directories–

a unified interface for browsing history 76

3.7.1 Version directories – interface specification 77

3.7.2 Version directories – implementation details 78

3.8 Evaluation . 80

3.8.1 Test Setup . 80

3.8.2 Copy-based and copy-on-write snapshoting comparison . . 80

3.8.3 Open-close versioning evaluation 81

3.8.4 Overhead of file volume virtualization 81

3.9 Comparison with other approaches 83

3.9.1 Device management . 83

3.9.2 File management and file volume virtualization 84

3.10 Future work . 85

3.10.1 Flexible cloning in Loris 85

3.10.2 Hybrid file pools . 85

TABLE OF CONTENTS 9

3.11 Conclusion . 86

4 Metadata Management 87

4.1 Introduction . 88

4.2 Background: The Loris Storage Stack 90

4.2.1 Physical layer . 91

4.2.2 Logical layer . 92

4.2.3 Cache layer . 93

4.2.4 Naming layer . 93

4.3 Efficient, Modular Metadata management with Loris 93

4.3.1 Storage management sublayer 94

4.3.2 Interface management sublayer 96

4.4 Evaluation . 102

4.4.1 Test setup . 102

4.4.2 Microbenchmarks . 103

4.4.3 Macrobenchmarks . 104

4.4.4 Attribute indexing overhead 105

4.5 Related Work . 106

4.5.1 Storage management . 106

4.5.2 Interface management 107

4.5.3 End-to-end metadata management 107

4.6 Future Work . 107

4.6.1 Partitioning . 108

4.6.2 Exploiting heterogeneity 108

4.7 Conclusion . 108

5 Hybrid Storage 109

5.1 Introduction . 110

5.2 Hybrid storage systems . 111

5.2.1 Caching . 111

5.2.2 Dynamic Storage Tiering 112

5.3 Background: The Loris storage stack 113

5.3.1 Physical layer . 113

5.3.2 Logical layer . 113

5.3.3 Cache and Naming layers 115

5.3.4 Tiering Framework . 115

5.3.5 Loris as a platform for storage tiering - The Pros 117

5.3.6 Loris as a platform for storage tiering - The Cons 118

5.4 Loris-based hybrid systems . 118

5.4.1 Loris-based Hot-DST systems 119

5.4.2 Loris-based Cold-DST architectures 120

5.4.3 Loris-based Caching . 121

10 TABLE OF CONTENTS

5.5 Evaluation . 121

5.5.1 Test Setup . 122

5.5.2 Benchmarks and Workload Generators 122

5.5.3 Workload Categories . 123

5.5.4 Comparative evaluation 124

5.5.5 Mixed Workloads and Hybrid Architectures 134

5.6 Discussion . 135

5.6.1 Analyzing Cold-DST . 136

5.6.2 Other hybrid architectures 136

5.6.3 Caching vs Tiering Algorithms 137

5.7 Conclusion . 137

6 Host-Side Caching 139

6.1 Introduction . 140

6.1.1 Consistent, Block-Level Write-Back Caching 141

6.1.2 Filesystem-Based Caching 142

6.1.3 Our Contributions . 143

6.2 The Case For File-level Host-Side Caching With Loris 144

6.2.1 Loris - Background . 144

6.2.2 File-level Host-side Caching With Loris 147

6.3 Loris-based Host-side Cache: Architecture 150

6.3.1 Volume Management Sublayer: Subfile Mapping 150

6.3.2 Cache Management Sublayer 152

6.3.3 Physical Layer Support For Subfile Caching 152

6.3.4 Network File Store . 153

6.4 Evaluation . 153

6.4.1 Setup . 153

6.4.2 Benchmarks and Workload Generators 154

6.4.3 Comparative Evaluation: Caching Policies 154

6.4.4 Network Performance Sensitivity 155

6.4.5 Cache Size Sensitivity 157

6.4.6 File-Level and Block-Level Caching Comparison 158

6.5 Conclusion . 160

7 Discussion 161

7.1 Metadata Management . 161

7.1.1 Metadata Consistency 161

7.1.2 Metadata Reliability . 163

7.2 Flash Management . 164

7.2.1 Tiering . 164

7.2.2 Caching . 165

TABLE OF CONTENTS 11

8 Summary and Conclusion 167

8.1 Summary . 167

8.2 Future Work . 169

8.2.1 Alternative Storage Stacks 169

8.2.2 Integrating New Storage Protocols 170

8.2.3 Extensions to Existing Protocols 171

REFERENCES 175

SAMENVATTING 185

Acknowledgements

It was just another afternoon in the ever-busy Microsoft Redmond campus. As I

sat in my office that day, contemplating rewriting code I had written after having

a heavy lunch, I received a phone call that would change my life forever. “Do you

promise to work hard?” asked Andy. At that moment, I did not think about asking

Andy to quantify the word “hard”. I did not pause even for a second to consider

that I would be taking a pay cut, giving up an amazing job, or worst of all, selling

of my brand new Bimmer. It did not bother me that I would be uprooting my

stable, well-established life only to start over again as a Ph.D student on a one-

year, probationary contract. My mind was preoccupied with a single thought–“I

am going to be Andy Tanenbaum’s Ph.D student!”. Without hesitating, I said

“Yes. I promise.”, and grabbed what I will always consider to be an opportunity

of a life time.

This thesis marks the culmination of a journey, one that lasted five wonderful

years since that day, and one which would have been impossible without the guid-

ance and support offered by several amazing people. First and foremost, I would

like to thank my supervisor Andy Tanenbaum. During the initial stages of my

research, you patiently withstood a barrage of random ideas, taught me the value

of being critical, and helped me steer clear of several research topics that have a

low impact–investment ratio. As I gained experience, you gave me full autonomy

and encouraged me to work on topics I was passionate about. You spent countless

hours, quite often burning the midnight oil before deadlines, teaching me the art

of writing good research papers. You were incredibly understanding even when

times were tough and I had to make multiple, month-long, personal trips to India.

You were even the source of inspiration for some of my new hobbies, be it travel

photography or culture tourism. I am deeply indebted to you for all of this and

much more.

Next, I would like to thank the members of my thesis committee, André

Brinkmann, Ethan Miller, Raju Rangaswami, Eno Thereska, and Spyros Voul-

garis, for taking the time to review this thesis. Your invaluable feedback greatly

helped in improving the overall quality of this dissertation. It is an absolute honour

to have such leading researchers on my committee.

13

14 ACKNOWLEDGEMENTS

I am extremely grateful to Antony Rowstron for inviting me not once, but

twice, to work with a wonderful group of researchers at the Microsoft Research,

Cambridge. I would like to thank all the members of the Systems and Net-

working Group, particularly Christos Gkantsidis, Orion Hodson, and Dushyanth

Narayanan, for providing a challenging, yet truly enjoyable, research environ-

ment.

I owe a huge debt of gratitude to my paranymphs David van Moolenbroek and

Cristiano Giuffrida. David, I would have definitely not accomplished as much as I

did without your collaboration. During the course of my Ph.D., you have donned

several roles–as a team mate spending hours on the white board brainstorming

ideas, as a translator helping me make sense of all those letters from the IND, as

a developer fixing bugs in quick-and-dirty prototypes I wrote, and as a friend who

helped me convince the Dutch police that I was indeed a victim of “skimming”-

based cybercrime. Thank you for all those memories, and I hope that I will be

able to repay back the debt I owe you in the near future, when it will be your turn

to face the guillotine.

Cristiano (or should I say Dr. Giuffrida), we were certainly two peas in a pod,

sharing much more than just an appreciation for the fine art of dining. We started

our Ph.D. on the same day, went through the peaks and troughs of our scholarly

careers together, and decided that we had milked the hypothetical research cow

dry more or less at the same time. I will always cherish the moments we have had,

be it our long-lasting, Wednesday-night ritual of getting irritated watching “Lost”

while eating pizza, or the one too many black outs we have had in the gym trying

to shed the post-Christmas “muscle” mass. I wish you and Laura the very best in

all your future endeavours.

I would like to thank all past and present members of the MINIX team. Jor-

rit Herder, Dirk Vogt, Erik van der Kouwe, and Tomas Hruby, my P4.69 office

mates, and my fellow Ph.D. students, it has been a real pleasure working side by

side with all of you. I have learned a great deal about several topics, ranging from

optimizing multiserver systems to the classification of cannibalism among various

animal species, through the interactions we have had during the all-too-frequent

coffee breaks. Erik, many thanks for writing the Dutch summary of this thesis and

for doubling in role as my tax advisor, financial assistant, and stand-in translator

when David was not available. A special note of thanks to Lorenzo Cavallaro, for

inspiring all of us with his voracious appetite for both good food and good secu-

rity research. Philip Homburg, Thomas Veerman, Arun Thomas, Lionel Sambuc,

and Kees Jongenburger, my fellow MINIX programmers, thank you for making

me feel at home in Amsterdam. You guys have always been forthcoming and

helpful in times of need. Philip, I certainly look forward to the party you will

be hosting sometime in the future to celebrate the restoration of your house back

to living conditions. Thomas, I cannot wait to see how you and Saskia handle

those two little treasure troves ten years from now, and Saskia, I still owe you a

ACKNOWLEDGEMENTS 15

home-cooked Indian dinner! Arun, Lisa, I really enjoyed your company while

you were here in Amsterdam and I hope that our paths cross again someday in the

future. Ben, your company has been nothing short of legen–wait for it–dary, leg-

endary. I will always remember you as that content-addressed-storage-obsessed,

computer-vision-loving, playbook-owning, tweed-jacket-wearing, heavy-weight

lifting, boxing champion who also writes kick-ass code. Lionel and Kees, I have

always admired the passion you share for not just the MINIX project, but also for

all things embedded. I will fondly remember the very many social events we have

had over the last few years.

I would like to acknowledge all my other colleagues from the Computer Sys-

tems group at the Vrije Universiteit, Amsterdam, who made my doctoral life much

more enjoyable, particularly Ana Oprescu for just being the ever-cheerful herself,

Albana Gaba for all the tips and tricks she shared with me based on her experience

dealing with several work and non-work-related issues alike, and Asia Slowin-

ska for her stories about amazing adventures in the exotic Indian subcontinent. I

would also like to thank Richard van Heueven and Sharan Santhanam, for their

contributions to the Loris project. It has been a pleasure mentoring both of you. A

special word of thanks to Caroline Waij and Ilse Thomson for just being the best

secretaries in the history of the department (at least the history as I know it).

Despite all the support I got from my colleagues in Amsterdam, I would have

never managed to finish my Ph.D. with even half a head full of hair had it not

been for the morale-boosting distractions created by my friends. Rosa Meijer

and Johannes Bertens, thank you for all those fun trips to beaches and amusement

parks. I am super excited and looking forward to finishing our Battlestar Galactica

marathon in your lovely new home. Viktorian Miok, Gwénaël Leday, and Andrea

Contretras, I look forward to many more relaxing evenings, catching up and din-

ing out amidst vibrant tourists in the Amsterdam city center. Jakub Pecanka and

Melania Calinescu, thank you for so many fun-filled, board-game evenings and

movie nights. Gwenny Sitters, thank you for giving me the opportunity, on more

than one occasion, to enjoy the treasured company of all your lovely dogs and

cats. Shankar Gnanasekharan, thank you for accommodating me in your place

during my first week in Amsterdam and teaching me basic pattern matching skills

that I so desperately needed to shop in Dutch supermarkets. Srijith K. Nair, thank

you for all your help, assistance, and advice during the first few weeks of my stay

in Amsterdam.

A big thank you to all my University of Florida friends. Amarnath Raghu-

nathan, Jayanath Natarajan, and Raghav Panchapakesan, I would have never been

here had it not been for you guys. It was your encouragement and nudging that

convinced me to send that first email to Andy enquiring about an open posi-

tion in his group. Preethi Prasad, Deepa Jayanth, Nithya Vijayaraghavan, Sriram

Parthasarathy, Ritu Manjunathan, Kannan Rajah, Madhu Kallazhi, and Praveen

Kumar Subramanian, thank you for generously hosting me each and every single

16 ACKNOWLEDGEMENTS

time I visited California. The only thing I regret about living in Europe is not

being able to enjoy all your company as much as I would like to. A special note of

thanks to Dr. Alain Anyouzoa, my former colleague at Microsoft, for constantly

encouraging me to pursue a Ph.D, and for gifting me his book on UNIX system

design as a memento.

Now, I would like to thank my family for their unwavering love and support.

Thank you dad, for all those countless nights you stayed up with me helping me

prepare for exams, for all those countless hours you spent in temples praying for

my well-being, for sacrificing your career to give me a good upbringing, and for

making sure that I had everything I ever wanted by using your accounting skills

to balance household expenses against the only source of income–your pension.

Thank you mom, for keeping me healthy and well fed even if it meant spending

hours at the kitchen enduring crippling arthritic pain, for never saying no to any-

thing I have ever asked of you, and for spending every single moment of your life

taking care of the family without expecting anything in return. A big thanks to my

maternal uncles, Kumar, Srinivasan, Rajasekar, aunts, Alli, and Meenakshi, and

my cousin sister Nirmala. Thank you all for shouldering my responsibilities in my

absence without any strings attached. Thank you for encouraging me to follow my

heart even if my decisions ended up adding more work to your plate. Thank you

for always being there for me since my childhood and for always treating me like

a son rather than a nephew.

Before I wrap up this section, there is still one person who I need to acknowl-

edge. The only problem is that the list of things this person needs to be thanked

for is so long that I would have to devote the next three pages, should I decide

to write it all down. When I started making an outline for these three pages, I

realized that I would pretty much be repeating the contents of the first three pages

with all references replaced by a single name–Nimisha Chaturvedi. My beloved

wife, you are my everything–my mentor who guides me in making the right per-

sonal and professional choices, my colleague who understands the deadline-driven

academic lifestyle and even proof reads my research papers, my best friend who

always finds a way to cheer me up even in the toughest of times, my roommate

who cooks mind-blowing food without having me move a muscle, and my fam-

ily member who introduced me to the world’s best parents-in-law, Dr. Anoop

Chaturvedi and Mrs. Sunita Chaturvedi, and the best brother-in-law ever, the one

and only Apoorv Chaturvedi. Thank you mom and dad, for your trust, your sup-

port, your words of wisdom, and your love. Thank you Apoorv, for always taking

my side in debates with Nimisha, and more importantly, for being the brother who

is always looking for ways to make my life easier. Thank you Nimisha, my love,

for giving me a lifetime of happiness.

Raja Appuswamy

Amsterdam, The Netherlands, April 2014

Chapter 1

General Introduction

The two major factors that influence the design of modern computer systems are

undoubtedly changes in application requirements and advances in hardware tech-

nologies. File and storage systems are no different. Originally used for provid-

ing online storage to users in multiprogramming environments, file systems are

now used in a dizzying array of application domains for providing application-

independent persistent data storage. Traditionally designed to manage direct-

attached, block-based, magnetic storage media, storage systems of today interface

with a wide range of devices with radically different interfaces and price/perfor-

mance/reliability tradeoffs. To accommodate these changes, storage software has

also evolved into a complex, multilayered collection of protocols that run in dif-

ferent contexts (user applications, operating system modules, and firmware).

Layering and abstractions are the tools of trade employed by computer sys-

tems designers for building modular software. For instance, the network stack in

modern operating systems consists of several layers with a well-defined division

of labor. Similar to the network stack, the multilayered collection of storage pro-

tocols has been referred to as the storage stack [24], as these layers also communi-

cate using standardized interfaces that offer well-defined abstraction boundaries.

In both protocol stacks, the strict separation of layers provided by these abstract

interfaces enables the addition of new protocols, and updates to existing protocols,

in one layer without affecting others. However, unlike the systematic, standard-

ized evolution of protocol layering in the network stack, layering in the storage

stack was driven by one factor—compatibility with existing storage installations.

In this thesis, we will show how this compatibility-driven protocol layering in

the traditional stack causes various problems that render it ineffective in managing

modern-day storage installations and incapable of accommodating future changes

in the storage hardware landscape. In doing so, we will present a new layering of

storage protocols which sacrifices backwards compatibility in favor of modularity,

and show how the resulting storage stack, which we refer to as Loris, solves all the

17

18 CHAPTER 1. INTRODUCTION

File System

Disk Driver

RAID

Volume Manager

Flash Cache Manager

Lib-DB

APP

Lib-DB

APP

Lib-DB

APP

POSIX interface

LBA interface

Figure 1.1: The figure depicts the layering of protocols in the traditional storage stack.

The dotted line represents the transition from file to block level. The protocols sand-

wiched within the dashed rectangle collective form the RAID layer, and those within

the dotted rectangle form the Metadata Management layer.

issues that plague the traditional layering by design. But first, we will set the stage

for our research by presenting a brief account of the evolution of the traditional

storage stack.

1.1 Evolution of File and Storage Systems

Figure 1.1 shows the protocol layering in the storage stack found in most operating

systems. This multilayered collection of protocols, formed as a result of decades

of evolution, had humble beginnings—a single file system layer. We will now

trace the evolution of the stack starting with first-generation file systems and show

how backwards compatibility played a pivotal role in shaping the protocol layering

seen today.

1.1.1 File Systems

The task of first-generation file systems, like the Multics file system [23], was to

provide a general-purpose, device-independent mechanism for addressing a large

amount of direct-attached secondary storage. In order to achieve this objective,

the Multics file system provided two abstractions which user-space applications

could use to store and retrieve data in a device-independent fashion, namely, files

and directories. A file was defined to be a symbolically named, ordered sequence

1.1. EVOLUTION OF FILE AND STORAGE SYSTEMS 19

of elements, which, from the file system point of view, was format free. A di-

rectory, on the other hand, was a special file maintained by the file system and

contained a list of entries, which, to a user, appears to be files that can be accessed

using their symbolic names. Using these two abstractions, the Multics file system

demonstrated the utility of hierarchical file management, which, until now, has

remained the primary mechanism of interfacing with file systems.

Following the Multics file system, the UNIX file system [78] implemented and

extended the file abstraction to I/O devices. The UNIX file system also introduced

a simple, yet efficient, on-disk layout in which files were represented using inodes

that stored pointers to data blocks in addition to other POSIX metadata. However,

the simplicity of the UNIX file system became its Achilles’ heel, as its design

failed to exploit the increasing bandwidth of hard disk drives due to the random

accesses caused by suboptimal allocation of data blocks and strict separation of

metadata and data.

Although a wide variety of techniques have been proposed in literature for

overcoming the performance bottleneck caused by the UNIX on-disk layout, the

approach taken by Berkeley Fast File System (FFS) [63] deserves a special men-

tion. FFS improved performance significantly using several optimizations, some

of which exploited the internal geometry details of hard disk drives, exposed by

the then-prevalent CHS (Cylinder, Head, Sector) storage interface, to perform al-

location of blocks belonging to the same file within the same cylinder group at

rotationally-optimal positions. Thus, file systems were not only aware of internal

device geometry, but were designed based on the assumption that storage devices

were physically addressed and direct attached.

1.1.2 Logical Addressing and RAID

The SCSI standard of 1986 invalidated the assumptions made by file systems like

FFS. The standard replaced the physical CHS interface with a simple Logical

Block Address (LBA) interface that abstracted away device geometry informa-

tion, enabling the development of interoperable, device-independent systems and

peripherals. The LBA interface is arguably one of the most stable interfaces in

the history of computer systems as it continues to remain the dominating way of

accessing storage devices.

The abstract view of storage provided by the LBA interface fostered innova-

tions above and below the interface. File systems evolved rapidly in an effort to

close the ever-increasing CPU–storage bottleneck using various techniques like

optimizing reads using clustered data allocation [64], accelerating writes using

log-structured storage layout [80], etcetera. New techniques, like journaling [39],

soft updates [29], and shadow paging [45] were also developed to improve file

system reliability in the face of crashes and power failures. Despite these ad-

vances, file systems continued to be designed based on the “one-file system-per-

20 CHAPTER 1. INTRODUCTION

disk” bond until it was realized that “Single-Large-Expensive-Disks” (SLEDs)

could be replaced by a “Redundant-Array-of-Inexpensive-Disks” (RAID) to im-

prove both performance and reliability.

The advent of RAID [73] techniques is a landmark in the history of storage

systems, as it introduced a new layer, which we will henceforth refer to as the

RAID Layer, in the file system-based storage stack. The LBA interface played a

pivotal role in the formation of this new layer as it enabled RAID algorithms to be

integrated at the block level, in hardware or software, thereby retaining compati-

bility with existing file systems. Thus, RAID implementations were able to hide

their internal complexity by presenting a logical disk to the file systems: a linear

array of blocks that can be read and written.

The disk array industry is today a multibillion-dollar industry and redundant

disk arrays have become the dominant form of storage for many high-end installa-

tions. Although the traditional RAID levels have been extended to support multi-

ple disk failures using sophisticated erasure codes [13; 22], these new redundancy

techniques continue to be integrated into the RAID layer.

1.1.3 Volume Management

As storage installations grew in size, storage administrators resorted to using file

systems as basic administrative units for grouping related data and enforcing var-

ious policies, like setting storage quotas, access permissions etcetera. With the

addition of the RAID layer, file systems were now deployed on disk arrays (rather

than a SLED). This “one-file system-per-disk-array” bond presented a dilemma

to storage administrators, as one could either use a single file system paired with

a large storage array for managing all data together, thereby trading off flexi-

bility in policy specification, or create several small file systems, one per unit

of administration, using multiple small storage arrays, thereby sacrificing perfor-

mance (lesser spindles per file system), and resource utilization (storage space

is not shared across arrays). It was soon realized that a separation of file man-

agement from storage management was required to eliminate this tradeoff and

Volume Managers were born.

Volume managers broke the “one-file system-per-disk-array” bond by exploit-

ing the logical-disk abstraction introduced by RAID and adding yet another layer

of indirection—a logical volume [99]. As volume mangers were integrated at the

block level, all file systems continued to work unmodified, mapping user files and

directories to logical volume blocks. The volume manager, in turn, mapped these

logical volume blocks into physical blocks stored on RAID arrays, thereby de-

coupling data management and storage management. As multiple logical volumes

could now be consolidated in shared storage arrays, administrators could use file

systems as units of policy enforcement without having to sacrifice performance or

resource utilization.

1.1. EVOLUTION OF FILE AND STORAGE SYSTEMS 21

1.1.4 User-Level Metadata Management

The simplicity of the hierarchical organization coupled with the absence of a

data model-enforced file format resulted in file systems being adopted as the

data store of choice in several application domains. However, as these domains

evolved, file systems were forced to offer interfaces for storing and retrieving

arbitrary, application-specific, out-of-band metadata in addition to the standard

POSIX metadata. As the amount of metadata grew, applications faced two is-

sues borne out of the use of file systems as metadata stores. First, most file sys-

tems were not optimized for storing and retrieving extremely large amounts of

metadata. Second, file systems were incapable of supporting new domain-specific

naming schemes.

In order to solve these two problems while retaining compatibility with exist-

ing storage installations, several customized applications (like desktop search) and

file format libraries (like HDF5) were developed, thereby adding the third layer

to the storage stack—the domain-specific metadata management layer. As com-

ponents (or protocols) in this layer run in user space outside of the file system,

they were no longer limited by the hierarchical naming constraint. Thus, these

metadata management tools and applications developed rapidly to include a wide

gamut of features ranging from customized, search-friendly layout of metadata,

efficient multidimensional indexing, and even domain-specific naming schemes.

Thus, file systems were relegated to the role of “dumb” data stores that handle

persistence of data created by protocols in the metadata management layer.

1.1.5 Second-Level Flash Integration

Over the past few years, NAND flash-based solid state storage devices have gained

wide spread adoption in both personal and enterprise computing. Flash devices

have different idiosyncrasies than magnetic disks [7]. First, flash devices are

read/written at the granularity of a page—a block of data whose size is usually

4-KB (similar to the block size used by many file systems). Second, once pro-

grammed, flash pages need to be erased before they can be reprogrammed, and

such erasures can be done only at the granularity of a group of pages referred to

as a flash block. Third, flash cells can be erased only a limited number of times

after which they wear out and become incapable of storing data reliably.

As flash devices failed to conform to the “traditional block device” stereotype,

they could not be integrated into the traditional storage stack. As the age-old

LBA bond was no longer applicable to raw flash devices, new file systems and

RAID layer protocols were required to map file/block interfaces to the new flash

interface. Thus, in order to directly interface with flash devices, one had to sac-

rifice compatibility with either traditional file systems or RAID layer protocols.

While some flash manufacturers took this approach and developed entirely new

22 CHAPTER 1. INTRODUCTION

storage stacks [48], other industry players opted for a more compatibility-friendly

route—adding a new layer to the storage stack below the RAID layer. This new

layer, commonly referred to as the Flash Translation Layer [28], is responsible

for mapping the traditional LBA interface above to flash-specific interface below.

Protocols in this layer are typically implemented by a controller resident in the

flash-based Solid State Disk (SSD) and perform several tasks in addition to man-

aging the LBA-physical page mapping like wear-leveling and garbage collection.

With this new layer in place, flash-based SSDs could be used like any other block

device in combination with traditional file systems and RAID layer protocols.

With compatibility issues out of the way, storage system designers began in-

tegrating flash-based SSDs in various capacities. As both cost/GB and read/write

latency of flash was ideally positioned between DRAM and HDDs, flash was inte-

grated as a persistent second-level cache (below DRAM) in enterprise servers [21].

As the cost/GB of flash fell, and as the power benefits of flash became more ap-

parent, researchers from industry and academia demonstrated the benefits of re-

placing DRAM with large amounts of flash-based SSDs. This, in concert with a

marked increase in SSD densities due to advances in manufacturing practices, en-

couraged designers to integrate flash as a storage tier alongside HDDs for storing

primary data rather than caching it [42], [51], [37].

As modern data centers switched to virtualization-based server consolidation,

primary data storage also became consolidated, often in the form of a shared Net-

work Attached Storage (NAS) appliance. With such a shift, it soon became appar-

ent that the use of flash as a second-level cache on the client side would provide

several benefits compared to server integration [18]. However, a client-side flash

cache would have to be integrated at the hypervisor level in order to support snap-

shoting and caching of blocks belonging to virtual machine disk images. Thus,

following suit with RAID and Volume Manager integration, caching and tiering

algorithms were also integrated at the block level using the LBA abstraction, thus,

simplifying hypervisor integration in virtualized data centers, and retaining back-

wards compatibility with existing file systems in nonvirtualized enterprise instal-

lations.

1.2 Retiring the Traditional Stack

The traditional stack shown in Figure 1.1 adopts one of many possible ways of

layering storage protocols. As we mentioned earlier, this current layering was

born out of an overarching emphasis on compatibility, in contrast to the network

stack, for instance, where the division of labor between layers was the product

of a modular design. The result of such compatibility-driven protocol layering is

a storage stack riddled with design assumptions that have been invalidated time

and again by the addition of new layers or integration of new storage hardware.

1.3. INTRODUCING LORIS 23

For instance, the “one-file system-per-disk” bond based on which file systems per-

formed several optimizations was invalidated by the addition of the RAID layer.

Similarly, several file system optimizations that aimed at avoiding random I/O

and improving sequential accesses were invalidated when flash-based storage was

integrated into the stack.

These invalidated design assumptions cause several issues that impact per-

formance, reliability, and flexibility of the traditional stack. For instance, it has

been shown that a few widely-used RAID array configurations can adversely in-

teract with certain file system layout optimizations causing several performance

issues [91]. Similarly, the block-level integration of volume managers necessitated

cross-layer changes for adding new features like online expansion and shrinking

of logical volumes. This, in turn, complicated storage administration as a simple

task of adding a new storage device was transformed into an error-prone multi-

stage operation which involved manually requesting each layer to update its in-

ternal data structures. Similarly, the block-level integration of caching algorithms

impacts reliability as it complicates consistency management and crash recovery

due to reordering of erstwhile-ordered file system operations. Given these issues,

and several others which we will present later in this thesis, we believe that the

traditional stack must be retired in favor of a fresh, ground-up redesign.

1.3 Introducing Loris

In this thesis, we present the design and implementation of Loris, a storage stack

that solves all performance, flexibility, reliability, and heterogeneity issues of the

traditional stack by design. In doing so, we present a new, clean-slate layering of

storage protocols that sacrifices backwards compatibility in favor of modularity.

Figure 1.2 shows the two steps that mark the conceptual transition from the tra-

ditional stack to the Loris stack. The first conceptual step is the decomposition of

the file system layer into the Naming, Cache, and Layout sublayers. Protocols in

each sublayer can be seen as providing naming scheme implementations, first-

level cache management, and device-specific layout management respectively.

Since these protocols were originally implemented by the file system, they work

with files, in contrast to the RAID layer protocols, that operate on semantically-

unrelated data blocks. The second conceptual step involves promoting the device

agnostic protocols, namely, those belonging to the traditional RAID layer (RAID,

volume management, caching, etc.), to the file level by repositioning them above

the device-specific Layout sublayer. We refer to this new layering of storage pro-

tocols as the Loris storage stack.

The rationale behind these two transitions is quite straightforward. The first

transition improves modularity by identifying individual protocols and separating

them. The second step essentially groups protocols into two categories, namely,

24 CHAPTER 1. INTRODUCTION

Layout Layer

Naming Layer

Cache Layer

RAID Layer

Metadata

 Layer

RAID Layer

Metadata

SubLayer

Cache Layer

Layout Layer

Naming Layer

Domain-specific i/f

Device-specific i/f

File System

Disk Driver

RAID

Volume Manager

Flash Cache Manager

Lib-DB

APP

Lib-DB

APP

Lib-DB

APP

(a) (b) (c)

Figure 1.2: The figure shows the conceptual transition from the traditional stack (a) to

the Loris stack (c).

device specific and device agnostic, and layers all device-agnostic protocols at the

file level. As a result, all layers in the Loris stack are file aware, and all RAID layer

protocols in Loris, be it RAID, volume management or flash caching, operate on

files rather than blocks. As we will show later in this thesis, Loris uses a file-based

indirection, in contrast to a block-based logical disk indirection, for implementing

various features like file volume virtualization, thin provision, per-file snapshoting

and even open-close versioning.

Loris supports a novel storage model, which we refer to as File Pooling, for

managing (adding, removing, hot swapping) devices online. Administrative oper-

ations, like addition or removal of storage devices, that typically involve multiple

error-prone steps in the traditional stack can be accomplished using a single step

in Loris because of File Pooling.

Loris is capable of supporting several naming layers due to its modular di-

vision of labor. Thus, Loris can act as a framework for implementing domain-

specific metadata management systems. In fact, in addition to the standard POSIX-

based naming scheme, Loris also supports a new naming layer protocol that pro-

vides highly-optimized LSM-tree-based metadata storage, real- time inline index-

ing of user-specified attributes, and an attribute-based query language for search-

ing and organizing metadata.

As we mentioned earlier, Loris also integrates second-level flash management

algorithms at the file level. However, despite its file level integration, Loris has

been designed to support efficient, fine-grained subfile tiering or caching of “hot”

1.4. CONTRIBUTIONS OF THIS THESIS 25

data in the flash cache. Unlike the traditional stack, where both the file system and

block layers have to implement redundant consistency management for providing

crash-consistent flash caching, Loris uses a single, unified scheme for protecting

cross-stack metadata from power failures and OS crashes.

1.4 Contributions of this Thesis

Now that we have provided a preview of the problems that plague the traditional

stack and outlined the advantages of the new conceptual layering of storage pro-

tocols in Loris, we will now explicitly list the contributions of this thesis.

1. A new storage stack

• The design and implementation of the Loris stack with a new layering

of storage protocols

2. File-level RAID and volume management

• File Pools, a novel storage model that simplifies storage administration

• A single, unified, Loris-based virtualization infrastructure that sup-

ports file volume virtualization, snapshoting, per-file versioning

3. Efficient metadata management

• A Loris-based, modular metadata management system that provides 1)

LSM-tree-based metadata storage, 2) real-time indexing infrastructure

that uses LSM-trees for maintaining attribute indices, and 3) scalable

metadata querying using an attribute-based query language

4. File-level flash integration

• A Loris-based framework that enables development of file-level, hy-

brid, primary storage systems that use SSDs in concert with HDDs

in various capacities, and an empirical study of the pros and cons of

various caching and tiering algorithms.

• The design and implementation of a Loris-based, host-side flash cache

that performs fine-grained, subfile caching without any consistency is-

sues

We would like to explicitly mention here that this thesis does not cover tech-

niques that protect the Loris stack from crashes due to power failures or operating

system bugs. These topics, together with other reliability extensions, form a part

of another thesis (by David van Moolenbroek).

26 CHAPTER 1. INTRODUCTION

1.5 Organization of this Thesis

This thesis is organized as a collection of self-contained, refereed publications,

each focusing on one of the aforementioned contributions.

• Chapter 2 focuses on RAID algorithms. We first describe in detail various

issues that plague the block-level integration of RAID algorithms in the tra-

ditional stack. Then, we present Loris, our new storage stack, and show

how the file-level integration of RAID algorithms in Loris solves all these

issues by design. To this end, we provide a detailed description of the data

structures and algorithms used by the four Loris layers for implementing re-

liable, flexible, heterogeneity-friendly, file-level RAID. Chapter 2 appeared

in Proceedings of the Pacific Rim International Symposium on Dependable

Computing (PRDC’10) [9]. We would like to explicitly mention here that

this work was done in collaboration with David van Moolenbroek. Thus, the

material presented here will also appear in David van Moolenbroek’s thesis.

• Chapter 3 focuses on device management and file volume virtualization.

After describing the flexibility and heterogeneity issues with traditional vol-

ume managers, we present File Pools, our Loris-based storage model. In

addition, we also present the design extensions to Loris for supporting file

volume virtualization, and show how the modular division of labor between

various Loris layers unifies the implementation of volume snapshoting and

per-file open/close versioning. Chapter 3 appeared in Proceedings of the

27th Symposium on Mass Storage Systems and Technologies(MSST’11) [10].

• Chapter 4 focuses on scalable metadata management. After providing a

detailed overview of various problems that affect performance and scal-

ability of user-level metadata management systems, we show how Loris

can act as a framework for supporting various domain-specific metadata

solutions. In doing so, we present the design and implementation of our

new Loris naming layer that uses LSM-trees for high-performance meta-

data lookup/storage and real-time indexing of user-specified attributes. We

also show how an attribute-based, domain-specific query language can be

used side-by-side with a traditional POSIX-based naming layer to provide

search-based access to data stored in a hierarchical file system. Chapter 3

appeared in Proceedings of the Sixth International Conference on Network-

ing, Architecture, and Storage (NAS’11) [101].

• Chapter 5 focuses on the design tradeoffs involved in building primary data

storage systems, also known as hybrid storage systems, that use high-perfor-

mance flash in concert with high-density, low-cost HDDs for improving

price and performance. We first show how Loris can be used as a frame-

work for implementing file-level hybrid storage systems and describe its

1.5. ORGANIZATION OF THIS THESIS 27

advantages over other block-level systems. Using Loris as a framework,

we then present the design, implementation, and evaluation of several tier-

ing and caching policies that use flash-based SSDs in various capacities. In

doing so, we identify tradeoffs inherent to each approach and discuss the

ramifications of these tradeoffs on the design of future hybrid storage sys-

tems. Chapter 5 appeared in Proceedings of the 28th Symposium on Mass

Storage Systems and Technologies (MSST’12) [11].

• Chapter 6 focuses on host-side flash caching in data centers. After describ-

ing various consistency issues that affect block-level integration of flash

caching algorithms, we present the design and implementation of our Loris-

based flash caching system that can perform fine-grained, block-granular

buffering of “hot” data in the flash cache. We also present a compara-

tive evaluation to illustrate the benefit of file-level flash cache manage-

ment over the block-level approach. Chapter 6 appeared in Proceedings

of the 19th International Conference on Parallel and Distributed Systems

(ICPADS’13) [12].

Chapter 2

Loris - A Dependable, Modular,

File-Based Storage Stack

Abstract

The arrangement of file systems and volume management/RAID systems, together

commonly referred to as the storage stack, has remained the same for several

decades, despite significant changes in hardware, software and usage scenarios.

In this paper, we evaluate the traditional storage stack along three dimensions:

reliability, heterogeneity and flexibility. We highlight several major problems with

the traditional stack. We then present Loris, our redesign of the storage stack, and

we evaluate several reliability, availability and performance aspects of Loris.

29

30 CHAPTER 2. LORIS

2.1 Introduction

Over the past several years, the storage hardware landscape has changed dramat-

ically. A significant drop in the cost per gigabyte of disk drives has made tech-

niques that require a full disk scan, like fsck or whole disk backup, prohibitively

expensive. Large scale installations handling petabytes of data are very common

today, and devising techniques to simplify management has become a key prior-

ity in both academia and industry. Research has revealed great insights into the

reliability characteristics of modern disk drives. “Fail-partial” failure modes [76]

have been studied extensively and end-to-end integrity assurance is more impor-

tant now than ever before. The introduction of SSDs and other flash devices is

sure to bring about a sea change in the storage subsystem. Radically different

price/performance/reliability trade-offs have necessitated rethinking several as-

pects of file and storage management [48; 28]. In short, the storage world is

rapidly changing and our approach to making storage dependable must change,

too.

Traditional file systems were written and optimized for block-oriented hard

disk drives. With the advent of RAID techniques [73], storage vendors started

developing high-performance, high-capacity RAID systems in both hardware and

software. The block-level interface between the file system and disk drives pro-

vided a convenient, backward-compatible abstraction for integrating RAID algo-

rithms.

As installations grew in size, administrators needed more flexibility in manag-

ing file systems and disk drives. Volume managers [99] were designed as block-

level drivers to break the “one file system per disk” bond. By providing logical

volumes, they abstracted out details of physical storage and thereby made it possi-

ble to resize file systems/volumes on the fly. Logical volumes also served as units

of policy assignment and quota enforcement. Together, we refer to the RAID and

volume management solutions as the RAID layer in this paper.

This arrangement of file system and RAID layers, as shown in Figure 2.1(a),

has been referred to as the storage stack [24]. Despite several changes in hardware

landscape, the traditional storage stack has remained the same for several decades.

In this paper, we examine the block-level integration of RAID and volume man-

agement along three dimensions: reliability, flexibility, and heterogeneity. We

highlight several major problems with the traditional stack along all three dimen-

sions. We then present Loris, our new storage stack. Loris improves modularity

by decomposing the traditional file system layer into several self-contained layers,

as shown in Figure 2.1(b). It improves reliability by integrating RAID algorithms

at a different layer compared to the traditional stack. It supports heterogeneity by

providing a file-based stack in which the interface between layers is a standard-

ized file interface. It improves flexibility by automating device administration and

enabling per-file policy selection.

2.2. PROBLEMS WITH THE TRADITIONAL STORAGE STACK 31

File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Figure 2.1: The figure depicts (a) the arrangement of layers in the traditional stack,

and (b) the new layering in Loris. The layers above the dotted line are file-aware, the

layers below are not.

This paper is structured as follows. In Sec. 2, we explain in detail the problems

associated with the traditional stack. In Sec. 3, we briefly outline some attempts

taken by others in redesigning the storage stack and also explain why other ap-

proaches fail to solve all the problems. In Sec. 4, we introduce Loris and explain

the responsibilities and abstraction boundaries of each layer in the new stack. We

also sketch the realization of these layers in our prototype implementation. In

Sec. 5, we present the advantages of Loris. We then evaluate both performance

and reliability aspects of Loris in Sec. 6 and conclude in Sec. 7.

2.2 Problems with the Traditional Storage Stack

In this section, we present some of the most important problems associated with

the traditional storage stack. We present the problems along three dimensions:

reliability, flexibility and heterogeneity.

2.2.1 Reliability

The first dimension is reliability. This includes the aspects of data corruption,

system failure, and device failure.

32 CHAPTER 2. LORIS

Data Corruption

Modern disk drives are not “fail-stop.” Recent research has analyzed several “fail-

partial” failure modes of disk drives. For example, a lost write happens when a

disk does not write a data block. A misdirected write by the disk results in a data

block being written at a different position than its intended location. A torn write

happens when a write operation fails to write all the sectors of a multisector data

block. In all these cases, if the disk controller (incorrectly) reports back success,

data is silently corrupted. This is a serious threat to data integrity and significantly

affects the reliability of the storage stack.

File systems and block-level storage systems detect data corruption by em-

ploying various checksumming techniques [86]. The level of reliability offered

by a checksumming scheme depends heavily on what is checksummed and where

the checksum is stored. Checksums can be computed on a per-sector or per-block

(file system block) basis, where a block is typically 2, 4, 8, or more sectors. Using

per-sector checksums does not protect one against any of the failure cases men-

tioned above if checksums are stored with the data itself. Block checksums, on the

other hand, protect against torn writes but not against misdirected or lost writes.

In yet another type of checksumming, called parental checksumming, the check-

sum of a data block is stored with its parent. For instance, a parental checksum-

ming implementation could store block checksums in the inode, right next to the

block pointers. These checksums would then be read in with the inode and used

for verification. Formal analysis has verified that parental checksumming detects

all of the aforementioned sources of corruption [55].

However, using parental checksumming in the current storage stack increases

the chance of data loss significantly [55]. Since the parental relationship between

blocks is known only to the file system, parental checksums can be used only

by the file system layer. Thus, while file system initiated reads can be verified,

any reads initiated by the RAID layer (for partial writes, scrubbing, or recovery)

escape verification. As a result, a corrupt data block will not only go undetected

by the RAID layer, but could also be used for parity recomputation, causing parity

pollution [55], and hence data loss.

System Failure

Crashes and power failures pose a metadata consistency problem for file systems.

Several techniques like soft updates and journaling have been used to reliably up-

date metadata in the face of such events. RAID algorithms also suffer from a

consistent update problem. Since RAID algorithms write data to multiple disk

drives, they must ensure that the data on different devices are updated in a consis-

tent manner.

Most hardware RAID implementations use NVRAM to buffer writes until they

2.2. PROBLEMS WITH THE TRADITIONAL STORAGE STACK 33

are made durable, cleanly side-stepping this problem. Several software RAID so-

lutions, on the other hand, resort to whole disk resynchronization after an unclean

shutdown. During resynchronization, all data blocks are read in, parity is com-

puted, and the computed parity is verified with the on-disk parity. If a mismatch

is detected, the newly computed parity is written out replacing the on-disk parity.

This approach—in addition to becoming increasingly impractical due to the

rapid increase in disk capacity—has two major problems: (1) it increases the vul-

nerability window within which a second failure can result in data loss. This

problem is also known as the “RAID write hole”, and (2) it adversely affects

availability, as the whole disk array has to be offline during the resynchronization

period [16].

The other approach adopted by some software RAID implementations is jour-

naling a block bitmap to identify regions of activity during the failure. While

this approach reduces resynchronization time, it has a negative impact on perfor-

mance [25], and results in functionality being duplicated across multiple layers.

Device Failure

Storage array implementations protect against a fixed number of disk failures. For

instance, a RAID 5 implementation protects against a single disk failure. When

an unexpected number of failures occur, the storage array comes to a grinding

halt. An ideal storage array however, should degrade gracefully. The amount of

data inaccessible should be proportional to the number of failures in the system.

Research has shown that to achieve such a property, a RAID implementation must

provide: (1) selective replication of metadata to make sure that the directory hier-

archy remains navigable at all times, and (2) fault-isolated positioning of files so

that a failure of any single disk results in only files on that disk being inaccessi-

ble [88].

By recovering files rather than blocks, file-level RAID algorithms reduce the

amount of data that must be recovered, thus shrinking the vulnerability window

before a second failure. Even a second failure during recovery results in the loss

of only some file(s), which can be restored from backup sources, compared to

block-level RAID where the entire array must be restored. None of these func-

tionalities can be provided by the traditional storage stack as the traditional RAID

implementation operates strictly below a block interface.

2.2.2 Flexibility

We discuss two points pertaining to flexibility: management and policy assign-

ment.

34 CHAPTER 2. LORIS

Management Flexibility

While traditional volume managers make device management and space alloca-

tion more flexible, they introduce a series of complex, error prone administrative

operations, most of which should be automated. For instance, a simple task such

as adding a new disk to the system involves several steps like creating a physical

volume, adding it to a volume group, expanding logical volumes and finally resiz-

ing file systems. While new models of administering devices, like the storage pool

model [6], are a huge improvement, they still suffer from other problems, which

we will describe in the next section.

In addition to device management complexity, software-based RAID solutions

expose a set of tunable parameters for configuring a storage array based on the ex-

pected workload. It has been shown that an improperly configured array can ren-

der layout optimizations employed by a file system futile [91]. This is an example

of the more general “information gap” problem [24]— different layers perform-

ing different optimizations unaware of the effect they might have on the overall

performance.

Policy Assignment Flexibility

Different files have different levels of importance and need different levels of pro-

tection. However, policies like the RAID level to use, encryption, and compres-

sion, are only available on a per-volume basis rather than on a per-file basis. Sev-

eral RAID implementations even lock-in the RAID levels and make it impossible

to migrate data between RAID levels. In cases where migration is supported, it

usually comes at the expense of having to perform a full-array dump and restore.

In our view, an ideal storage system should be flexible enough to support policy

assignment on a per-file, per-directory, or a per-volume basis. It should support

migration of data between RAID levels on-the-fly without affecting data availabil-

ity.

2.2.3 Heterogeneity Issues

New devices are emerging with different data access granularities and storage

interfaces. Integrating these devices into the storage stack has been done using

two approaches that involve either extending either the file system layer, or the

block-level RAID layer with new functionality.

The first approach involves building file systems that are aware of device-

specific abstractions [48]. However, as the traditional block-based RAID layer

exposes a block interface, it is incompatible with these file systems. As a result,

RAID and volume management functionalities must be implemented from scratch

for each device family.

2.3. SOLUTIONS PROPOSED IN THE LITERATURE 35

The second approach is to be backward compatible with traditional file sys-

tems. This is typically done by adding a new layer that translates block requests

from the file system to device-specific abstractions [28]. This layer cannot be in-

tegrated between the file system and RAID layers, as it is incompatible with the

RAID layer. Hence, such a layer has to either reimplement RAID algorithms for

the new device family, or be integrated below the RAID layer. This integration

retains compatibility with both traditional file system and RAID implementations.

However, this has the serious effect of widening the information gap by duplicat-

ing functionality. For instance, both the file system and translation layers now try

to employ layout optimizations – something that is completely unwarranted. The

only way to avoid this duplication is by completely redesigning the storage stack

from scratch.

2.3 Solutions Proposed in the Literature

Several approaches have been taken to solving some of the problems mentioned in

the previous section. However, none of these approaches solve all these problems

by design. In this section, we highlight only the most important techniques. We

classify the approaches taken into four types, namely: (1) inferring information,

(2) sharing information, (3) refactoring the storage stack, and (4) extending the

stack with stackable filing.

One could compensate for the lack of information in the RAID layer by having

it infer information about the file system layer. For instance, semantically smart

disks [88] infer file system specific information (block typing and structure infor-

mation), and use the semantic knowledge to improve RAID flexibility, availabil-

ity, and performance. However, by their very nature, they are file-system-specific,

making them nonportable.

Instead of inferring information, one could redesign the interface between the

file system and RAID layers to share information. For example, ExRAID [24],

a software RAID implementation, provides array related information (such as

disk boundaries and transient performance characteristics of each device) to an

informed file system (I-LFS), which uses it to make informed data placement de-

cisions.

While both inferring and sharing information can be used to add new function-

ality, they do not change the fundamental division of labor between layers. Hence,

most of the problems we mentioned remain unresolved.

A few projects have refactored the traditional storage stack. For instance,

ZFS [6]’s storage stack consists of three layers, the ZFS Posix Layer (ZPL), the

Data Management Unit (DMU), and the Storage Pool Allocator (SPA). ZFS solves

the reliability and flexiblity problems we mentioned earlier by merging block al-

location with RAID algorithms in its SPA layer. SPA exposes a virtual block

36 CHAPTER 2. LORIS

Boot block
Superblock

Inode bitmap

Inodes File data blocksBlock

bitmap

Root data

blocks

Figure 2.2: High-level overview of the on-disk layout used by the physical layer pro-

totype.

abstraction to DMU and acts as a multidisk block allocator. However, because

SPA exposes a block interface, it suffers from the same heterogeneity problems

as the RAID layer. In addition, we believe that layout management and RAID are

two distinct functionalities that should be modularized in separate layers.

RAIF [49] provides RAID algorithms as a stackable file system. RAID algo-

rithms in RAIF work on a per-file basis. As it is stackable, it is very modular and

can be layered on any file system, making it device independent. While this does

solve the flexibility and heterogeneity problems, it does not solve the reliability

problems.

2.4 The Design of Loris

We now present our new storage stack, Loris. The Loris stack consists of four lay-

ers in between the VFS layer and the disk driver layer, as shown in Figure 2.1(b).

Within the stack, the primary abstraction is the file. Each layer offers an inter-

face for creating and manipulating files to the layer above it, exposing per-file

operations such as create, read, write, truncate, and delete. A generic attribute

abstraction is used to both maintain per-file metadata, and exchange information

within the stack. The getattr and setattr operations retrieve and set attributes.

Files and attributes are stored by the lowest layer.

We implemented a Loris prototype on the MINIX 3 multiserver operating sys-

tem [44]. The modular and fault-tolerant structure of MINIX 3 allows us to quickly

and easily experiment with invasive changes. Moreover, we plan to apply ongo-

ing research in the areas of live updates [34] and many-core support to our work.

MINIX 3 already provides VFS and the disk drivers, each running as a separate

process, which improves dependability by allowing failed OS components to be

replaced on the fly.

The four layer implementations of the prototype can be combined into one

process, or separated out into individual processes. The single-process setup al-

lows for higher performance due to fewer context switches and less memory copy-

ing overhead. The multiprocess setup by nature imposes a very strict separation

between layers, provides better process fault isolation in line with MINIX 3’s de-

pendability objectives [44], and is more live-update-friendly [34]. The difference

2.4. THE DESIGN OF LORIS 37

between these configurations is abstracted away by a common library that pro-

vides primitives for communication and data exchange.

We will now discuss each of the layers in turn, starting from the lowest layer.

2.4.1 The Physical Layer

The lowest layer in the Loris stack is the physical layer. The physical layer algo-

rithms provide device-specific layout schemes to store files and attributes. They

offer a fail-stop physical file abstraction to the layers above it. By working on

physical files, the rest of the layers are isolated from device-specific characteris-

tics of the underlying devices (such as access granularity).

As the physical files are fail-stop, every call that requests file data or attributes,

returns either a result that has been verified to be free of corruption or an error. To

this end, every physical layer algorithm is required to implement parental check-

summing. To repeat, above the physical layer, there is no silent corruption of data.

A torn, lost, or misdirected write is converted into a hard failure that is passed

upward in the stack.

In our prototype, each physical device is managed by a separate, independent

instance of one of the physical layer algorithms. We call such an instance a mod-

ule. Each physical module has a global module identifier, which it uses to register

to the logical layer at startup.

On-Disk Layout

The on-disk layout of our prototype is based directly on the MINIX 3 File System

(MFS) [97], a traditional UNIX-like file system. We have extended it to support

parental checksums. Figure 2.2 shows a high-level view of the layout. We delib-

erately chose to stay close to the original MFS implementation so that we could

measure the overhead incurred by parental checksumming.

Each physical file is represented on disk by an inode. Each inode has an in-

ode number that identifies the physical file. The inode contains space to store

persistent attributes, as well as 7 direct, one single indirect and one double indi-

rect safe block pointers. Each safe block pointer contains a block number and a

CRC32 checksum of the block it points to. The single and double indirect blocks

store such pointers as well, to data blocks and single indirect blocks, respectively.

All file data are therefore protected directly or indirectly by checksums in the file

inode.

The inodes and other metadata are protected by means of three special on-disk

files. These are the inode bitmap file, the block bitmap file, and the “root file.”

The bitmap file inodes and their indirect blocks contain safe block pointers to the

bitmap blocks. The root file forms the hierarchical parent of all the inodes—its

data blocks contain checksums over all inodes, including the bitmap file inodes.

38 CHAPTER 2. LORIS

The checksums in the root file are stored and computed on a per-inode basis,

rather than a per-block basis. The checksum of the root file’s inode is stored in the

superblock.

Figure 2.3 shows the resulting parental checksumming hierarchy. The su-

perblock and root data blocks contain only checksums; the inodes and indirect

blocks contain safe block pointers. Please note that this hierarchy is used only for

checksumming—unlike copy-on-write layout schemes [45], blocks are updated

in-place.

Delayed Checksum Verification

One of the main drawbacks of parental checksumming is cascading writes. Due

to the inherent nature of parental checksumming, a single update to a block could

result in several blocks being updated all the way up the parental tree to the root.

Updating all checksums in the mainstream write path would slow down perfor-

mance significantly.

The physical layer prevents this by delaying the checksum computation, using

a small metadata block cache that is type-aware. By knowing the type of each

block, this cache makes it possible to perform checksum computation only when

a block is written to or read from the underlying device. For instance, by knowing

whether a block is a bitmap or inode block, it can compute and update checksums

in the bitmap and root file inodes lazily, that is, only right before flushing these

metadata blocks from the cache.

Superblock

Inode bitmap

Block bitmap inode
Inode bitmap inode

Block bitmap File data

Root inode

Root data blocks

Inodes

Data blocks

Figure 2.3: Parental checksumming hierarchy used by the physical layer prototype.

With respect to parental checksumming, the two special bitmap files are treated as any

other files. Indirect blocks have been omitted in this figure.

2.4. THE DESIGN OF LORIS 39

Error Handling

Parental checksumming allows the physical layer to detect corrupt data. When a

physical module detects a checksum error in the data or indirect block of a file, it

marks that portion of the file as corrupted. If the file’s inode checksum, as stored

in the root file, does not match the checksum computed over the actual inode,

then the entire file is marked as corrupted. In both cases, reads from the corrupt

portion will result in a checksum error being returned to the logical layer. The

physical module uses two attributes in the file’s inode, begin range and end range,

to remember this sick range.

For instance, consider a read request to a physical module for the first data

block of a file. If the physical module detects a checksum mismatch on reading in

the data block, it sets the begin and end range attributes to 0 and 4095 respectively,

and responds back to the logical layer with a checksum error. We will detail the

recovery process initiated by the logical layer when we describe its error handling

mechanism.

In contrast to inodes and data blocks, if a part of the other on-disk metadata

structures is found corrupted, the physical module will shut down for offline repair.

While we could have supported metadata replication to improve reliability, we

chose not to do so for the first prototype to stay as close as possible to the original

MFS implementation in order to get honest measurements.

If the underlying device driver returns an error or times out, the physical mod-

ule will retry the operation a number of times. Upon repeated failure, it returns

back an I/O error to the logical layer. An I/O error from the physical module

is an indication to the logical layer that a fatal failure has occurred and that the

erroneous device should not be used anymore.

2.4.2 The Logical Layer

The logical layer implements RAID algorithms on a per-file basis to provide var-

ious levels of redundancy. The logical layer offers a reliable logical file abstrac-

tion to the layers above. It masks errors from the physical layer whenever there is

enough data redundancy to recover from them. One logical file may be made up of

several independent physical files, typically each on a different physical module,

and possibly at different locations. As such, the logical layer acts as a centralized

multiplexer over the individual modules in the physical layer.

Our prototype implements the equivalents of RAID levels 0, 1, and 4—all of

these operate on a per-file basis. There is only one module instance of the logical

layer, which operates across all physical modules.

40 CHAPTER 2. LORIS

File Mapping

The central data structure in our logical layer prototype is the mapping. The map-

ping contains an entry for every logical file, translating logical file identifiers to

logical configurations. The logical configuration of a file consists of (1) the file’s

RAID level, (2) the stripe size used for the file (if applicable), and (3) a set of one

or more physical files that make up this logical file, each specified as a physical

module and inode number pair. The RAID level implementations decide how the

physical files are used to make up the logical file.

The create operation creates a mapping entry for a given logical file identifier,

with a given configuration (more about this later). For all other file operations

coming in from above, the logical layer first looks up the file’s logical configura-

tion in the mapping. The corresponding RAID algorithm is then responsible for

calling appropriate operations on physical modules.

Figure 2.4 shows how a logical file that is striped across two devices, is con-

structed out of two independent physical files. The mapping entry for this file F1

could look like this: F1=<raidlevel=0, stripesize=4096, physicalfiles=<D1:I1,

D2:I2>>. The entry specifies a RAID level of 0, a stripe size of 4096 bytes, and

two physical files: file I1 on physical module D1 and file I2 on physical module

D2. Now consider a read request for the first 16384 bytes of this file coming down

to the logical layer. Upon receiving the read request, the logical layer looks up the

entry for F1 in its mapping, and passes on the call to the RAID 0 algorithm. The

RAID 0 code uses the entry to determine that logical bytes 0-4095 are stored as

bytes 0-4095 in physical file D1:I1, logical bytes 4096-8191 are stored as bytes 0-

4095 in file D2:I2, logical bytes 8192-12287 are stored as bytes 4096-8191 in file

D1:I1, and logical bytes 12288-16383 are stored as bytes 4096-8191 in file D2:I2.

F1

I1 I2

Logical layer

Physical layer

D1 D2

Cache layer

Disk driver

Figure 2.4: An example of the file abstractions provided by the logical and physical

layers. The logical layer exposes a logical file, F1, which is constructed out of two

physical files, namely I1 on physical module D1 and I2 on physical module D2, by

means of striping.

2.4. THE DESIGN OF LORIS 41

The logical layer issues two read requests, one to D1 for the first 8192 bytes of

I1, and the other to D2 for the first 8192 bytes of I2. The results are combined to

form a “flat” result for the layer above.

The mapping itself is a logical file. The logical configuration of this file is

hardcoded. The mapping file is crucial for accessing any other files, and is there-

fore mirrored across all physical modules for increased dependability. It uses the

same static inode number on all physical modules.

Error Handling

When the logical layer gets a checksum error in response to an operation on a

physical module, it will restore the correct data for the file involved in the opera-

tion if enough data redundancy is present. If on-the-fly restoration is not possible,

the logical layer fails the operation with an I/O error.

For instance, let us consider a read request for the first block of a file mirrored

on two physical modules P1 and P2. If P1 responds back with a checksum error,

the logical layer first retrieves the begin and end sick range attributes from P1.

Assuming that only the first block was corrupt, these values would be 0 and 4095.

The logical layer then issues a read request to module P2, for data in the range

0–4095. If this read request succeeds, the logical layer issues a write request to

P1 for this data range, thereby performing on-the-fly recovery. It finally clears the

sick range by resetting begin and end ranges to their defaults.

When the logical layer gets an I/O error from a physical module, it considers

this to be a permanent error, and disables the physical module. The logical layer

will continue to serve requests for affected files from redundant copies where

possible, and return I/O errors otherwise.

2.4.3 The Cache Layer

The cache layer caches file data in main memory. This layer may be omitted in

operating systems that provide a unified page cache. As MINIX 3 does not have a

unified page cache, our prototype implements this layer. The cache layer is also

needed on systems that do not have any local physical storage such as PDAs and

other small mobile devices.

File-Based Caching

The prototype cache is file-aware and performs readahead and eviction of file data

on a per-file basis. Files are read from the lower layers in large readahead chunks

at a time, and only entire files are evicted from the cache. The cache maintains

file data at the granularity of memory pages.

Early experiments showed a large performance penalty incurred by small file

writes. Small file writes were absorbed completely by the cache until a sync re-

42 CHAPTER 2. LORIS

quest was received or the cache needed to free up pages for new requests. During

eviction, each file would be written out by means of an individual write opera-

tion, forcing the physical layer to perform a large number of small random writes.

To counter this problem, we introduced a vwrite call to supply a vector of write

operations for several files. The cache uses this call to pass down as many dirty

pages as possible at once, eventually allowing the physical modules to reorder and

combine the small writes.

Problems with Delayed Allocation

The cache delays writes, so that write calls from above can be satisfied very

quickly. This results in allocation of data blocks for these writes to be delayed

until the moment that these blocks are flushed out. This delayed allocation poses

a problem in the stack. Because of the abstraction provided by the logical layer,

the cache has no knowledge about the devices used to store a file, nor about the

free space available on those devices. Therefore, when a write operation comes

in, the cache cannot determine whether the write will eventually succeed.

Although we have not yet implemented a solution for this in our prototype, the

problem can be solved by means of a free-space reservation system exposed by

the physical modules through the logical layer to the cache.

2.4.4 The Naming Layer

The naming layer is responsible for naming and organizing files. Different naming

layer algorithms can implement different naming schemes: for example, a tradi-

tional POSIX style naming scheme, or a search-oriented naming scheme based on

attributes.

POSIX Support

Our prototype implements a traditional POSIX naming scheme. It processes calls

coming from the VFS layer above, converting POSIX operations into file opera-

tions.

Only the naming layer knows about the concept of directories. Below the nam-

ing layer, directories are stored as files. The naming layer itself treats directories

as flat arrays of statically sized entries, one per file. Each entry is made up of a

file name and a logical file identifier. Again, this layout was chosen for simplicity

and to stay close to the original MFS implementation for comparison purposes. A

new naming module could implement more advanced directory indexing.

The naming layer is also responsible for maintaining the POSIX attributes

of files (file size, file mode, link count, and so on). It uses Loris attributes for

this: it uses the setattribute call to send down POSIX attribute changes, which are

ultimately processed and stored by the physical layer in the file’s inode.

2.5. THE ADVANTAGES OF LORIS 43

Policy Assignment

When creating a new file, the naming layer is responsible for picking a new logical

file identifier, and an initial logical configuration for the file. The logical config-

uration may be picked based on any information available to the naming layer:

the new file’s name, its containing directory, its file type, and possibly any flags

passed in by the application creating the file. The chosen logical configuration is

passed to lower layers in the create call in the form of attributes.

By default, directories are mirrored across all devices in order to provide

graceful degradation. Upon getting a create directory request from VFS, the nam-

ing layer picks a new file identifier for the directory, and sends down a create call

to the cache, with RAID level 1 specified as the file’s logical policy. The cache

forwards the call to the logical layer. The logical layer creates a new entry in the

mapping for this file, and forwards the create call to all of the physical modules.

Upon return, the logical layer stores the resulting inode numbers in the mapping

entry as well.

2.5 The Advantages of Loris

In this section, we highlight how Loris solves all the problems mentioned in Sec. 2

by design. This section has been structured to mirror the structure of Sec. 2 so that

readers can match the problems with their corresponding solutions one-to-one.

2.5.1 Reliability

We now explain how Loris protects against the three threats to data integrity.

Data Corruption

As RAID algorithms are positioned in the logical layer, all requests, both user

application initiated reads and RAID initiated reads, are serviced by the physical

layer. Thus, any data verification scheme needs to be implemented only once, in

the physical layer, for all types of requests. In addition, since the physical layer is

file-aware, parental checksumming can be used for detecting all possible sources

of corruption. Thus, by requiring every physical layer algorithm to implement

parental checksumming, fail-partial failures are converted into fail-stop failures.

RAID algorithms can safely provide protection against fail-stop failures without

propagating corruption.

System Failure

Journaling has been used by several file systems to provide atomic update of sys-

tem metadata [39]. Modified journaling implementations have also been used

44 CHAPTER 2. LORIS

to maintain the consistency between data blocks and checksums in the face of

crashes [90]. While any such traditional crash recovery techniques can be used

with Loris to maintain metadata consistency, we are working on a new technique

called metadata replay. It protects the system from both hard crashes (power

failures, kernel panic, etc.) and soft crashes (modules failing due to bugs). We

will provide a brief description of this technique now, but it should be noted that

independent of the technique used, Loris does not require expensive whole disk

synchronization due to its file-aware nature.

Metadata replay is based on the counterintuitive idea that user data (file data

and POSIX attributes), if updated atomically, can be used to regenerate system

metadata. To implement this, we have two requirements: (1) a lightweight mech-

anism to log user data, and (2) some way to restore back the latest consistent

snapshot. With highly flexible policy selection in place, the user could log only

important files, reducing the overhead of data logging. We plan to add support

for selective logging and metadata snapshoting. When a crash occurs, the logical

layer coordinates the rollback of all physical layers to a globally consistent state.

Then, the logged user data are replayed, regenerating metadata in both logical and

physical layers, and bringing the system to new consistent state.

Device Failure

Graceful degradation is a natural extension of our design. Since RAID policies can

be selected on a per-file basis, directories can be replicated on all devices while

file data need not be, thereby providing selective metadata replication. Since the

logical layer is file-aware, fault-isolated placement of files can also be provided

on a per-file basis. Furthermore, recovery to a hot spare on a disk failure is faster

than a traditional RAID array since the logical layer recovers files. As mentioned

earlier, file-granular recovery restores only “live data” by nature, i.e., unused data

blocks in all physical layers do not have to be restored. Because traditional RAID

operates at the block level, it is unaware of which data blocks hold file data, and

has to restore all data blocks in the array.

2.5.2 Flexibility

The new file-oriented storage stack is more flexible than the traditional stack in

several ways. Loris supports automating several administrative tasks, simplifies

device management, and supports policy assignment at the granularity of files.

Management Flexiblity

Loris simplifies administration by providing a simple model for both device and

quota management. It supports automating most of the traditional administrative

chores. For instance, when a new device is added to an existing installation, Loris

2.6. EVALUATION 45

automatically assigns the device a new identifier. A new physical module cor-

responding to this device type is started automatically and this module registers

itself with the logical layer as a potential source of physical files. From here on,

the logical layer is free to direct new file creation requests to the new module. It

can also change the RAID policy of existing files on-the-fly or in the background.

Thus, Loris supports a pooled storage model similar to ZFS.

File systems in ZFS [6] serve as units of quota enforcement. By decoupling

volume management from device management, these systems make it possible

for multiple volumes to share the same storage space. We are working on a file

volume management implementation for Loris. We plan to modify the logical

layer to add support for such a volume manager. File volumes in Loris will be

able to provide functionalities similar to ZFS since files belonging to any volume

can be allocated from any physical module.

Policy Assignment Flexiblity

Loris provides a clean split between policy and mechanism. For instance, while

RAID algorithms are implemented in the logical layer, the policy that assigns

RAID levels to files can be present in any layer. Thus, while the naming layer

can assign RAID levels on a per-file, per-directory or even per-type basis [49], the

logical layer could assign policies on a per-volume basis or even globally across

all files.

2.5.3 Heterogeneity

All of the aforementioned functionalities are device-independent. By having the

physical layer provide a physical file abstraction, algorithms above the physical

layer are isolated from device-specific details. Thus, Loris can be used to set

up an installation where disk drives coexist with byte-granular flash devices and

Object-based Storage Devices (OSDs), and the administrator would use the same

management primitives across these device types. In addition, as the physical

layer works directly on the device without being virtualized, device-specific layout

optimizations can be employed without creating an information gap.

2.6 Evaluation

In this section, we will evaluate several reliability, availability and performance

aspects of our prototype.

46 CHAPTER 2. LORIS

Block type Affected Recovery time

Direct (actual data) 0.000039 % 28 ms

Single indirect 0.020000 % 157 ms

Double indirect 0.979727 % 6688 ms

Table 2.1: Recovery time after corruption of various data block types in a 100 MB

file. For each block type the table lists: (1) the percentage of the file affected when a

block of this type is corrupted, and (2) the recovery time measured after corrupting a

block of this type.

2.6.1 Test Setup

All tests were conducted on an Intel Core 2 Duo E8600 PC, with 4 GB RAM, and

four 500 GB 7200RPM Western Digital Caviar Blue SATA hard disks (WD5000-

AAKS), three of which were connected to separate ICIDU SATA PCI EXPRESS

cards. We ran all tests on 8 GB test partitions at the beginning of the disks. In

experiments where Loris is compared with MFS, both were set up to work with a

32 MB buffer cache.

2.6.2 Evaluating Reliability and Availability

To evaluate the reliability and availability of Loris, we implemented a fault in-

jection block driver that is capable of simulating both fail-partial failures (by cor-

rupting specific data blocks) and fail-stop disk failures (by returning an EIO on all

requests).

We first present an evaluation of the ability of Loris to perform on-the-fly

data recovery. Rather than just showing that our prototype detects corruption,

we illustrate how file-awareness helps in reducing the recovery time. We then

present an evaluation of availability under unexpected failures. We show two

cases of graceful degradation, both of which cannot be done by block-level RAID

implementations.

On-the-Fly Recovery

Our recovery measurements were gathered using a series of fault injection tests.

The test file system consists of a single 100 MB file, mirrored over a two-disk

Loris installation. The test workload is generated by a user application that issues

read requests for specific data ranges in the file. These read requests get forwarded

through the stack to the fault injection driver.

The driver corrupts three types of file blocks in three different scenarios: (1) a

random direct data block, (2) a random single indirect block, and (3) the double

indirect block. In all cases, the driver returns back corrupt data block(s) to the

2.6. EVALUATION 47

physical layer. Upon detecting a checksum violation, the physical layer responds

to the read request with a checksum error.

The logical layer, on being notified of a checksum error, performs on-the-fly

recovery using the redundant copy, and restores lost data onto the corrupt physical

layer immediately. Table 2.1 shows the recovery time for various corruption cases.

As can be seen, the recovery time is proportional to the amount of data lost within

a file.

Graceful Degradation

Our test file system for graceful degradation consists of a collection of 12,000

32 KB files, organized uniformly across 100 directories. We created the test file

system on a Loris installation with three disk drives. The number and size of files

were chosen to minimize the effect of caching, and the directory layout minimizes

the effect of our linear file name lookup.

With this setup, we evaluated graceful degradation with two different file lay-

out schemes, which we will detail shortly. However, in both cases, all directories

are mirrored across the three disk drives, and all files are positioned in a fault-

isolated manner. Directory replication is done by having the naming layer assign

the RAID 1 policy to all directories. Fault-isolated file placement is done by stor-

ing each file, in its entirety, in at least a single physical module (as opposed to

striping it across all modules). The ease with which we were able to provide these

functionalities highlights the flexibility of a file-oriented stack.

Our workload is generated by a program that randomly picks a file and per-

forms a 32 KB read, followed by a 32 KB write, overwriting the entire file. The

program considers each open-read-write-close sequence as a single operation, and

keeps track of the total number of successful operations.

Figure 2.5 illustrates graceful degradation under no replication. The files in

this configuration are uniformly distributed across the three disk drives, that is,

each corresponding physical module is responsible for serving a third of file re-

quests. This is made possible by having the logical layer rotate file creation re-

quests between the three physical modules. For instance, the create request for

file 1 is forwarded to physical module P1, 2 to P2, 3 to P3, 4 again to P1, and so

on.

As it can be seen, when the first fault occurs, the availability drops by roughly

33 %. This is expected since a third of the files are serviced by each physical

module, and a device failure renders files serviced by that corresponding module

inaccessible. A second failure results in another 33 % drop in availability. At this

point, the directory hierarchy remains navigable (because directories are repli-

cated on all drives), and the system continues serve requests that can be satisfied

using the last disk drive. It can also be seen that the number of successful requests

per second stays unaffected. The sharp drop in performance every thirty seconds

48 CHAPTER 2. LORIS

 0

 20

 40

 60

 80

 100

 0 60 120 180 240 300 360
 0

 150

 300

 450

 600
A

v
a
ila

b
ili

ty
 (

%
 f
a
ile

d
 o

p
s
/s

e
c
)

P
e
rf

o
rm

a
n
c
e
 (

c
o
m

p
le

te
d
 o

p
s
/s

e
c
)

Time (sec)

First failure

Second failure

Availability Performance

Figure 2.5: Graceful degradation case 1: Unreplicated files. The figure shows how

Loris exhibits graceful degradation under unexpected failures. Each disk failure re-

sults in a third of files being inaccessible since files are not replicated. But the system

continues to survive with an availability of around 33 % even after two disk failures.

is due to synchronous data and metadata flush during a sync.

Figure 2.6 shows graceful degradation, with files protected against a single

disk failure. This case further illustrates the advantages of file-level RAID. A

block-level RAID implementation would typically use RAID levels 1, 4 or 5 (two

data and one parity) to protect against single disk failures. We used RAID 1 and

we chose a layout that supported graceful degradation. It should be noted that the

same technique can also be used with other RAID levels in a file-level RAID.

With three disks, there are three possible combinations that can be chosen to

protect a file against a single disk failure: D1-D2, D1-D3, and D2-D3. Our logical

layer rotates files across these combinations. For instance, the first file is mirrored

on disks D1-D2, second on D1-D3, third on D2-D3, fourth again on of D1-D2,

and so on.

As it can be seen in Figure 2.6, the first failure has no effect on the system, as

it would be with block-level RAID, since every file is protected against a single

disk failure. A second failure would result in a block-level RAID implementa-

tion shutting down. In our case, we can see that the availability drops only by a

third. All the files that were mirrored across the two failed disks are now inacces-

sible. Thus, even with just a single functional disk, Loris is able to maintain an

availability close to 66 %.

2.6. EVALUATION 49

 0

 20

 40

 60

 80

 100

 0 60 120 180 240 300 360
 0

 150

 300

 450

 600

A
v
a
ila

b
ili

ty
 (

%
 f
a
ile

d
 o

p
s
/s

e
c
)

P
e
rf

o
rm

a
n
c
e
 (

c
o
m

p
le

te
d
 o

p
s
/s

e
c
)

Time (sec)

First failure

Second failure

Availability Performance

Figure 2.6: Graceful degradation case 2: Rotated mirroring of files. The figure shows

how Loris exhibits graceful degradation with files protected against a single disk fail-

ure. Each of the three possible pairs holds a third of the files redundantly. As a result,

the system continues to serve two-thirds of all its files, with an availability of 66 %,

even under two disk failures.

We would like to point out that these techniques are complementary to higher

levels of protection, that is, they can be used in combination with RAID 6 tech-

niques, for instance, to build a file-level RAID array with extremely high reliabil-

ity and availability. Furthermore, these techniques can be customized on a per-file

basis, with different files using different levels of protection.

2.6.3 Performance Evaluation

In this section we present the performance evaluation of Loris. We first present

an evaluation of the overhead of two important aspects of our new architecture:

the parental checksumming scheme as implemented in the physical layer, and the

process isolation provided by splitting up our stack into separate processes. We

then present an evaluation of our file-level RAID implementation.

Checksumming and Process Isolation

We now evaluate parental checksumming and process isolation using two mac-

robenchmarks: (1) PostMark, configured to perform 20,000 transactions on 5,000

files, spread over 10 subdirectories, with file sizes ranging from 4 KB to 1 MB,

50 CHAPTER 2. LORIS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

MFS L-S-B L-S-L L-S-C L-M-B L-M-L L-M-C

T
ra

n
s
a
c
ti
o
n
 t
im

e
 (

s
e
c
s
)

Loris Configuration

Figure 2.7: Transaction time in seconds for PostMark under MFS and various Loris

Loris (L) Single (S) and Multiprocess (M) configurations, without any checksumming

features (B), with just parental checksumming layout (L), and with checksum compu-

tation (C).

 0

 20

 40

 60

 80

 100

 120

Copy Build Find Delete

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
s
)

Benchmark

MFS
Loris-Single-Base

Loris-Single-Layout
Loris-Single-Checksum

Loris-Multi-Base
Loris-Multi-Layout

Loris-Multi-Checksum

Figure 2.8: Wall clock time in seconds for Applevel benchmarks under MFS and

various Loris configurations.

2.6. EVALUATION 51

and read/write granularities of 4 KB, and (2) an application-level macrobench-

mark, which we will refer to henceforth as applevel, consists a set of very com-

mon file system operations including copying, compiling, running find and grep,

and deleting.

We tested three checksumming schemes: no checksumming, checksumming

layout only, and full checksumming. In the layout-only scheme, the CRC32 rou-

tine has been substituted by a function that always returns zero. This allowed us

to measure only the I/O overhead imposed by parental checksumming. We ran

these three schemes in both the single-process and the multiprocess Loris ver-

sions, yielding six configurations in total.

Figures 2.7, 2.8 show the performance of all six new configurations, com-

pared to the MFS baseline. Loris outperforms MFS in most configurations with

PostMark. This is primarily due to the fact the delete algorithm used by Loris

performs better than MFS, as seen in the applevel delete benchmark in Figure 2.8.

Looking at the applevel results, it can be seen that the single-process case

suffers from an overhead of about 8 % compared to MFS during the copying

phase. This overhead is due to the difference in caching logic between Loris and

MFS.

The block-level buffer cache in MFS makes it possible to merge and write out

many physically contiguous files during sync periods. Since Loris has a file-level

cache, it is unaware of the physical file layout and hence might make less-than-

optimal file evictions. In addition, our prototype also limits the number of files

that can be written out during a vectored write call, to simplify implementation.

These two factors result in a slight overhead, which is particularly noticeable for

workloads with a very large number of small files.

Since the copy phase involves copying over 75,000 files, of which a significant

percentage is small, there is an 8 % overhead. Even though the overhead is small,

we plan on introducing the notion of file group identifiers, to enable the passing file

relationship hints between layers. The cache layer could then use this information

to evict physically contigous files during a vectored write operation. This and

several other future optimizations should remove this overhead completely.

Another important observation is the fact that in both single-process and mul-

tiprocess configurations, the checksum layout incurs virtually no overhead. This

means that the entire parental checksumming infastructure is essentially free. The

actual checksum computation, however, is not, as illustrated by a 7 % overhead

(over no checksum case) for PostMark, and 3-19 % overhead in applevel tests.

It should be noted that with checksumming enabled, every file undergoes

checksum verification. We would like to point out that with per-file policy se-

lection in place, we could reduce the overhead easily, by either checksumming

only important file data, or by adopting other lightweight verification approaches

as opposed to CRC32 (such as XOR-based parity). For example, we could omit

checksumming compiler temporaries and other easily regeneratable files.

52 CHAPTER 2. LORIS

 0

 50

 100

 150

 200

 250

 300

 350

RAID-0-4 RAID-1-1 RAID-1-2 RAID-4-4

T
ra

n
s
a
c
ti
o
n
 t
im

e
 (

s
e
c
s
)

RAID configuration

Loris-No-Checksum Loris-Checksum

Figure 2.9: Transaction time in seconds, under PostMark, for different RAID levels.

Each column RAID X-Y shows the performance of RAID level X in a Y-disk config-

uration.

We also see that the multiprocess configuration of Loris suffers consistently,

with an overhead ranging between 11-45 %. This contradicts the results from

PostMark, where the multiprocess case has an overhead of only about 3 % com-

pared to the single-process case. This is again due to the fact that the applevel

benchmark has a large number of small files compared to PostMark. Data copying

and context switching overheads constitute a considerable portion of the elapsed

time when small files dominate the workload. With large files, these overheads

are amortized over the data transfer time. We confirmed this with separate mi-

crobenchmarks, not shown here, involving copying over a large number of small

files.

File-Level RAID

In this section, we evaluate our RAID implementation. We test two RAID 1 con-

figurations: (1) RAID 1 on a single disk, and (2) RAID 1 with mirroring on 2

disks. The RAID 0 and RAID 4 implementations use all four disks, with RAID 0

configured to use 60 KB stripe units, and RAID 4 80 KB stripe units for all files.

These stripe sizes align full stripe writes with the maximum number of blocks in

a vectored write request (240 KB).

We ran PostMark in a different configuration compared to the earlier benchmark—

2.7. CONCLUSION 53

20,000 transactions on 60,000 files, distributed across 600 directories, with file

sizes ranging from 4 KB to 10 KB. Small-file workloads are challenging for any

RAID implementation since they create lots of partial writes. We chose this

benchmark to evaluate how our file-level RAID implementation handles small

files.

The most important observation from the PostMark results shown in Figure 2.9

is that RAID 4 is much slower than RAID 1 with mirroring. The three main

reasons for this slowdown are as follows. (1) RAID 4 suffers from the partial-

write problem we mentioned earlier. It is important to note that such partial writes

would translate into partial stripe requests in a block-level RAID implementation.

(2) Parity computation in RAID 4 is expensive compared to mirroring in RAID

1. Both block and file RAID implementations share these two problems. (3) Our

implementation of RAID 4 negates the advantages of vectored writes for small

files.

To illustrate this problem, consider a vectored write request at the logical layer.

The algorithms used to process this request in our implementation are very sim-

ilar to a block-level RAID one. Each request is broken down into individual file

requests, which are further divided into constituent stripe requests, and each stripe

request is processed separately. In our current prototype, we implemented sequen-

tial processing of stripe requests. Thus, if the workload consists of many small

files, a vectored write gets translated into single writes for each file, negating the

benefit of vectoring the write request.

The solution to all the aforementioned problems is simple in our case. Parity

amortizes the cost of redundancy only when write requests span multiple stripe

units. Thus, we are better off using RAID 1 for small files. As our RAID imple-

mentation is file-aware, we can monitor and collect file read/write statistics, and

use it to (re)assign appropriate RAID levels to files. Matching file access patterns

to storage configurations is future work.

2.7 Conclusion

Despite dramatic changes in the storage landscape, the interfaces between the lay-

ers and the division of labor among layers in the traditional stack have remained

the same. We evaluated the traditional stack along several different dimensions,

and highlighted several major problems that plague the compatibility-driven in-

tegration of RAID algorithms. We proposed Loris, a file-level storage stack, and

evaluated both reliability and performance aspects of our prototype.

Chapter 3

Flexible, Modular File Volume

Virtualization in Loris

Abstract

Traditional file systems made it possible for administrators to create file volumes,

on a one-file-volume-per-disk basis. With the advent of RAID algorithms and

their integration at the block level, this “one file volume per disk” bond forced

administrators to create a single, shared file volume across all users to maximize

storage efficiency, thereby complicating administration. To simplify administra-

tion, and to introduce new functionalities, file volume virtualization support was

added at the block level. This new virtualization engine is commonly referred

to as the volume manager, and the resulting arrangement, with volume managers

operating below file systems, has been referred to as the traditional storage stack.

In this paper, we present several problems associated with the compatibility-

driven integration of file volume virtualization at the block level. In earlier work,

we presented Loris, a reliable, modular storage stack, that solved several problems

with the traditional storage stack by design. In this paper, we extend Loris to sup-

port file volume virtualization. In doing so, we first present “File pools”, our novel

storage model to simplify storage administration, and support efficient file volume

virtualization. Following this, we will describe how our single unified virtualiza-

tion infrastructure, with a modular division of labor, is used to support several new

functionalities like 1) instantaneous snapshoting of both files and file volumes, 2)

efficient snapshot deletion through information sharing, and 3) open-close ver-

sioning of files. We then present “Version directories,” our unified interface for

browsing file history information. Finally, we will evaluate the infrastructure, and

provide an in-depth comparison of our approach with other competing approaches.

55

56 CHAPTER 3. VOLUME MANAGEMENT

3.1 Introduction

Over the past few decades in the evolution of file and storage systems, storage

virtualization techniques have played a crucial role in improving efficiency and

manageability. Traditional file systems provided the first layer of virtualization.

File systems were used to create hierarchies of files and directories, also referred to

as file volumes1, on dedicated disk drives. Disks were small enough that adminis-

trators could create one file volume per logical unit (per user or per project for in-

stance), and apply administrative policies on these file volumes. As disks grew

larger, administrators were forced to use a single file volume across all users to im-

prove storage efficiency. Thus, this “one file volume per device” bond complicated

administration, as administrators could no longer use file volumes as the unit of

administration.

Volume managers [99] solved this problem by virtualizing file volumes. Sim-

ilar to RAID algorithms, volume managers were integrated at the block level to

retain compatibility with existing installations. The resulting arrangement, with

volume managers operating below file systems, has been referred to as the tra-

ditional storage stack. In this stack, file systems are used to create file volumes

on logical disks exposed by the volume manager. Thus, file systems translate

file requests to logical block requests. The volume manager transparently maps

these logical blocks to blocks on physical devices it manages. As a result, mul-

tiple logical disks, and hence multiple file volumes, could now share the same

set of physical disk drives, thus improving storage efficiency. Volume managers

also simplified administration, as administrators could now create and manage file

volumes in logical units.

In this paper, we examine the block-level integration of file volume virtual-

ization, and we highlight several problems along two dimensions: flexibility and

heterogeneity. In prior work, we outlined several fatal flaws that plague the tra-

ditional stack [8], and presented Loris [9], our complete redesign of the storage

stack. Our first prototype, which we refer to henceforth as Loris-V1, had the “one

file volume per device” bond, similar to traditional file systems. In this paper,

we add support for file volume virtualization to the Loris stack. In doing so, we

present File pools, a new model for managing storage devices. We show how the

new model simplifies management by automating several mundane chores, sup-

ports heterogeneous device configurations, and provides file volume virtualization

in Loris. We then show how our unified infrastructure, with a modular division

of labor among layers, supports 1) instantaneous snapshoting of both files and file

volumes, 2) efficient deletion of snapshots by sharing information between layers,

and 3) version creation policies, like open-close versioning, on a per-file basis.

1Throughout this paper, we will use the term file system to refer to the operating system code that

implements a persistent name space of files and directories, and file volumes to refer to an instantiation of a

file system

3.2. PROBLEMS WITH EXISTING APPROACHES 57

We also present Version directories, our unified interface for browsing file history

information. We will show how version retention policies can be implemented as

simple shell scripts.

The rest of the paper is organized as follows. Sec. 2 outlines problems caused

by the compatibility-driven, block-level integration of volume managers. In Sec. 3,

we present a quick overview of Loris. Sec. 4 presents the design of file volume

virtualization in Loris. In Sec. 5, we present the design of efficient file volume

snapshoting in Loris. Sec. 6 presents a modular division of labor in Loris that

integrates support for both individual file snapshoting, and open-close versioning.

Sec. 7 presents our virtual directory interface. We then evaluate Loris using a se-

ries of micro and macro benchmarks in Sec. 8. An in-depth comparison of Loris

with other systems is presented in Sec. 9. We finally discuss future work in Sec. 10

and conclude in Sec. 11.

3.2 Problems with existing approaches

In this section, we will outline the problems that plague the traditional approach

to file volume virtualization. Several commercial and research projects have taken

other approaches for virtualizing file volumes. A detailed comparison of our ap-

proach with other competing approaches is presented in Sec. 9. We will now

present problems along two dimensions, namely, flexibility and heterogeneity.

3.2.1 Lack of Flexibility

An ideal storage stack must 1) provide flexible configuration and management of

devices, and 2) support policy assignment at a range of granularities, from indi-

vidual files or file types, to entire file volumes. In this section, we will highlight

how inflexibility in the traditional stack complicates both device management and

file management.

Complicated device management

Traditional volume managers used the level of indirection introduced by logical

devices to support new functionalities, like file volume snapshoting and cloning.

However, this level of indirection also introduced additional administrative oper-

ations. Even a simple task, such as adding a new disk to an existing installation,

requires a series of steps, at least one for each level in the stack, to be performed

by the administrator. This is because, any change in device configuration results

in changes, not only in the volume manager’s data structures, but also in file sys-

tem data structures (for instance, any change in the size of a logical disk requires

changes to the file system block management data structures), as file systems con-

tinue to work with the one file volume per logical disk assumption. Each and

58 CHAPTER 3. VOLUME MANAGEMENT

every one of these newly added steps is error prone, and a simple error could re-

sult in extensive data loss [17]. An ideal system would allow the administrator to

just state the intent, like “add a new disk to an existing installation for increasing

storage space,” and automate implementation details (like expanding volumes).

Traditional block-level volume management fails to meet this requirement.

Coarse-grained file management

Administrators manage data at the granularity of file volumes. For instance, an

enterprise administrator could create one file volume per project, and encrypt cer-

tain file volumes, while compressing others. Administrators also take snapshots

of entire file volumes, and use the snapshot for initiating periodic backups. Thus,

at the enterprise level, policy specification at the granularity of file volumes is

required. Block-level volume managers can easily provide such policies at a file

volume granularity [99].

However, end users tend to associate policies with individual files or file types.

The set of files over which a policy must be applied is typically much smaller in

number than a file volume. For instance, a user might want open-close version-

ing on a source file, and no versioning for an object file. Thus, end-users require

the ability to specify policies on a per-file basis. Since traditional volume man-

agers operate below a strict block interface, they are semantically unaware, and

thus are unable to provide fine-grained file management.

3.2.2 Lack of support for heterogeneous devices

An ideal volume virtualization solution should be designed to work with hetero-

geneous device types. In this section, we will explain why heterogeneity should

be considered a first class citizen during system design. We will show how the

traditional approach fails to support devices other than conventional disk drives

with a block interface.

Heterogeneity across device families

New devices are emerging with completely new storage interfaces. A common

approach to integrating these devices into the traditional stack involves building

file systems for each device family [48]. These file systems communicate directly

with the device, using device-specific interfaces. However, traditional volume

managers can work only with file systems that translate file requests to logical

block requests. As a result, the traditional approach of virtualizing file volumes at

the block level is not portable across heterogeneous device families.

3.2. PROBLEMS WITH EXISTING APPROACHES 59

File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Figure 3.1: The figure depicts (a) the arrangement of layers in the traditional stack,

and (b) the new layering in Loris. The layers above the dotted line are file aware; the

layers below are not.

Heterogeneity within device families

Even devices within the same family sometimes differ starkly in their performance

characteristics. It is a well known fact that SSDs can be optimized to have differ-

ent performance characteristics depending on certain firmware design choices [7].

For instance, Intel X25-V SSD provides very good random write IOPS, but its

sequential write throughput suffers due to a price/performance tradeoff (only half

the channels are populated with NAND). As a result, X25-V provides the same

throughput for both large sequential writes, and small random writes [94]. In-

tel X25-M, on the other hand, provides higher throughput under large sequential

writes than small random writes. While it would certainly be beneficial to opt for

a log-structured layout on X25-M, it would provide little benefit when a X25-V is

used, as it delivers the same throughput for both sequential and random writes. It

might even prove to be detrimental due to the unnecessary cleaning overhead.

Thus, device-specific layout requirements create heterogeneity even within de-

vice families. Accommodating this kind of heterogeneity is impossible with the

traditional stack, where multiple file systems, with even competing layout designs,

could share the same physical device. Thus, any layout specific optimizations em-

ployed by file systems are rendered futile.

60 CHAPTER 3. VOLUME MANAGEMENT

3.3 The Loris storage stack

In prior work, we highlighted several issues that plague the traditional storage

stack. We proposed Loris, a fresh redesign of the stack and showed how the right

division of labor among layers in Loris solves all problems by design. In this

section we provide a brief overview of Loris.

Loris is made up of four layers as shown in Figure 3.1. The interface between

these layers is a standardized file interface consisting of operations such as cre-

ate, delete, read, write, and truncate. In addition to file operations, the interface

also contains attribute manipulation operations—getattribute and setattribute. At-

tributes are associated with files and have two purposes in Loris: 1) they enable

information sharing between layers, and 2) they store out-of-band file metadata.

We will now detail the division of labor between layers in a bottom-up fashion.

3.3.1 Physical layer

The physical layer implements device-specific layout schemes, and provides per-

sistent storage for files and their attributes. It exports a “physical file” abstraction

to its client, the logical layer, and by doing so, abstracts away any device-specific

interfaces or protocols. Each storage device is managed by a separate instance

of the physical layer, and we call each instance, a physical module. The physical

layer is also in charge of data verification. Being file aware, physical layer imple-

mentations can support parental checksumming [55]. By being the lowest layer in

the stack, the physical layer verifies both application requests, and requests from

other Loris layers alike, thus acting as a single point of data verification.

Superblock

Inode bitmap

Block bitmap inode
Inode bitmap inode

Block bitmap File data

Root inode

Root data blocks

Inodes

Data blocks

Figure 3.2: Parental checksumming hierarchy used by the physical layer prototype.

With respect to parental checksumming, the two special bitmap files are treated as any

other files. Indirect blocks have been omitted in this figure.

3.3. THE LORIS STORAGE STACK 61

Our Loris-V1 physical layer implementation was based on the original MINIX

3 file system layout scheme [97], with added support for parental checksumming.

Inodes are used to realize the physical file abstraction, and files are referred to us-

ing their inode numbers. Each inode stores a fixed number of persistent attributes,

as well as 7 direct, one single indirect and one double indirect safe block pointers.

Each safe block pointer contains a 32-bit block number as well as a checksum

of the data block. Single and double indirects also store such pointers. Blocks

belonging to both the block bitmap and inode bitmap are checksummed, and their

checksums are stored in block bitmap file and inode bitmap file respectively. Each

inode is individually checksummed, and these checksums are stored in the root

file. The checksum of the root inode itself is stored in the superblock. Thus, the

resulting parental checksumming hierarchy, as shown in Figure 3.2, ensures that

all blocks, both data and metadata, are verified without any exceptions.

3.3.2 Logical layer

The logical layer’s responsibility is to combine multiple physical files and provide

a virtualized logical file abstraction. It also supports RAID algorithms on a per-

file basis. From the point of view of the cache layer, the logical layer’s client,

a logical file appear to be a single, flat file. Details such as the RAID algorithm

used, and the physical files that constitute a logical file, are all abstracted away by

the logical file abstraction.

The central data structure in the logical layer is the mapping file. The mapping

file stores an array of entries, one per logical file, each containing the configu-

ration information of that file. This configuration information is 1) the RAID

level used, 2) the stripe size used, and 3) the set of physical files that make up

the logical file, each specified as a physical module ID and inode number pair.

For instance, a file mirrored on two devices could have the following configu-

ration information in its mapping entry: F1=<raidlevel=1, stripesize=INVALID,

physicalfiles=<D1:I1, D2:I2>>. The entry tells the logical layer that this file is

a RAID1-type file, and inodes I1 on module D1, and I2 on module D2, form the

physical files that store F1’s data. The mapping file is itself a logical file with

a static configuration. The same static inode number is reserved on all physical

modules, and the mapping file is mirrored across all these physical files for im-

proved reliability.

3.3.3 Cache and naming layers

The cache layer’s responsibility is to provide data caching. Our Loris-V1 cache

layer is file aware, and it performs data readahead and eviction on a per-file basis.

The cache layer uses a static set of buffer pages to hold cached data.

62 CHAPTER 3. VOLUME MANAGEMENT

The naming layer acts as the interface layer. Our Loris-V1 naming layer im-

plements the traditional POSIX interface, and translates virtual file system (VFS)

requests into corresponding file operations. All POSIX semantics are confined

to the naming layer. For instance, none of the layers below the naming layer

know about directories, or the format of directory entries. All other layers treat

directories as regular files. The naming layer uses the attribute infrastructure in

Loris to store POSIX attributes. The naming layer is also in charge of assigning a

unique file identifier for each file at file creation time. This identifier is passed as

a parameter in all file and attribute operations to identify the target file.

3.4 File volume virtualization in Loris

Like traditional file systems, Loris-V1 does not support virtualized file volumes.

However, unlike traditional file systems, the logical layer supports RAID algo-

rithms, and hence can work with multiple devices. Thus, Loris-V1 has a “one

file volume per set of devices” bond. In this section, we detail the design and

implementation of file volume virtualization in Loris. We first present file pools,

our new storage model for simplifying and automating the management of de-

vices. We then describe changes to the infrastructure for supporting file volume

virtualization.

3.4.1 File pools: Our new storage model

As we mentioned earlier, the standardized file interface above the physical layer

abstracts away device-specific details from the logical layer. Thus, from the point

of view of the logical layer, each physical module is a source of physical files.

Thus, multiple physical modules can be combined together to form a collection of

files we call a file pool.

Simplified device management

File pools are the unit of storage management. A Loris installation can have one or

more file pools. Administrators create a file pool by specifying the set of devices

that form the pool. Each device can be a part of only one file pool. Multiple

file pools can be created to provide performance isolation for each pool. For

instance, an enterprise administrator could create two file pools, each having its

own dedicated set of devices, to host the departmental file server and web server.

New devices can be added to, and old devices be removed from, existing file

pools. Addition/removal of devices to/from a file pool is completely automated.

When a device is added to a pool, a device-specific physical module is started.

This new physical module registers itself with the logical layer as a new source

of files. Once registration is complete, the logical layer can start creating new

3.4. FILE VOLUME VIRTUALIZATION IN LORIS 63

files on this module. Thus, unlike traditional volume managers, adding a new

device to an existing file pool is a single step process, and space on the newly

added device is immediately available for use.

Any device can be removed from a file pool by just moving all the files on

that device to a spare device, or in some cases, even distributing the files among

other existing devices. Since the logical layer has complete knowledge of the file-

device mapping, supporting this is trivial. Furthermore, since the logical layer is

file aware, copying file data ensures that only live data is moved over to the spare

disk. This is a huge benefit compared to block-level volume managers, which do

a block by block copy of the entire disk due to the absence of block liveliness

information [87].

Supporting heterogeneous installations

As mentioned earlier, when a device is added to a file pool, a device-specific

physical module is started. Since the physical module exposes a physical file

abstraction to its clients, it can completely abstract away heterogeneous device

interfaces. As the physical module is in charge of providing device-specific layout,

it is possible to support different layout schemes for different devices even within

the same device family. Thus, the file pool model permits pairing devices with

customized physical modules, thereby exploiting heterogeneity both within and

across device families.

Thin provisioning with file pools

We will describe support for file volumes in detail in the next section, but we

would like to point out now that file pools also make thin provisioning [26] of file

volumes possible. Thin provisioning refers to the ability to create dynamically

filled, sparse file volumes. This ability can be used as a planning tool to determine

new storage requirements, and hence derive a storage budget. With the file pool

model, storage space need not be reserved for file volumes ahead of time. As a re-

sult, administrators can create multiple file volumes without committing physical

storage space. As users create files and directories in these file volumes, storage

space is automatically allocated from the set of physical modules that constitute

the file pool. As we will see later, snapshots and clones also utilize this func-

tionality. Multiple snapshots of a file volume can coexist together, but most files

and data blocks will be shared among snapshots. Thus, file pools provide natural

support for thin provisioning.

3.4.2 Infrastructure support for file pools

We extended the logical layer to support the new storage model. The new logi-

cal layer can be considered to be made up of two sublayers, namely, the volume

64 CHAPTER 3. VOLUME MANAGEMENT

management/RAID sublayer, and the file pool sublayer. The file pool sublayer

sits below the volume management sublayer and provides device management

services, like creating and deleting file pools, adding and removing devices from

existing file pools, etc.

The file pool sublayer is also responsible for satisfying file allocation requests

from the shared pool of files it manages. It can employ several algorithms for

satisfying file allocation requests. For instance, it could maintain a utilization

summary of each physical module and provide load leveling, or it could moni-

tor file access patterns and provide workload-aware file allocation. Our file pool

implementation just rotates file allocation requests across physical modules. Ex-

ploiting device-specific characteristics, and matching device types with file types

is a part of ongoing research.

The volume management sublayer operates above the file pool sublayer. We

will describe the design details of this sublayer in the next subsection, but it suf-

fices to say now that it supports RAID and volume management algorithms. It

utilizes the allocation services of the file pool sublayer to satisfy file allocation

requests. For instance, when a new file create request arrives at the logical layer,

it is forwarded to the volume management sublayer. The volume management

sublayer makes a file create request to the file pool sublayer, passing the number

of physical files required (depending on the RAID type chosen for the file) as a

parameter. The file pool sublayer allocates the required number of physical files

and returns physical module–inode number pairs, which the volume management

sublayer then records in its data structures.

3.4.3 Infrastructure support for file volume virtualization

As described earlier, the mapping file in the logical layer stores configuration

information for each logical file, and multiplexes file requests across physical files.

We decided to extend the logical layer to support multiple virtualized file volumes,

since it was a natural extension to the logical layer’s data structures.

In the new infrastructure, multiple file volumes can be created in a single file

pool, and multiple files can be created in each file volume. As a result, each file

is now referenced in Loris using a pair of identifiers, namely, a new volume iden-

tifier, and the traditional file identifier. The logical layer assigns a new volume

identifier to each file volume during volume creation time. Associated with each

file volume is a volume index file. The format of this file is identical to the original

mapping file. Each volume index file contains an array of entries, one per logi-

cal file belonging to that volume, and each entry contains contains configuration

information, similar to the mapping file’s configuration information we described

earlier. The volume index file is also mirrored on all physical modules belonging

to the file pool for improving reliability.

Since volume index files are created during volume creation, the configuration

3.5. NEW FUNCTIONALITY: FILE VOLUME SNAPSHOTING IN LORIS 65

Data blocks

Inodes

In-core volume index

In-core meta index

Logical layer

Physical layer

Meta index inode Volume index inode Data file inode

V1

F1

I1 I2

Figure 3.3: The figure shows the relationship between meta index and volume index,

the two datastructures that support file volume virtualization in Loris. The meta index

file itself is a static file, and static inode is reserved to store its data(an array of file vol-

ume metadata entries). The file volume metadata entry for volume V1 shown in the

figure could be <V1, REGULARVOL, volume index configuration=<raidlevel=1,

stripesize=INVALID, physicalfiles=<D1:I1>>. Thus, inode I1 in physical module

D1 is used to store the volume index file data (an array of logical file configuration en-

tries) for file volume V1. The logical file configuration entry for file <V1, F1> could

be <raidlevel=1, stripesize=INVALID, physicalfiles=<D1:I2>>. Thus, inode I2 in

physical module D1 is used to store file data.

information of the volume index file itself is not static, that is, the volume index

file can use inodes with different inode numbers on different physical modules.

Hence, this configuration information is stored in the meta index file, with other

file volume metadata. Each file pool has only one meta index file, which is also

mirrored on all physical modules for improving reliability. This file contains an

array of entries, one per file volume, containing file volume metadata. This meta-

data consists of 1) configuration information for the file volume’s volume index

file, 2) the type of the file volume, and 3) the volume id for this file volume. Thus,

while the volume index file tracks files within a volume, the meta index tracks file

volumes themselves. When the new logical layer receives a call to perform any

file operation, it uses the volume identifier to first retrieve the volume metadata

from the meta index file. After this, it uses the file identifier to retrieve the target

file’s configuration information, following which, it performs the requested oper-

ation. Thus, these two data structures make it possible for multiple file volumes to

share a file pool, as shown in Figure 3.3, effectively breaking the one file volume

per set of devices bond.

3.5 New functionality: file volume snapshoting in Loris

Loris supports an extremely flexible snapshoting facility. snapshoting is efficient

and instantaneous in Loris. We added a new snapshot operation to the standard-

66 CHAPTER 3. VOLUME MANAGEMENT

ized file interface described earlier. The operation carries a parameter, which is

either the target file identifier for an individual file snapshot, or the file volume

identifier for a file volume snapshot.

3.5.1 Division of labor

Space-efficient snapshoting requires fine-grained, block-level data sharing to avoid

making unnecessary copies of unchanged blocks. After investigating several pos-

sibilities, we assigned the responsibility for providing data sharing to the phys-

ical layer. This labor assignment maximizes storage efficiency without sacrific-

ing modularity, as it is possible to support different physical layer implemen-

tations, with different mechanisms for data sharing, without affecting the logi-

cal layer algorithms. Thus, each physical layer must provide support for phys-

ical file snapshoting. In this section, we will describe two such physical layer

implementations—a copy-based physical layer that lacks storage efficiency, but

is extremely simple to implement, and a copy-on-write physical layer that sup-

ports fine-grained data sharing.

With individual file snapshoting and data sharing mechanism provided by the

physical layer, the logical layer acts as a policy engine. It decides when a snapshot

operation should be invoked on which physical file, and supports file volume snap-

shoting using individual file snapshoting provided by the physical layer. In this

section, we will describe the logical layer data structures that support file volume

snapshoting after describing the two physical layer implementations.

3.5.2 Physical layer(1): Copy-based snapshoting

To implement copy-based snapshoting, we retained the layout design of the Loris-

V1 physical layer, and we added support for the new snapshot operation. In both

copy-based and copy-on-write-based physical layers, we distinguish between two

types of inodes, namely, current inodes, and snapshot inodes. Current inodes can

be considered to be the active version of a file which is used to satisfy normal

read/write requests. Snapshot inodes, on the other hand, are read-only, histori-

cal versions, that act as point-in-time snapshots of a current inode. A snapshot

inode is created as a result of a snapshot operation on a current inode. We will

now describe how snapshot creation and deletion work in the copy-based physical

layer.

Snapshot creation

Since the physical layer is responsible for storing both data and attributes (POSIX

attributes for instance), it must preserve their old values after a snapshot. So, the

copy-based physical layer performs the following steps during a snapshot call. It

3.5. NEW FUNCTIONALITY: FILE VOLUME SNAPSHOTING IN LORIS 67

first retrieves the inode corresponding to the inode number passed in as a param-

eter to the snapshot call, which we will refer to henceforth as the target inode. It

then allocates a new inode, and copies over all the attributes from the target inode

to the new inode. Following this, data belonging to the target inode is also copied

over, allocating new data blocks during the process, to the new inode. Thus, after

a snapshot operation, the new inode and target inode are independent copies, not

sharing any data blocks. Finally, the new inode number is returned back to the the

logical layer. From here on, the target inode becomes a snapshot inode, and the

new inode becomes the current inode. It is important to note here that the level

of indirection provided by the logical layer makes it possible to switch inodes

without changing the file identifier. As a result, higher layers in the stack, like

the naming layer, can continue using the same file identifier even after a snapshot

operation.

Snapshot deletion

Deletion of a snapshot inode is a trivial operation. Since no data is shared between

snapshots, the deletion operation deallocates all data, single and double indirect

blocks, and then the inode itself, by marking them free in their corresponding

bitmaps. Thus, while copy-based snapshoting suffers from inefficient storage uti-

lization, its conceptual simplicity makes it a good mechanism for some personal

and enterprise computing environments, where accesses to small files dominate

the workload.

3.5.3 Physical layer(2): Copy-on-write-based snapshoting

Our copy-on-write layout is a natural extension of the Loris-V1 layout. There are

two major requirements for supporting copy-on-write-based snapshots as we will

see in this section. The first requirement is that, for each data block, we need to

identify if the block is shared with a previous snapshot. This is required to be

able to perform a copy-on-write operation only when required. Second, for each

snapshot inode, we need to know the chronological successor and predecessor to

provide efficient snapshot deletion.

To support the former, we changed the definition of a safe block pointer. As we

mentioned earlier, both inodes and indirect blocks contain a number of safe block

pointers, and each safe block pointer contains a 32-bit block number–checksum

pair. On an installation with a 4-KB block size, the largest disk size that can be

supported with a 32-bit block number is 16-TB. For our prototype, we borrowed

a bit from the block number, and the resulting safe block pointer contains a 31 bit

block number, a 1- bit status field, and the block checksum. The resulting lay-

out can now support a maximum disk size of 8-TB. Setting the status bit marks

a data block as being newly allocated in this snapshot, and hence unshared with

68 CHAPTER 3. VOLUME MANAGEMENT

B1

B2

B1'

Snapshot 1 Snapshot 2 Current inode

B4

Snapshot 3

B5B3 B4' B5B3

Figure 3.4: The figure shows physical layer data structures after performing the fol-

lowing operations: 1) Create file (write B1, B2, B3, B4 and B5) 2) Snapshot file 3)

Modify B1 to B1’ 4) Snapshot file. 5) Modify B4 to B4’. 6) Snapshot file. A black

rectangle represents a status bit that is set (an unshared block), and a white rectangle

represents a cleared status bit(a shared block).

the previous snapshot. Clearing the status bit marks a data block as shared with

the previous snapshot. We adopted this approach of borrowing a bit only for re-

ducing the implementation effort. It is always possible to make the safe block

pointer larger and overcome this space limitation. To maintain a chronological re-

lationship between snapshots, we added two new fields to the inode, the previous

snapshot and next snapshot. These fields are the inode numbers of the previous

and next snapshot inodes respectively, and they link snapshots together in a bidi-

rectional list.

Snapshot creation

When the copy-on-write physical layer receives a snapshot request, it performs

the following steps. It first allocates a new inode, and copies over all the attributes

from the target inode, just like the copy-based snapshoting approach. However,

unlike the copy-based approach, it then copies over only the safe block pointers

from the target inode, instead of allocating new blocks. While copying over the

safe block pointers, it clears the status bit in each pointer to indicate that the data

blocks are shared between the new and snapshot inodes. The physical layer then

adds both inodes to the bidirectional list of snapshots by setting the previous and

next snapshot fields. Finally, it returns back the new inode number to the logical

layer. From here on, the target inode becomes a snapshot inode, and the new inode

becomes the current inode. Figure 3.4 illustrates the snapshot operation with an

example.

3.5. NEW FUNCTIONALITY: FILE VOLUME SNAPSHOTING IN LORIS 69

Copy-on-write mechanism

When the physical layer receives a write request, it first retrieves the target inode.

For each block being written, the physical layer then retrieves the corresponding

safe block pointers from either the inode, or from one of the indirects. If the status

bit in the safe block pointer is cleared, the data block is shared with the previous

snapshot. Hence, the physical layer allocates a new block, and the data is written

out to this new location. However, if the status bit is set, no allocation happens,

and the data is written to the block address contained in the block pointer.

If a new data block was allocated, the physical layer must update its corre-

sponding block pointer in either the inode, or one of the indirects, to reflect 1)

the new location of this data block, and 2) the new unshared state of the block

by setting the status bit. If the safe block pointer is in the inode, updating this

information is trivial, as shown for snapshot 2 in Figure 3.4. However, if the block

pointer is in an indirect block, then the physical layer must allocate a new indirect,

since the old one is being referenced by the previous snapshot.

In Figure 3.4, snapshot 3 illustrates the indirect block update process with an

example. First, the old indirect block pointed to by the inode is read in. Following

this, a new indirect block is allocated, and it is populated with safe block pointers

from the old indirect block. During this process, the status bits in the safe block

pointers are cleared. Following this, the safe block pointer for the newly allocated

data block is updated in the indirect block. Finally, the safe block pointer for the

indirect itself is updated in the inode. As shown in the figure, by clearing the

status bit for all shared data pointers, we postpone block allocation until the very

last moment, thereby providing efficient data sharing. As allocation of blocks

takes place in a dynamic fashion, the amount of space taken by a snapshot is

proportional to the amount of data overwritten.

Snapshot deletion

Deleting a snapshot inode is more complicated, since blocks pointed to by an

inode could be shared with other snapshot inodes. A block can be freed only if it

is not shared with any other inode. We use two facts to help us make this decision.

For any given snapshot inode,

1. any data block not shared with the immediate predecessor is also not shared

with any other predecessor.

2. any data block not shared with the immediate successor is also not shared

with any other successor.

Thus, a block that is not shared with the immediate predecessor and successor

snapshots are blocks that are unshared with any other snapshots, and hence by def-

inition, are blocks that can be deleted. We can easily find blocks of the former kind

70 CHAPTER 3. VOLUME MANAGEMENT

B1

B2

B3

B1'

Snapshot 1 Snapshot 2 Current inode

Figure 3.5: The figure shows the physical layer data structures after the following

operations are performed: 1) Create file 2) Snapshot 3) Modify B1 4) Snapshot 5)

Delete the first snapshot

using the status bits in the safe block pointers associated with the target inode. We

can find blocks of the latter kind by reading in the safe block pointers associated

with the target’s successor inode, and examine their status bits. However, there

are two interesting boundary conditions that deserve a special mention.

The first condition is when a file is truncated in the successor. In such a case,

some of the successor’s safe block pointers would be invalid, as the truncation

code zeroes out these block pointers (by setting them to NOBLOCK). The sec-

ond condition occurs when the target of deletion is the head of the snapshot list.

Consider the situation depicted in Figure 3.5. When the first snapshot is deleted,

block B1 is freed, but B2 is not freed as it is shared with the second snapshot.

After deleting the first snapshot, the second snapshot is at the head of the snap-

shot list. However, the status bit for block B2 is cleared in the snapshot inode, as

B2 was not overwritten during the snapshot lifetime. Thus, if the second snapshot

is deleted, B2 will not be freed. Thus, considering both boundary conditions, we

adopt the following algorithm for deleting snapshot inodes.

for each block offset in inode_being_deleted do

if pointer_in_successor.block_number = NOBLOCK or

pointer_in_successor.status = 1 then

if pointer_in_deleted_inode.status = 1 or

inode_being_deleted.predecessor = NONE then

delete the block

end if

end if

end for

3.5. NEW FUNCTIONALITY: FILE VOLUME SNAPSHOTING IN LORIS 71

3.5.4 File volume snapshoting in the logical layer

Having explained the mechanism for block sharing in the physical layer, we will

now explain the snapshot operation at the logical layer. We will also show how

information sharing between the logical and physical layers makes it possible to

support efficient snapshot deletion.

In order to support snapshoting, each logical file is associated with a file epoch

number. This epoch number is stored together with other logical file configuration

information in the corresponding volume index file. Each file volume is also as-

sociated with a volume epoch number. This epoch number is stored together with

other file volume metadata in the meta index file. Each file volume metadata en-

try also contains previous and next snapshot fields. These fields store the volume

identifiers of preceding and succeeding snapshot volumes, thus linking snapshots

in a bidirectional list, similar to the inode snapshots in the physical layer. As we

will see later, version directories utilize this bidirectional linking to enumerate the

list of snapshots.

Snapshot creation

When the logical layer receives a request to snapshot a file volume, which we

will henceforth refer to as the target volume, it first retrieves the volume metadata

from the meta index file. The logical layer then creates a new snapshot volume.

A snapshot volume is a read-only file volume. No file operations, except read

and getattribute, are permitted on any files in a snapshot volume. The type field

in the volume metadata indicates whether a volume is a regular or a snapshot

volume. The process of creating a snapshot volume involves 1) assigning a new

volume identifier, 2) allocating an entry for storing the new volume’s metadata

in the meta index file. Following this, the logical layer copies over all metadata

fields from the target volume entry to the snapshot volume entry. Once this step

is completed, both the snapshot and target volumes share the same volume index

file. Figure 3.6(b) illustrates the first step with an example.

Next, the logical layer snapshots the volume index file. It does this by making

a snapshot call to each physical module, passing in the relevant inode number as

a parameter. Each physical module snapshots the inode as explained in the pre-

vious section, and returns back a new inode number. The logical layer updates

only the target volume’s volume index configuration information with this new

inode number. At this point, the snapshot volume’s configuration points to the

old volume index inodes, and the target volume’s configuration points to the new

inodes, as shown in Figure 3.6(c). Finally, the epoch number in the target volume

is incremented by 1 to reflect a completed file volume snapshot operation. Thus,

snapshoting is an instantaneous operation, and it involves only a snapshot call to

freeze the volume index file.

72 CHAPTER 3. VOLUME MANAGEMENT

Figure 3.6: The figure shows the different phases of a snapshot operation, and the

interaction between logical and physical layer data structures during, and after a snap-

shot operation. A block labeled D in the figure represents a data file inode, V rep-

resents a current/regular volume’s volume index inode, and SV represents a snapshot

volume’s volume index inode. Arrows in the figure connect a file volume metadata

entry with the volume index inode, and a logical file configuration entry with its data

file inode. Blocks in the logical layer show the logical layer’s view of the meta and

volume index files, while blocks in the physical layer represent the actual blocks stor-

ing data corresponding to those file. Dotted lines between the two layers show the

mapping between the two views. The figure is divided into four parts. Part (a) shows

the state of the stack before a snapshot. Part (b) shows the first phase of the snapshot

operation, where a new snapshot volume is created. Part (c) shows the second phase

of the operation, where a snapshot of the volume index file itself has been performed.

Part (d) shows a new data file inode being allocated due to a write operation after a

snapshot, and the new volume index file pointing to the new data file.

Snapshoting of individual files happens dynamically at the next operation that

modifies the data or metadata of the file. When the logical layer receives a write,

delete, setattr or truncate operation on a file, it compares the file’s epoch number

with the corresponding file volume’s epoch number. If the file has a smaller epoch

number, the logical layer snapshots the file before performing the operation. Read,

create and getattr Loris operations do not incur this check, as they do not modify

a file or its metadata in any way. For instance, a read request from the application

gets transformed into a Loris read operation to retrieve the data, and a Loris setattr

operation to update the access time. While the Loris read operation bypasses the

check, the setattr operation results in a snapshot being created. Finally, the file’s

epoch number is set to the file volume’s epoch number. Future operations on the

3.5. NEW FUNCTIONALITY: FILE VOLUME SNAPSHOTING IN LORIS 73

file proceed without snapshoting the file again as the epoch number test fails. The

logical layer snapshots a file by calling the snapshot operation on all associated

physical modules. The file’s configuration information is updated with the new

inode numbers returned by the physical modules. When the data block containing

this new file entry is written out to the physical layer, the data sharing mechanism

in the physical layer ensures that only the current volume index file stores this

new configuration. Thus, as illustrated in Figure 3.6(d), any snapshot of a file is

reachable through that snapshot volume’s volume index.

Efficient deletion support through information sharing

The algorithm for deleting snapshot volumes in the logical layer is very similar

to the algorithm for deleting blocks in the physical layer. In the pseudocode for

deleting snapshots given below, target snapshot refers to the snapshot volume be-

ing deleted.

for each file in the target snapshot do

if file does not exist in the next snapshot or file has been modified in the next

snapshot then

if file has been modified in the target snapshot or target snapshot has no

preceding snapshot then

call delete on this file’s physical modules

end if

end if

end for

Similar to block deletion, files that are not shared between snapshots are the

files that are deletable. A file is not shared by two snapshots if it has been modified

between snapshots. As mentioned earlier, a file is modified if the file receives a

setattribute, delete, truncate or write operation after a file volume snapshot. Any

such modification operation results in a new file entry, with a new configuration

information, and an updated epoch number. Thus, unshared files are ones for

which file epoch number is the same as the snapshot volume’s epoch number.

Each such file identified by the algorithm is deleted by making a delete call to each

corresponding physical module, which deletes the snapshot inode as mentioned

earlier.

It is a well-known fact that file access distribution is heavily skewed, with a

very small percentage of files getting a large percentage of accesses [79]. Thus,

it is very likely that only a relatively small number of files, and hence file entries,

are modified between any two snapshots. The deletion efficiency could be im-

proved significantly if we process only these changed file entries. Thinking about

this, we realized that the copy-on-write-based physical layer already stores this

information in the form of status bits associated with each block. Thus, we added

a new operation which the physical layer could use to communicate a snapshot

74 CHAPTER 3. VOLUME MANAGEMENT

Figure 3.7: The figure illustrates individual file snapshoting using version volumes.

Part(a) in the figure shows a current volume(CV) containing configuration informa-

tion for a file F1. Part (b) in the figure shows the data structures after an individual

snapshot of file F1. It shows that a new version volume(VV) has been created, and

F1’s V1 configuration information is stored as an entry in VV. Part (c) shows the state

after another individual file snapshot. Now, VV has two entries, one configuration per

snapshot. Part (d) shows the state after the following operations: 1) snapshot volume

CV, 2) write F1. A snapshot volume(SV) has been created, and it contains the config-

uration information for version V3 of F1. It is important to note that VV stores only

individual file snapshot history(V1 and V2 of the file). File volume snapshot history

(V3 in this case) is recorded by snapshot volumes, SV in this case.

inode’s modified block offsets to the logical layer. When the logical layer receives

a delete request, it retrieves the file volume configuration information as usual.

It then makes a call to retrieve the set of modified file offsets for the snapshot’s

volume index file. Equipped with this information, the logical layer executes the

algorithm mentioned earlier, but only for file entries in these modified offsets thus

avoiding a linear scan.

3.6 New functionality: Unifying file snapshoting and ver-

sion creation policies

In this section, we will describe the infrastructure support for providing per-file

snapshoting and open-close versioning. Per-file snapshoting and open-close ver-

sioning introduce an interesting problem in the design of file volumes. With both

these features, multiple snapshots of a file can be taken between any two file vol-

ume snapshots. Each such snapshot requires the configuration information at the

time of snapshot to be recorded. In our file volume design, each configuration

information is always tracked by a volume index belonging to either a snapshot

volume or a current volume. For instance, after the first operation that modifies file

data or metadata following a snapshot, the snapshot volume’s volume index entry

3.6. NEW FUNCTIONALITY: UNIFYING FILE SNAPSHOTING AND VERSION

CREATION POLICIES 75

tracks the old inodes that existed at the time of snapshot, as we already described

earlier. However, with individual file snapshots, no volume index is available to

track multiple snapshot configurations. Hence, without added support, we lose the

ability to access all individual snapshots created between two file volume snap-

shots.

Solving this problem requires a way to track version history, in the form of

configuration information for each file snapshot. Thinking about this, we realized

that we could create a new file volume for each file, and use its volume index file

to store this configuration information.

3.6.1 Version volumes

To support per-file snapshoting, we define a new volume type, called Version vol-

ume. The fundamental idea behind version volume is to group all individual file

snapshots together in a file volume. Each logical file in Loris can be conceptu-

ally seen as being associated with a version volume, and each version volume

stores the version history of its parent file. A version volume is linked to its parent

file by storing its volume identifier with the file’s configuration information. We

will now explain how version volumes are created, and how they support per-file

snapshoting.

Initially, all files start out without a version volume. A version volume is cre-

ated during the first individual file snapshot operation. Creating a version volume

is similar to creating a regular volume–a new volume identifier is assigned, a new

metadata entry is created in the meta-index file, a new volume index file is created,

and its configuration information is stored with other details in metadata entry. An

important piece of metadata specific to version volumes is the next version number

field. This field is incremented every time a new file version is added to the ver-

sion volume. The logical layer also stores the version volume’s identifier with the

file’s configuration information, thereby linking the file with its version volume.

Every individual file snapshot operation proceeds as follows. The target file’s

configuration information is retrieved from the corresponding volume index file.

The version volume’s next version number is incremented, and this value is used to

determine the version volume’s volume index entry where this old configuration

information is stored. Following this, a snapshot call is made to all associated

physical modules, and the target file’s configuration information is updated in the

current volume. Figure 3.7 illustrates this with an example.

Figure 3.7 illustrates the interaction between a file volume snapshot and an in-

dividual file snapshot. Version volumes are used only to store configuration infor-

mation for snapshots created by user-initiated per-file snapshots, or auto-generated

open-close versioning based snapshots. File snapshots created as a side effect of

a file volume snapshot are tracked by the respective snapshot volume’s volume

index.

76 CHAPTER 3. VOLUME MANAGEMENT

While it might appear at first thought that creating a file volume for each file

might be expensive, such is not the case due to several reasons. First of all, files

start out initially without a version volume. As we mentioned earlier, version

volumes are created on-the-fly during the first individual file snapshot operation.

Thus, all files that are not modified after a snapshot do not have version volumes.

Second, each volume requires space proportional to the number of configuration

entries it stores. As version volumes are created on a per-file basis, only files that

are snapshotted very frequently end up with version volumes containing many

configuration entries. Third, as all individual file versions share unmodified data

blocks using the physical layer’s copy-on-write functionality, the only information

that is not shared between versions is each version’s configuration entry, which by

itself is very small (roughly 100 bytes) compared to the modified data blocks.

Thus, version volumes provide a light-weight mechanism for tracking file history.

3.6.2 Open-close versioning in the naming layer

We will now illustrate how the same infrastructure that supports individual file

snapshoting supports open-close versioning as well. The naming layer, being

aware of open-close sessions, acts as the policy enforcement layer. It creates

new versions of files that have been modified in an open-close session, by mak-

ing a snapshot call following the close operation. The logical layer processes this

snapshot call, as explained earlier, using its version volume infrastructure, and

forwards the snapshot call to each associated physical module for snapshoting the

inodes. The next setattr, write, truncate or delete operation on this file will result in

the physical layer performing block-granular copy-on-write. Thus, as the naming

layer only specifies policies, plugging in a different version creation policy, like

provenance-based version creation [67], is very simple. The only code change re-

quired would be to figure out the exact time and place where a snapshot call must

be made. Thus, using a unified infrastructure, we are able to support 1) per-file

version creation policies, 2) per-file snapshoting, and 3) file volume snapshoting.

3.7 New functionality: Version directories–

a unified interface for browsing history

Snapshoting and versioning systems have provided several different interfaces for

browsing file history information. The design requirements we had for our in-

terface were threefold: 1) the interface should be simple and natural to use, 2)

applications should be able to access file versions without any modifications, 3)

the same interface should be used for accessing individual file snapshots, open-

close version based snapshots, and file volume snapshots. We now present version

directories, our new unified interface for browsing file history information.

3.7. NEW FUNCTIONALITY: VERSION DIRECTORIES–

A UNIFIED INTERFACE FOR BROWSING HISTORY 77

3.7.1 Version directories – interface specification

With most versioning systems, users can access file versions by suffixing a file

name with a version specifier. The version specifier consists of a syntax token,

which is a special character (like “!” in CedarFS [33]), and a version sequence

number, which identifies the target version from a list of available file versions.

Most snapshoting systems, on the other hand, require users to mount a file volume

snapshot, or auto mount the snapshot at a designated mount point. We rejected

the mount-based history access as it violated our third requirement.

In our interface, the “@” character acts as the syntax token. Thus, for a file

foo, the name foo@N can be used to access the Nth version of foo. Version spec-

ifiers can also be used with directories to achieve version inheritance. Version

inheritance refers to the mechanism by which files and directories are automat-

ically scoped using their parent’s sequence number. Version inheritance can be

used to simulate a mount-based interface. For instance, if /home/user1 is a file

volume, an administrator could create a symbolic link to /home/user1@1 at any

location, and scope the entire subtree to the first snapshot.

Yet another interesting feature of this inheritance mechanism is its use in re-

covering deleted files. Since we do not support name versioning yet, once a file is

deleted, its name is removed from its parent directory by the naming layer, the file

entry is purged from the current file volume by the logical layer, and the inodes

storing file data are deleted by the corresponding physical modules. However,

a user could scope the parent directory to a snapshot that has the file name in-

tact, and by inheritance, access the file version at that snapshot. For instance if

a file foo has been removed from directory bar, the name bar/foo@2 cannot be

used to access the snapshot version of foo, as we do not support name version-

ing yet. However, the name bar@2/foo could be used to achieve the same effect.

As an aside, the name bar@2/foo@1 resolves to the same version as the name

bar@1/foo, and the name bar@1/foo@2 resolves the same version as the name

bar@2/foo. Thus, multiple scope specifiers can be used in a single path name.

Having described the interface for accessing old versions, we will now de-

scribe our interface to enumerate the list of all file versions. Most systems add

an explicit library call, that in turn forwards an ioctl to a versioning file system

to retrieve such details. Previous research has already suggested that overload-

ing file system semantics improves uniformity when compared to creating new

interfaces [32]. In our interface, by suffixing any file or directory name with just

the syntax token, the user can treat it as a version directory. A version directory

is a virtual directory, in the sense that its directory entries are created on the fly.

Virtual directories meet all the three requirements we mentioned earlier: 1) It is a

simple and natural technique, as it overloads a well known file system construct—

directories, 2) one can use shell utilities and applications unmodified to access old

versions, and 3) every snapshot—irrespective of how it is created—is presented

78 CHAPTER 3. VOLUME MANAGEMENT

as a virtual directory entry, thus providing an integrated access interface.

A directory entry enumeration operation on a version directory results in all

versions of the target file being displayed to the user as individual file entries

in the directory. For instance, a user could perform a “cd foo@”, followed by

an “ls –l” to view both dynamically generated file names and POSIX attributes

of each individual version. Each file name in a version directory has two parts:

a type specifier, and a version sequence number. The type specifier identifies

whether the version was created by an individual file snapshot (SNAP), an open-

close versioning snapshot (VERSION), or a file volume snapshot (VOLSNAP).

As an aside, users can also access versions by using directory entries instead of

suffixing file names with sequence numbers. For instance, /usr/foo.txt@1, and

/usr/foo.txt@/VolSnap_1 resolve to the same file version.

Another advantage of using version directories is the fact that retention poli-

cies can be implemented as simple shell scripts. For instance, a script that im-

plements a number based retention policy could access each file as a version di-

rectory, and delete oldest N versions using standard UNIX utilities. A landmark

based retention policy could diff two versions (diff foo@1 foo@2), and pick ver-

sions with minimal changes to discard. Furthermore, different policies can be

applied to different files or file types, thus providing highly flexible version man-

agement. It is important to note here that only snapshots created by open-close

versioning or individual file snapshoting can be explicitly deleted. File snapshots

created as a side effect of volume snapshoting can be deleted only by deleting the

file volume. Retention scripts can use the type specifier part of the file name to

identify deletable versions.

3.7.2 Version directories – implementation details

We will now describe the infrastructure support for implementing version direc-

tories. When an applications performs a directory listing operation on a virtual

directory, the naming layer needs to enumerate the list of snapshots for the target

file. Since the task of tracking snapshots is provided by the logical layer, a new

version stat call was added to the standardized file interface to communicate this

information to the naming layer. The naming layer makes the version stat call,

passing in the target file identifier as a parameter.

When the logical layer receives a version stat call, it first pulls up the volume

metadata from the meta index file. It then walks through the set of snapshots

associated with this volume, using the previous and next snapshot fields we de-

scribed earlier, and checks each volume index for the target file. For each valid

configuration entry, the logical layer populates a new vstat structure. Each vs-

tat structure contains several fields, like the volume identifier, volume type, and

file identifier. After checking all snapshot volumes, the logical layer retrieves the

file’s configuration information from its current volume. If the configuration in-

3.7. NEW FUNCTIONALITY: VERSION DIRECTORIES–

A UNIFIED INTERFACE FOR BROWSING HISTORY 79

VOL_SNAPSVID F1

FILE_SNAPVVID 1

FILE_SNAPVVID 2

F1.V3

F1.V1

F1.V2

VOL_SNAP_2

SNAPSHOT_0

SNAPSHOT_1

Figure 3.8: The figure shows the vstat structures for file F1 shown in Figure 3.7(d).

The columns from left to right contain the volume identifier, volume type, and file

identifier for the file version shown to the left of the vstat structure. The names on

the right of each vstat structure are the names assigned by the naming layer, for each

virtual directory entry, when the file is treated as a version directory.

formation records the presence of a version volume, the logical layer retrieves the

version volume’s volume index file. For each configuration entry in this volume

index, it populates a new vstat structure. After processing all entries, the logi-

cal layer returns back the list of vstat structures to the naming layer, as shown in

Figure 3.8.

The naming layer uses these vstat structures to build virtual directory entries

in the version directory. It uses the volume type field to choose a type specifier,

and a zero based counter to assign the version sequence number for each directory

entry. When the user access a particular file version using one of these entries, the

naming layer uses the version sequence number to retrieve the appropriate vstat

structure. It then uses the volume and file identifiers specified in the vstat structure

to identify the target file in any file operation.

This approach does have the disadvantage that a version’s name might change

as other versions are deleted. However, we really do not consider this to be an

issue due to two reasons. First of all, as users can easily view POSIX metadata as-

sociated with each version, they can identify the target version using its metadata,

thus obviating the need for consistent system-generated names. Second, if name-

based identification is required, the proper approach would be to enable tagging

of individual versions. Once users tag versions with user-friendly names, they

can easily identify target versions using their tags. We are working on extend-

ing our system to support tagging of both individual file versions and file volume

snapshots.

It is important to note in Figure 3.8, that the file identifiers in the first two vstat

structures are not F1, the target file’s identifier. Since these two versions were

created by individual file snapshoting, their configuration information resides in

the version volume’s volume index. Since the version volume can be accessed

as a regular file volume, one could directly access a version by using its position

within the volume index as the file identifier. For instance, when the logical layer

80 CHAPTER 3. VOLUME MANAGEMENT

gets the identifier pair <VVID, 1>, it first retrieves the volume with identifier

VVID, which in our case is the file’s version volume. It then uses 1 as the file

identifier, and retrieves the first file entry from the volume index, which would

be the configuration information for the first file version. Thus, by grouping all

file snapshots in a version volume, we are able to use the same mechanism for

accessing file snapshots, irrespective of how they are created.

3.8 Evaluation

In this section we will present our evaluation of the Loris prototype which supports

all new functionality presented in this paper. We implemented our Loris prototype

on the MINIX 3 multiserver operating system [44]. We will first evaluate the

overhead of open-close versioning and snapshoting using micro-benchmarks. We

will then present an evaluation of the infrastructure using two macro-benchmarks,

and show that our file volume virtualization approach has no overhead.

3.8.1 Test Setup

All tests were conducted on an Intel Core 2 Duo E8600 PC, with 4 GB RAM, and

one 500 GB 7200RPM Western Digital Caviar Blue SATA HDD (WD5000AAKS).

We ran all tests on 8 GB test partitions at the beginning of the disk. Loris was set

up to work with a 32 MB buffer cache.

3.8.2 Copy-based and copy-on-write snapshoting comparison

We will first compare the performance of copy-based and copy-on-write-based

snapshoting using a custom micro-benchmark. The micro-benchmark stresses file

system snapshoting by first creating either 500 1-MB files, or one 500-MB file,

in a single file volume. Following this, we perform ten rewrite runs, where we

truncate and rewrite all the files, snapshoting the entire file volume after each

run. We measure the total time taken to overwrite all the files in each run, and the

median of these ten values is shown in Table 3.1. As the file volume is snapshoted,

each rewrite run results in a new snapshot of all files being created.

Benchmark No Snapshot Copy-based Copy-on-write-based

500 1-MB files 7.30 17.95 7.31

1 500-MB file 7.50 21.01 7.95

Table 3.1: Time in seconds for file volume snapshoting using copy-based and copy-

on-write-based physical layer implementations.

3.8. EVALUATION 81

As shown in Table 3.1, file volume snapshoting has very little overhead with

the copy-on-write-based physical layer. The copy-based physical layer however

has a significant overhead. This is due to the fact that each file is copied over in its

entirety after every snapshot operation. As each copy operation reads and writes

1-MB per file snapshot in the first case, and 500 MB in the second case, it causes

excessive delay in the mainline write path leading to poor performance.

3.8.3 Open-close versioning evaluation

We will now present an evaluation of our open-close versioning implementation

using the same micro-benchmark that was used to evaluate snapshoting, with a

minor modification. We no longer snapshot the file volume at the end of each run.

Instead, we enable open-close versioning for each file. As shown in Table 3.2, the

copy-based physical layer suffers due to the copying overhead, as we explained

earlier.

Benchmark No versioning Copy-based Copy-on-write-based

500 1-MB files 7.30 21.26 10.53

1 500-MB file 7.48 20.80 7.95

Table 3.2: Time in seconds for open-close versioning using copy-based and copy-on-

write-based physical layer implementations.

The copy-on-write-based physical layer on the other hand incurs an overhead

only when 500 1-MB files are are individually versioned. Versioning of a sin-

gle 500 MB file does not exhibit any overhead. We examined this further, and

we found individual flushing of metadata blocks to be responsible for this per-

formance loss. As all files are open-close versioned, every file has an associated

version volume. Each version volume’s volume index file contains logical config-

uration entries that track file history. Thus, for 500 files, there exist 500 version

volumes, each having a volume index file containing one data block with logical

configuration entries. In our current implementation, these 500 blocks are flushed

using individual write operations. This results in multiple, small, random writes

at the disk, and the resulting seeks result in performance loss. We are working on

fixing this problem by vectoring these write requests in a single write operation

using the vwrite call we introduced to solve a similar problem with small files [9].

3.8.4 Overhead of file volume virtualization

We now evaluate the overhead of our new infrastructure using two macro-benchmarks:

(1) PostMark, configured to perform 20,000 transactions on 5,000 files, spread

over 10 subdirectories, with file sizes ranging from 4-KB to 1-MB, and read/write

82 CHAPTER 3. VOLUME MANAGEMENT

granularities of 4-KB, and (2) an application-level macro-benchmark, which we

will refer to henceforth as Applevel, which consists a set of very common file sys-

tem operations including copying (a complete MINIX 3 source tree), compiling

(running “make clean world”), and running find and grep (searching for a key-

word in all source and header files).

Benchmark Loris-V1 (w/o virtualization) New Loris

Postmark 686.00 693.00

Applevel (copy) 124.00 134.00

Applevel (build) 112.00 113.00

Applevel (find and grep) 20.00 19.00

Table 3.3: Transaction time in seconds for Postmark and wall clock time in seconds

for Applevel tests

Table 3.3 shows PostMark and Applevel results for both Loris-V1 and our

latest Loris version that supports all the new functionalities described in the paper.

As can be seen, file volume virtualization in Loris has very little overhead, if any.

Most other systems maintain elaborate block mapping information to virtualize

file volumes, and hence suffer from performance degradation due to increased

metadata footprint. As no such mapping information is maintained by Loris, there

is no performance impact.

Benchmark No Snapshot Copy-based Copy-on-write-based

Applevel (build) 123.00 131.00 124.00

Applevel (find and grep) 21.53 38.68 21.60

Table 3.4: Wall clock time in seconds for applevel tests using copy-based and copy-

on-write-based physical layer implementations.

Table 3.4 shows an interesting comparison of the two snapshoting approaches

using the Applevel benchmark. To perform this evaluation, we modified our test

suite to take a file volume snapshot after the copy phase. As can be seen copy-

on-write snapshoting does not suffer from any overhead in both build and find

phases.

Copy-based snapshoting on the other hand suffers from a small overhead dur-

ing the build operation, and a huge overhead during the find and grep operation.

The find and grep operations result in the access time of all source and header files

being updated. Since the access time is stored as an attribute by the physical layer,

setting a new access time is done by making a setattr call. This call triggers a file

snapshot operation at the logical layer. The copy-based physical layer copies over

3.9. COMPARISON WITH OTHER APPROACHES 83

the entire file data to create a new current version, while the copy-on-write phys-

ical layer just allocates a new inode and marks data blocks as shared. This is the

reason behind the poor performance of the copy-based physical layer. Turning off

access time updates resulted in similar performance figures for both copy-based

and copy-on-write physical layer implementations.

We are working on a new naming layer that provides structured data storage

to applications. The new naming layer will provide a new directory storage and

indexing scheme. It will also be responsible for storing attributes with directory

entries, and providing snapshoting of attributes. With this new naming layer, the

physical layer will be in charge of snapshoting only file data, and thus the copying

overhead will not be incurred for attribute changes.

3.9 Comparison with other approaches

Several commercial and academic projects have taken other approaches toward

virtualizing file volumes. We will first discuss device management alternatives,

and compare file pools with other approaches. Then, we will discuss file volume

virtualization, and present the advantages that Loris has over other techniques.

We discussed logical volume managers in great detail earlier in this paper. Most

block-level virtualization solutions suffer from problems similar to the ones men-

tioned in Sec.3.2, and so we will not discuss them in further detail here.

3.9.1 Device management

Sun’s ZFS [6] proposed refactoring the traditional storage stack to solve many

problems we presented earlier. ZFS introduced storage pools, a new storage model

for simplifying device management. Storage pools are based on the idea that

block allocation decision is made by the wrong layer in the traditional stack—

the file system layer. In the ZFS stack, a separate storage pool allocation (SPA)

layer manages a pool of storage devices, and provides an interface for allocating

and freeing virtual blocks, similar to the malloc() and free() interface for virtual

memory. As the SPA provides a virtualized block address space, multiple file

volumes can share a single storage pool. The SPA also simplifies and automates

addition and removal of devices.

Our approach (file pools) offers advantages in addition to the benefits offered

by storage pools. Providing RAID and volume management services at a file-

level makes it possible to support advanced functionalities, like snapshoting, at

several granularities, thus improving flexibility. Rather than bundling allocation

and storage management together like ZFS, Loris makes a clean split between the

two functionalities, by assigning block allocation to the physical layer, and storage

management to the logical layer. The improved modularity makes it possible to

84 CHAPTER 3. VOLUME MANAGEMENT

support heterogeneous device configurations using custom layout designs without

affecting RAID and volume management algorithms.

3.9.2 File management and file volume virtualization

AFS[85] was one of the first projects to promote the use of file volumes as ad-

ministrative units. AFS was a client-server system, and AFS clients accessed files

using a <volume identifier, file identifier > pair similar to Loris. The volume

identifier was used to locate the server housing the file volume. On the server

side, many volumes share a single disk partition, and administrators could asso-

ciate usage quotas with file volumes. File volumes were supported by modifying

the 4.2BSD on-disk file system, to include per-volume inode tables that translated

the <volume identifier, file identifier> pair to an inode. Snapshoting was a nightly

operation that was implemented by incrementing the link count on all inodes as-

sociated with a file volume, and block-level data sharing was not supported. In

contrast, file volume virtualization Loris is layout independent, snapshoting is a

flexible and instantaneous operation, and if required, a copy-on-write based phys-

ical module can be used to support fine grained block-level data sharing.

There are several file systems, both on-disk and stackable ones, that support

snapshoting and versioning. Most versioning file systems, like ElephantFS [81],

support only open-close versioning and do not support file system snapshots. File

systems that do support both, like ext3cow [74] are on-disk file systems, and do

not support virtualized file volumes. Stackable file systems like RAIF [49], and

VersionFS [68] are extremely flexible, portable, and support open-close versioning

and RAID algorithms on a per-file basis. However, unlike on-disk file systems,

they suffer from performance problems due to double buffering, and data copying.

Loris, on the other hand, implements portable file volume virtualization in the

logical layer by relegating storage-efficient block-level data sharing to the physical

layer. It supports flexible snapshoting and versioning with its policy-mechanism

split. Thus, Loris has the advantages of all these systems with its modular division

of labor without the disadvantages.

Flexol [26] is the file volume virtualization system from NetApp. The basic

idea adopted by FlexVol is to virtualize file volumes by creating a file volume

inside a file, in a lower file system. The recursive use of the WAFL file system

provided file awareness to the virtualization layer, making it possible to support

several advanced functionalities like snapshoting and cloning. However, the dual

mapping information that needs to be maintained by FlexVol causes some perfor-

mance degradation. Unlike FlexVol, Loris approach does not suffer from overhead

due to metadata footprint as seen earlier. Furthermore, while FlexVol supports file

volume snapshoting and cloning, it does not support individual file snapshoting or

open-close versioning.

3.10. FUTURE WORK 85

3.10 Future work

The design of file volume virtualization in Loris opens up several areas of future

work. We will now discuss two main avenues of ongoing research.

3.10.1 Flexible cloning in Loris

As we mentioned in the previous section, a number of commercial projects have

introduced file volume cloning in addition to snapshoting. We are currently work-

ing on adding support for flexible copy-on-write-based cloning at both per-file and

file volume granularities. The mechanism that supports snapshoting can also be

used to support cloning with minor modifications. A new clone operation will be

added to the standardized file interface. When the logical layer receives a request

to clone a volume, it first picks a new volume identifier, and allocates a new meta-

data entry in the volume index file. It then instantiates a clone volume, that is a

writable clone of the parent, by copying the target volume’s metadata to this new

entry. A new field in the snapshot volume’s metadata links it with the new child

volume. Following this, the clone volume’s epoch number is set to one higher

than its parent’s epoch number. Individual files themselves are cloned on demand,

just like snapshoting.

Copy-based snapshoting physical layer can support cloning without any mod-

ification, as each inode is an independent copy, not sharing any data blocks with

other snapshots. However, supporting copy-on-write based cloning requires some

changes to the physical layer to make sure that data blocks belonging to snapshot

inodes are not freed while there are clones using those blocks.

3.10.2 Hybrid file pools

As we mentioned earlier when discussing file pools, several file allocation algo-

rithms can be employed by the file pool sublayer to satisfy file creation requests. In

addition, we are investigating the addition of device-aware migration algorithms

at the file-pool sublayer. Since the file pool manages devices of multiple types, it

can collect aggregate performance statistics of these devices. Based on these met-

rics, it can classify each device as belonging to a particular device type category.

Similarly, since the file pool sublayer works at a file-level, it can also collect file

access patterns on a per-file basis, using which, it can classify each file as belong-

ing to a particular file type category. An easily configurable rule table can then be

used to match file types with device types.

As an example configuration, small, read-only files could be positioned on

a device with good random read performance, while small, write-mostly files

could be positioned on a device with a log-structured layout. Large files that

are both randomly read and written, on the other hand, could use two physical

86 CHAPTER 3. VOLUME MANAGEMENT

modules, one with a log-structured layout for absorbing writes, and one on a de-

vice with good random read performance. The logical layer would direct writes

to the write-optimized physical module, and migrate data in the background to

the read-optimized device. We use the term Hybrid file pools to refer to this new

storage model, as file pools can accommodate heterogeneous devices in hybrid

configurations.

3.11 Conclusion

Virtualizing file volumes makes it possible to retain administrative flexibility with-

out sacrificing storage efficiency. In this paper, we examined the traditional ap-

proach of virtualizing file volumes along two dimensions, namely, flexibility, and

heterogeneity. We illustrated several problems associated with the traditional ap-

proach of virtualizing file volumes. We then presented our file volume virtualiza-

tion design based on Loris, our fresh redesign of the traditional storage stack. We

showed how Loris, with its unified, modular infrastructure, supports file volume

snapshoting, per-file snapshoting, and open-close versioning.

Chapter 4

Efficient, Modular Metadata

Management with Loris

Abstract

With the amount of data increasing at an alarming rate, domain-specific user-

level metadata management systems have emerged in several application areas to

compensate for the shortcomings of file systems. Such systems provide domain-

specific storage formats for performance-optimized metadata storage, search-based

access interfaces for enabling declarative queries, and type-specific indexing struc-

tures for performing scalable search over metadata. In this paper, we highlight

several issues that plague these user-level systems. We then show how integrating

metadata management into the Loris stack solves all these problems by design.

In doing so, we show how the Loris stack provides a modular framework for im-

plementing domain-specific solutions by presenting the design of our own Loris-

based metadata management system that provides 1) LSM-tree-based metadata

storage, 2) an indexing infrastructure that uses LSM-trees for maintaining real-

time attribute indices, and 3) scalable metadata querying using an attribute-based

query language.

87

88 CHAPTER 4. METADATA MANAGEMENT

4.1 Introduction

For over four decades, file systems have treated files as a set of attributes as-

sociated with an opaque sequence of bytes, and have provided a simple hier-

archical structure for organizing the files. By providing a thin veneer over de-

vices, and by not imposing any structure on the data they store, file systems have

found widespread adoption in many application areas as preferred lightweight

data stores. However, this very same generality has also led to the emergence

of domain-specific, user-level metadata management systems in each application

area to offset several shortcomings of file systems.

In the personal computing front, file systems have been used as document

stores for housing a heterogeneous mix of data ranging from small text files to

large multimedia files like photos, music and videos. With the amount of data

stored by users increasing at an alarming rate, hierarchy-based file access and or-

ganization has lost ground to content-based access mechanisms. Most users have

resorted to using attribute-based or tag-based naming schemes offered by mul-

timedia and desktop search applications for managing and searching their data.

These applications essentially build a user-level metadata management system that

crawls the file system periodically to extract metadata, maintains indices on the

extracted metadata, and offers application-specific search interfaces to query over

metadata.

Modern-day enterprise storage systems house millions of files, and as each file

has at least a dozen attributes (POSIX and extended attributes), these systems store

an enormous amount of metadata. In addition, storage retention requirements for

meeting regulatory compliance standards further fuels metadata growth. Adminis-

trators of such systems are constantly faced with the necessity to answer questions

about file properties to make policy decisions like “which files can be moved to

secondary storage?” or “which are the top N largest files?.” Answering these

questions require searching for relevant attributes over massive amounts of meta-

data. As using primitive utilities like the UNIX find utility at such large scales is

not an option, administrators resort to using enterprise search tools. These appli-

cations build a user-level metadata management subsystem that gathers metadata

periodically, maintains elaborate indices to speed up metadata queries, and offers

administrator-friendly search interfaces.

In high-performance scientific computing, local file systems have been used

as data stores in local nodes for multi-node, POSIX-compliant cluster/parallel file

systems. Similar to enterprise systems, these systems also suffer from problems

of scale. In addition, data provenance has emerged to be an extremely important

technique in scientific computing for assessing the accuracy and currency of data.

Several systems have proposed integrating provenance with parallel file systems

to ensure complete, automatic provenance collection [15]. Such systems provide

a metadata management system on top of local file systems that collect and store

4.1. INTRODUCTION 89

provenance using optimized storage formats, index provenance records, and sup-

port specialized query languages for querying provenance data.

The data-intensive scalable computing front has witnessed the growth of domain-

specific distributed file systems [30]. These systems maintain separate data and

metadata paths so that after a single-step authentication at the metadata server,

clients can retrieve data directly from data nodes, thus preventing any single data

server from becoming bottlenecked. While such architectures have scaled the data

wall, they continue to remain bottlenecked when it comes to metadata scalabil-

ity. Scaling directory operations to support millions of mutations and lookups per

second is an ongoing topic of research. Recent research has shown how indexing

algorithms employed by local file systems can have a profound impact on per-

formance of distributed directory partitioning and indexing schemes [72]. Some

researchers have even proposed using custom-built databases that use sophisti-

cated indexing structures to optimize metadata storage and retrieval, as storage

back-ends for metadata servers [92]. These databases act as dedicated metadata

management systems that obviate the need for using local file systems to store

directory and other file metadata.

Thus, domain-specific metadata management systems have emerged as the

“least common denominator” functionality across these application areas. How-

ever, such systems suffer from several problems that are well known [59]. First,

since they are situated outside the mainline metadata modification path, they do

not maintain indices in real time, which can result in stale query results due to

inconsistent metadata. While this situation can be averted by updating indices fre-

quently, user-level systems avoid this to reduce the performance impact caused by

file system crawling. Unoptimized metadata placement makes crawling for meta-

data gathering an extremely slow, resource intensive operation. To avoid crawling

the entire file system, some user-level systems [60] leverage new file system func-

tionality like snapshoting and perform an incremental scan of only data modified

since the last snapshot. While this in combination with other notification-based

techniques can reduce the performance impact of crawling, it hardly helps to rem-

edy the storage inefficiency inherent to user-level metadata systems. This ineffi-

ciency arises because metadata is stored twice, once in the file system itself, and

a secondary copy in the elaborate indices maintained by user-level metadata sys-

tems. As metadata can consume a significant percentage of the storage capacity

in large installations [59], this metadata duplication results in inefficiency that is

unwarranted since the duplicated metadata is usually inconsistent.

Thus, once the purview of local file systems, metadata management is now

being performed by domain-specific, user-level systems that suffer from several

shortcomings. Rather than building custom databases for storing metadata, we be-

lieve that the right solution to these problems is integrating support for metadata

management into local file systems. First, since file systems are in the mainline

path of all metadata operations, no separate polling or notification mechanism is

90 CHAPTER 4. METADATA MANAGEMENT

needed for collecting changes. Second, since file systems are in charge of stor-

ing metadata, they can employ sophisticated, search-friendly storage formats to

optimize metadata performance. Third, file systems can unify metadata storage

and indexing using a single storage format, thus avoiding unnecessary duplica-

tion. Fourth, with metadata management being the least common denominator

functionality, it is obvious that an integrated system can be used as a customiz-

able framework for deploying domain-specific solutions. Such a customizable

framework should possess two salient properties. First, it should be efficient; the

integration of metadata management should not cause performance deterioration.

Second, it should be modular; the metadata management functionality should be

independent of other functionalities. Unfortunately, traditional file systems lack

the latter property.

Traditional file systems use customized data structures for storing metadata

and such data structures form an integral part of the file system’s on-disk layout.

Further, file systems handle a range of tasks from providing device-specific layout

algorithms to implementing POSIX-style file and directory naming. As a result,

any metadata management system that is integrated with one file system is inher-

ently non-portable to other file systems, and a single implementation of metadata

management cannot be used across multiple file systems. Thus, metadata man-

agement would have to be implemented on a case-by-case basis due to the lack of

modularity of traditional file systems.

In prior work [9], we presented Loris, a complete redesign of the traditional

storage stack that solves several reliability, flexibility, and heterogeneity issues by

design. In this paper, we show how Loris can be used as an efficient, modular

metadata management framework. In doing so, we present our Loris-based meta-

data management system that provides 1) LSM-tree-based metadata storage, 2) an

indexing infrastructure that uses LSM-trees for maintaining real-time attribute in-

dices, and 3) scalable metadata querying using an attribute-based query language.

The rest of the paper is organized as follows. In Section 4.2, we present an

overview of Loris and show how the Loris stack provides a convenient framework

for integrating metadata management. We present the design of our metadata man-

agement system in detail in Section 4.3, following which we present an evaluation

of our prototype using several micro and macrobenchmarks in Section 4.4. We

then compare our approach with related work in Section 4.5. Finally, we present

future work in Section 4.6, and conclude in Section 4.7.

4.2 Background: The Loris Storage Stack

In prior work [8], we highlighted a number of fundamental reliability, flexibility,

and heterogeneity problems that plague the traditional storage stack and we pre-

sented Loris, a fresh redesign of the stack, showing how the right division of labor

4.2. BACKGROUND: THE LORIS STORAGE STACK 91

File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Figure 4.1: The figure depicts (a) the arrangement of layers in the traditional stack,

and (b) the new layering in Loris. The layers above the dotted line are file-aware; the

layers below are not.

among layers solves all problems by design [9]. In this section, we will briefly

describe Loris’ layered architecture.

Loris is made up of four layers, as shown in Figure 4.1. All the layers in Loris

are file-aware, in contrast to the traditional stack, and the interface between the

layers is file-centric, consisting of operations such as create, delete, read, write,

and truncate. Files are identified throughout the stack using a unique file identifier

(file ID). Each Loris file is also associated with several attributes, and the interface

supports two attribute manipulation operations—getattribute and setattribute. We

will now briefly describe the responsibilities of each layer in a bottom-up fashion.

4.2.1 Physical layer

The physical layer exports a “physical file” abstraction to the logical layer. The

logical layer stores data from both end-user applications, and other Loris layers

in physical files. The physical layer is tasked with two primary responsibilities.

The first responsibility of the physical layer is providing persistent storage of files

and their attributes using device-specific layout schemes. Each storage device is

managed by a separate instance of the physical layer, and we call each instance a

physical module. Each device, and hence its physical module, is uniquely identi-

fied using a physical module identifier. Our prototype physical layer was based on

92 CHAPTER 4. METADATA MANAGEMENT

the traditional UNIX layout scheme. The physical file abstraction is realized using

inodes. The logical layer uses an inode number to refer to the target physical file

in any file operation.

The second responsibility of this layer is providing data verification. Each

physical layer implementation must support some comprehensive corruption de-

tection technique, and use it to verify both data and metadata. As the physical

layer is the lowest layer in the stack, it verifies requests from both applications

and other Loris layers alike, thereby acting as a single point of data verification.

Our prototype physical layer supports parental checksumming [55] and uses it to

provide end-to-end data integrity.

4.2.2 Logical layer

The logical layer is responsible for providing per-file RAID services using phys-

ical files. The logical layer multiplexes data across multiple physical files and

provides a virtualized logical file abstraction. A logical file appears to be a single,

flat file to the cache layer above it. The logical layer abstracts away details like

the physical files that constitute a logical file, the RAID level used by a file, etc.

by using the logical file abstraction.

The central data structure in the logical layer that enables multiplexing is the

mapping file. This file contains an array of configuration information entries, one

per logical file. Each configuration information contains: (1) the RAID level used

for this file, (2) the stripe size if applicable and (3) <physical module identifier,

inode number> pairs that identify the physical files that make up this logical file.

Since the mapping file is an extremely crucial piece of metadata, it is mirrored on

all physical modules. A physical file with a fixed inode number is reserved in each

physical module and is used to store the mapping file’s data blocks.

Let us consider a logical file with file ID F1, that is stored using a RAID 0

configuration backed by physical files with inodes I1, I2 on physical modules

P1, P2 respectively. Such a file would have F1=<raidlevel=0, stripesize=4096,

<PF1=<P1:I1>, PF2=<P2:I2>> as its configuration information in its mapping

entry. We will explain the entry creation process later while describing the naming

layer. For now, let us consider a read request for this logical file. When the logical

layer receives a request to read, say, 8192 bytes, from offset 0, it determines that

the logical byte range 0-4095 maps onto the byte range 0-4095 in physical file

PF1 and the logical byte range 4095-8191 maps onto the range 0-4095 in physical

file PF2. Having determined this, the logical layer forwards a request to read

4096 bytes, at offset 0, from files PF1 and PF2 to physical modules P1 and P2

respectively.

4.3. EFFICIENT, MODULAR METADATA MANAGEMENT WITH LORIS 93

4.2.3 Cache layer

The cache layer provides data caching on a per-file basis. As it is file-aware, it can

deploy different data staging and eviction policies for different files depending

on their types and access patterns. Our prototype cache layer provides a simple

fixed-block read ahead and LRU-based eviction for all files.

4.2.4 Naming layer

The naming layer acts as the interface layer. Our original prototype naming layer

provided POSIX-style file/directory naming and attribute handling. The naming

layer is also responsible for assigning a unique file ID to each Loris file. It pro-

cesses a file create request by picking a unique file ID and forwarding the create

call to the cache layer, which, in turn, forwards it to the logical layer. The logi-

cal layer picks physical modules for this logical file, and forwards a create call to

those modules. The physical modules service the create call by allocating phys-

ical files and returning back their inode numbers. The logical layer records the

<physical module identifier, inode number> pairs, in addition to other details, in

the mapping file’s configuration entry.

Directories are implemented as files containing a list of records that map file

names to Loris file IDs. Only the naming layer is aware of this structure; below the

naming layer, a directory is simply considered another opaque file. Loris attributes

are used by the naming layer to store per-file POSIX attributes like modification

time and access permissions. These attributes are passed from the naming layer

to the corresponding physical modules using the setattribute call. Our physical

layer implementation stores attributes in the corresponding physical file’s inode.

The getattribute call is used by the naming layer to retrieve the stored attributes

when necessary. Loris attributes are also used to exchange policy information

between layers. An example of this usage is how we enable selective mirroring of

directories on all physical modules to improve reliability and availability. When

the naming layer issues a create call for creating a directory, it informs the logical

layer that the corresponding logical file must be mirrored by passing the RAID

level (RAID 1 on all physical modules) as an attribute. This attribute is not passed

down for normal files. Thus, the attribute infrastructure in Loris serves a dual

purpose.

4.3 Efficient, Modular Metadata management with Loris

With the modular division of labor between layers in the Loris stack, the nam-

ing layer in Loris provides an ideal place for integrating metadata management.

Since all layers in the Loris stack are file-aware, the cache, logical and physical

layers can be conceptually seen as providing a file store for the naming layer. The

94 CHAPTER 4. METADATA MANAGEMENT

naming layer could thus implement custom storage schemes that pack domain-

specific metadata into performance-optimized file formats that would be stored

by the lower layers as plain Loris files. By isolating metadata management in the

naming layer, Loris provides a modular framework where naming implementa-

tions can be changed without affecting algorithms in other layers.

In this section, we will detail the design of our new naming layer that pro-

vides metadata management. It is made up of two sublayers, namely, the storage

management sublayer and the interface management sublayer.

4.3.1 Storage management sublayer

The storage management sublayer is the lower layer and is responsible for provid-

ing domain-specific storage formats that optimize storage and retrieval of meta-

data. It provides a simple key-value interface to the interface management sub-

layer, and performs space-efficient packing of such key-value pairs in Loris files.

Our storage management sublayer uses write-optimized log-structured merge

(LSM) trees [70] for storing key-value pairs. LSM-trees are multi-component

data structures that consist of a number of in-memory and on-disk tree-like com-

ponents. The fundamental idea behind maintaining two different types of com-

ponents is to buffer updates temporarily in the in-memory component and peri-

odically flush out batched updates as new on-disk components. These on-disk

components are write-optimized tree structures that provide space-efficient pack-

ing of key-value pairs by filling up tree nodes completely. They are immutable,

and thus, once created, they can either be deleted as a whole, or be used for key

lookups, but can never be updated in place. By buffering updates in memory and

writing them out in batches to a new on-disk component, LSM-trees avoid directly

updating on-disk components, and thus eliminate expensive seek operations.

A lookup operation in an LSM-tree first checks the in-memory tree for the tar-

get key. A failure to locate the key results in searching the on-disk components

chronologically. By using components that are tree structured, LSM-trees provide

efficient indexing of data in both in-memory and on-disk components. However,

the number of on-disk components that must be searched plays a crucial role in

determining the overhead of lookup operations. Minimizing this overhead re-

quires periodic merging of on-disk components to form a single densely-packed

index. Because on-disk components are immutable, such a merge operation can

happen asynchronously, in the context of a background thread without affecting

foreground traffic.

There are two special boundary cases that arise when one uses an LSM-tree-

based key-value store. The first one concerns updates to existing records. Up-

dating an existing record is performed by adding a new record to the tree with the

same key and the updated value. Lookups are executed by chronologically search-

ing all components and returning as soon as there is a match, so new records im-

4.3. EFFICIENT, MODULAR METADATA MANAGEMENT WITH LORIS 95

plicitly obsolete any other records that exist in the tree with the same key. The sec-

ond boundary case concerns record deletion. Delete operations are performed by

inserting “tombstone” markers—records whose value denotes that the key-value

pair has been deleted. If a key lookup operation ends up at a tombstone record,

the lookup fails with an error that notifies the caller that the record being looked

up has been deleted. In both boundary cases, the old, outdated records consume

unnecessary space and are cleaned periodically during merging to improve space

utilization.

We will explain how the LSM-tree-based key-value store is used to house

POSIX metadata in Sec. 4.3.2, but for now, we would like to emphasize that LSM-

trees are ideally suited for storing metadata due to several reasons. First, metadata

updates are rarely sequential. Most modern file systems use B-tree variants for

storing metadata. It is well known that B-trees (and their variants) require random

writes for random updates and may get fragmented over time [92]. Further, almost

all existing storage technologies are ill-suited for such random-write workloads.

Despite tremendous growth in capacity and bandwidth of disk drives, the perfor-

mance of small, random workloads continues to suffer from seek-imposed access

latencies. RAID installations using parity-based redundancy schemes have known

issues with small, random-write workloads [93]. Even modern SSDs suffer under

a random-write workload and it has been shown that random writes can signifi-

cantly reduce both the performance and lifetime of SSDs [75]. By using write-

optimized LSM-trees, we convert slow, small, random metadata updates into fast,

large, sequential write operations without sacrificing lookup performance.

Second, metadata lookups exhibit significant locality. A directory listing op-

eration for instance looks up POSIX attributes of all files in a directory. A backup

application might scan through extended attributes of each file in the file system to

identify flagged files that must be incrementally backed up. Most file systems fail

to exploit such locality as metadata is scattered all over the device. For instance,

while file names are stored in directory data blocks, POSIX attributes are stored

in inodes, and extended attributes are stored in blocks pointed to by inodes. As

a result, metadata lookups result in expensive seek operations when disk drives

are used, significantly crippling performance. In contrast, with LSM-trees, local-

ity can be controlled with the choice of key format. As records in the leaves of

both the in-memory tree and on-disk trees are sorted in key-order, iterating over

records with the same key prefix is very efficient as they are more likely to be

stored together on disk, and thus more likely to reside in the (block-level) cache.

We will see later how we take advantage of this to achieve good directory listing

performance.

Third, a significant number of files in several workloads exhibit very short

lifetime. For instance, it has been shown that about 50% of files are deleted within

5 minutes, with 20% existing for less than half a minute in certain local file system

workloads [71]. Development workloads also create a large number of empty lock

96 CHAPTER 4. METADATA MANAGEMENT

files, and short-lived compiler temporaries. As we will see later, supporting native

searching in our naming layer requires the capability to create a large number of

links to existing files, which may be temporary when queries are used for a one-

time, dynamic search over metadata. Traditional file systems typically require

additional implementation tricks to optimize for such short-lived metadata. As

metadata updates are first handled in memory, LSM-trees handle such temporary

files efficiently.

Our implementation employs AVL-trees for the in-memory component (but

any search-efficient data structure will suffice), and densely-packed, two-level

B+-trees for storing on-disk components. As the on-disk components are im-

mutable, nodes are packed full for optimal space efficiency. To limit the number

of disk seeks to one per disk component, their root nodes are always kept in mem-

ory. Merge parameters, like component size thresholds, maximum number of disk

components, etc., are configurable to allow system-specific optimization.

In addition to the record-based lookup/insert operations, our LSM-storage sub-

layer’s interface also exposes a prefix lookup operation that returns an iterator over

all records whose key starts with the supplied prefix. We mentioned earlier that

records with the same key prefix are likely to be stored together on disk; enumer-

ating them can therefore be performed efficiently. Thus, while the choice of key

format is used to control locality, the prefix lookup can be used as a means to

exploit it.

4.3.2 Interface management sublayer

The interface management sublayer is responsible for translating domain-specific

interface operations to key-value insertion or lookup operations on the underly-

ing storage management sublayer. We will first explain how this sublayer maps

well-known POSIX abstractions to key-value pairs, thereby providing POSIX-

compatible naming. Then, we will describe extensions that provide scalable attribute-

based metadata search using LSM-tree-based attribute indices.

POSIX interface

The interface management subsystem provides the POSIX environment to appli-

cations by mapping familiar file system primitives to key-value pairs. Thus, while

the storage management subsystem stores key-value pairs, the interface subsys-

tem controls the semantics of keys and values. We will now describe how we map

per-file POSIX attributes and directories to key-value pairs.

As we mentioned earlier, each file in Loris is identified using a unique file ID.

As each file in POSIX is associated with a set of POSIX attributes, a straightfor-

ward way to map these attributes would be to use the unique file ID as the key, and

store all attributes as the value. It is important to note here that only file attributes

4.3. EFFICIENT, MODULAR METADATA MANAGEMENT WITH LORIS 97

are stored by the storage subsystem, not file data. Thus, a file create request would

result in the interface management subsystem storing a new <file ID, <POSIX

attributes>> pair in the LSM-tree, following which, the create call would be for-

warded to the lower layers. While subsequent metadata updates would result in

the LSM-tree being updated, data updates would be immediately directed to the

lower layers.

Supporting directories is a bit tricky. With our old naming layer, directories

were files containing an array of <name, file ID> pairs, one per file stored in that

directory. Since each directory is also a file, it also has its own unique file ID.

Thus, one possible implementation would be to use the directory’s file ID as the

key and store this array of entries as the value. However, directories also have

POSIX attributes associated with them, and hence, each directory could then be

represented using two key-value pairs, one containing an array of entries, and the

other containing the POSIX attributes of the directory itself. While this approach

is simple to implement, it however suffers from the disadvantage that a lookup

operation has to perform a linear scan through file names.

Avoiding such a linear scan requires using LSM-trees to index directory en-

tries. Such an index would use file names as keys to lookup file identifiers. How-

ever, the key structure of such a tree is incompatible with the key structure for

storing file attributes we mentioned earlier. Thus, using this approach requires

maintaining two LSM-trees, one mapping file names to file identifiers, and the

other mapping file identifiers to file attributes. The level of indirection also means

that a directory listing operation would need to perform two lookups, one per tree.

While the resulting implementation would be better than existing file systems due

to the use of LSM-trees to store POSIX attributes, we wanted to eliminate this

additional indirection to maximize performance gains.

Eliminating this level of indirection requires using a single tree that uses a

unified key structure. Thus, we adopted an approach similar to the one used by

BabuDB [92] for mapping both directories and POSIX attributes to key-value

pairs. In this approach, we use the triplet <parent directory’s file ID, file name,

metadata type> as the key to store POSIX attributes for each file. The reasoning

behind using this triplet is to speed up lookup operations. Each lookup operation

attempts to resolve a filename in the context of a directory to retrieve the target

file’s identifier or file attributes. Since each directory in Loris is a file, and hence

has a file ID, using the directory’s file ID in combination with the file name can

be used to search through the index for the relevant file’s attributes.

The metadata type field in the key is an optimization to reduce the amount of

metadata updates. It essentially classifies metadata into two categories: frequently-

updated metadata (like access time and size), and rarely-updated metadata (such

as modes, ACLs). By making this classification, updates to the LSM-tree are kept

small due to the fact that a change to the frequently-updated metadata does not

involve writing out all POSIX metadata. Thus, each file is associated with two

98 CHAPTER 4. METADATA MANAGEMENT

key-value pairs, one per metadata type, and both these pairs can be located using

the key-prefix <parent directory’s file ID, file name>.

With this metadata scheme, we achieve several advantages when compared to

our old naming layer. First, by linking files and directories in reverse with the par-

ent’s file ID, directories no longer need to store <file name, file ID> pairs in data

blocks. As a result, directories are empty files represented in the LSM-tree using

two key-value pairs that record the directory’s POSIX attributes. Thus, unlike our

old naming layer, directory create requests need not propagate down to the lower

layers, thus improving performance, as it eliminates further processing of create

requests by these lower layers. For similar reasons, metadata updates are also sig-

nificantly faster. As the old naming layer used Loris’ attribute infrastructure to

store POSIX attributes, for each change in any POSIX attribute, the naming layer

had to use a setattribute call that percolated down the stack resulting in unneces-

sary overhead. The new naming layer completely avoids this as metadata updates

are restricted to the LSM-tree.

Second, lookup operations are much more scalable as linear lookups are avoided

in both in-memory and on-disk trees. Third, by using parent ID as a part of the key,

lookups can benefit from significant locality. This is due to the fact that records in

the leaf of the tree are sorted based on their parent ID and then by their file name.

Thus, all file entries belonging to a directory are tightly packed, thereby speeding

up operations like directory listing. Fourth, using LSM-based storage results in

random metadata updates being converted into sequential write operations at the

storage level, improving performance significantly. Our old naming, in contrast,

incurred expensive disk seeks for each metadata update as POSIX attributes were

stored in the inodes. Table 4.1 illustrates the mapping of metadata to key-value

pairs using an example configuration.

Linking files to their parent however does complicate the implementation of

hard links, as a file’s metadata is mapped to one unique <parent ID, filename>

pair. Hard links require a file to be accessed from multiple names—this requires

either storing the metadata redundantly for each name, or letting each name point

to one central entry. The first approach will not scale as the number of links to

a file increases, while locality advantages are lost in the second approach. In the

latter case, this means one extra index traversal for each hard linked file. As hard

links are not very common, we believe such an overhead is acceptable, and we do

not duplicate metadata.

Our implementation stores the metadata of hard linked files under the different

key <hardlink ID, file ID, type> (where hardlink ID is simply a reserved parent

ID). Thus, metadata is retrieved in the same way, except by file ID rather than

parent ID and filename. The original <parent ID, filename, type> record is still

used, but only includes the file ID and a flag denoting that the name represents

a hard linked file. As a result, enumerating the names in a directory can still be

done with a single prefix lookup, but stat lookups require extra index traversals.

4.3. EFFICIENT, MODULAR METADATA MANAGEMENT WITH LORIS 99

Key Value

<0, /, f> atime=2011-01-01 . . .

<0, /, r> id=1 links=4 mode=drwxr-xr-x . . .

<1, etc, f> atime=2011-01-02 . . .

<1, etc, r> id=5 links=2 mode=drwxr-xr-x . . .

<1, tmp, f> atime=2011-01-03 . . .

<1, tmp, r> id=3 links=2 mode=drwxr-xr-x . . .

<3, prog.c, f> atime=2011-01-01 . . . size=2000

<3, prog.c, r> id=10 links=1 mode=-rw-r–r– . . .

<3, test.txt, f> atime=2011-01-03 . . . size=100

<3, test.txt, r> id=13 links=1 mode=-rw——- . . .

<5, passwd, f> atime=2011-01-02 . . . size=1024

<5, passwd, r> id=20 links=1 mode=-rwx—— . . .

Table 4.1: Example mapping of POSIX metadata to key-value records. This example

illustrates a small file tree containing the root directory /, the directories /etc and /tmp,

and the files /etc/passwd, /tmp/test.txt and /tmp/prog.c. Keys are in the format <parent

ID, filename, type>, causing metadata records of files in the same directory to be

stored adjacently. Record values contain either frequently-updated metadata when the

type value is ’f’ and rarely-updated metadata when the type value ’r’. Metadata is

shown here in human-readable format but is physically stored in native format using

positional notation.

Efficient metadata search

Having explained how the conventional POSIX interface can be realized using

our infrastructure, we will now describe extensions to the interface management

subsystem that enable metadata search. Since metadata is well structured and can

be logically considered to be a collection of attribute-value pairs associated with

files, most user-level metadata management systems have adopted an attribute-

based scheme for naming and searching. We will now show how our interface

management sublayer can be extended to support such an attribute-based nam-

ing scheme. While we use attribute-based naming as an example, we would like

to point out here that the infrastructure is flexible enough to accomodate other

naming schemes, like tag- or keyword-based schemes, as well.

Real-time indexing The first requirement for enabling efficient searching is at-

tribute indexing. Consider a name lookup operation. Such an operation can be

considered to be a search over POSIX metadata for the name attribute. In the ab-

sence of indexing, one would have to resort to a linear lookup over all file names,

similar to our earlier prototype. As we mentioned earlier, we solved this one spe-

cific problem by indexing file names. However, such an index is not usable for

100 CHAPTER 4. METADATA MANAGEMENT

Key Value

<atime, 2011-01-01, 20>

<atime, 2011-01-02, 13>

<atime, 2011-01-03, 10>
...

...

<size, 100, 13>

<size, 1024, 20>

<size, 2000, 10>
...

...

Table 4.2: Attribute index belonging to the example in Table 4.1. Only files are in-

dexed. This shows the subset of the index that covers the atime and size attributes.

The value fields are unused.

searching over any other attribute. For instance, a search for files with size greater

than 1 GB can be done only by performing a linear scan over each file’s metadata.

Though the locality-friendly, densely-packed LSM-tree design makes high-speed

sequential scans possible, this approach does not scale as large installations can

have millions of files.

To avoid linear lookup, we index attributes in an auxiliary LSM-tree that maps

attribute values to file IDs. This tree contains records with the <attribute ID,

attribute value, file ID> triplet as the key, and an empty value field. The file ID

needs to be part of the key in order to guarantee its uniqueness. Table 4.2 shows a

sample index tree for the example configuration in Table 4.1.

Choosing which attributes to index is a policy decision that can be tuned for

each installation and the ones that are indexed are identified in the tree using the at-

tribute ID. Because LSM-trees are update-optimized, maintaining these indices is

cheap. We further minimize their overhead by separating metadata trees and index

trees. This allows us to adopt different merge parameters for index and metadata

trees. For instance, since metadata search is relatively less frequent compared

to index updates, we could trade off query performance for improving indexing

performance by maintaining a higher number of on-disk components to store in-

dexing entries, thereby delaying expensive merge operations.

Attribute-based search interface Having described the indexing mechanism, we

will now detail attribute-based query processing. Exposing new interfaces and

functionalities can generally be done in two ways: 1) by extending APIs and sys-

tem calls by introducing new function calls that applications can directly invoke,

or 2) by overloading the semantics of objects in an existing interface. The lat-

ter is preferable for integration and compatibility reasons [32]. In the case of

4.3. EFFICIENT, MODULAR METADATA MANAGEMENT WITH LORIS 101

Key Value

1 <0, />

3 <1, tmp>

5 <1, etc>

10 <3, prog.c>

13 <3, test.txt>

20 <5, passwd>

Table 4.3: Name index belonging to the example in Table 4.1. As an example, the

fully qualified path name to file ID 20 is retrieved as follows: first, key “20” is looked

up to get parent ID 5 and name passwd. Next, key “5” is looked up to get parent ID 1

and name etc. At this point, the path is etc/passwd. Next, 1 is looked up, and the root

is reached. Thus, the full path is /etc/passwd.

file systems, the POSIX-based interface is ubiquitous, and our goal is to preserve

backward compatibility as much as possible. Therefore, we overload POSIX se-

mantics without changing the VFS interface.

In Loris, we generalized the concept of a virtual directory [32] to provide typed

virtual directories. Just like the Semantic file system [32], directories are consid-

ered virtual when their file entries are created on the fly. Each virtual directory is

associated with a type that determines the mechanism that populates the file en-

tries. For example, a search virtual directory is a virtual directory whose directory

listing implementation provides query resolution. A version virtual directory [10],

however, has a directory listing implementation that enumerates all versions be-

longing to a particular file. In this paper, we will describe only our search virtual

directory’s mechanism.

In Loris, query results are exposed through search virtual directories that are

instantiated dynamically using a well-formed query term specified by the user. A

query term is a boolean combination of attributes and associated conditions that

must be met for a file to be a part of a search virtual directory. Such a query starts

with ’[’ and ends with ’]’. Our current prototype supports equality conditions

that can be used to perform a point search over specific attributes. For instance

performing a directory listing of the search directory with the name “[uid=100]”

results in all files owned by the user with uid 100 being listed. Similar to Se-

mantic FS [32], search directories can also be used to map conjunctive queries

into tree-structured path names. For example, performing a directory listing of

the search directory “[uid=100]/[size>1048576]” results in all files owned by the

user with uid 100 and having size over 1 MB being listed.

Our search directory implementation performs query resolution in two steps.

In the first step, the attribute index is referenced to determine which file IDs match

the given query. For instance, the query “[uid=100]” results in our implementation

102 CHAPTER 4. METADATA MANAGEMENT

performing a prefix lookup with the key <METADATA_ID(uid), 100> on the

index LSM-tree. Thus, using a single range lookup, we can identify the file IDs of

all the files that match a query. If the query is the conjunction of two subqueries,

each subquery is performed separately and the intersection of file IDs is used.

In the second step, we need to derive the fully qualified path name of each file

armed with the file ID. This is required because our mapping of POSIX attributes

to key-value pairs uses <parent directory’s file ID, file name, metadata type> as

the key. Thus, it is not possible to use just the file ID to retrieve file metadata.

To solve this problem, we added a new name index that maps file ID to <parent

directory’s file ID, file name>. Thus, each path can be generated by looking up the

parent ID and file name corresponding to each file ID in the result and traversing

the parent ID chain all the way to the root directory. Table 4.3 shows the name

index belonging with the example configuration from Table 4.1 and illustrates how

it can be used to form a full pathname from a file ID.

We are currently experimenting with different methods for exposing the results

of a query. One such method is creating a symbolic link entry for each file, with

the link name being the file name, plus a suffix if it is not unique. We currently

perform the query on the fly during a lookup request, but a better approach would

be to cache the results in a separate LSM-tree. Not only is caching better for

performance, it would also simplify the implementation of search directories since

a lot of code can be reused.

4.4 Evaluation

In this section, we will evaluate several performance aspects of our naming layer.

We implemented the new prototype as a part of the Loris stack running on the

MINIX 3 multiserver operating system [44]. We will first present our microbench-

mark-based evaluation that compares the scalability of our implementation with

the original Loris naming layer. Following this, we will present a comparison of

metadata storage/retrieval performance the two naming layers using Postmark and

Applevel macrobenchmarks, and a comparison of query performance using native

Loris queries vs. using the find utility. Finally, we will present an evaluation of

our attribute indexing implementation.

4.4.1 Test setup

All tests were conducted on an Intel Core 2 Duo E8600 PC, with 4 GB RAM, and

four 500 GB 7200RPM Western Digital Caviar Blue SATA HDD (WD5000AAKS).

We ran all tests on 8 GB test partitions at the beginning of the disks.

4.4. EVALUATION 103

Microbenchmark Loris (MFS) Loris (new)

Create

Tree A (4 dirs × 25,000 files) 153.5 (1.0) 43.58 (0.28)

Tree B (10 dirs × 10,000 files) 76.23 (1.0) 45.88 (0.60)

Tree C (100 dirs × 1000 files) 47.98 (1.0) 42.76 (0.89)

Find and Stat

Tree A 79.3 (1.0) 6.86 (0.09)

Tree B 27.5 (1.0) 6.00 (0.17)

Tree C 9.21 (1.0) 5.71 (0.62)

Random Update 502.4 (1.0) 330.1 (0.66)

Table 4.4: Wall clock time for several microbenchmarks. All times are in seconds. The

table shows both absolute and relative performance numbers, comparing our presented

naming layer with our MFS-based one.

4.4.2 Microbenchmarks

We used two microbenchmarks to evaluate the update and lookup performance

of the LSM-tree-based naming layer. Our first microbenchmark created 100,000

files spread across 4, 10 and 100 directories, following which, our second mi-

crobenchmark performed the equivalent of “find | xargs stat” at the root directory.

Table 4.4 outlines the running times of these microbenchmarks with the old and

the new naming layers. The results show that the old naming layer does not scale

as the directory size increases, while the new naming layer’s performance remains

consistent. Performance gains achieved by the new naming layer under the create

benchmark can be attributed primarily to the indexed lookup of file names. The

find benchmark on the other hand also benefits from two other factors. First, as

our POSIX-mapping associates file metadata directly with file names, we avoid

the additional level of indirection inherent to the old naming layer (name to inode

number, and inode number to attributes). Second, tight packing of metadata in

our on-disk trees resulting in increased cache hits due to the locality inherent in

metadata requests.

MINIX 3 does not have file systems that support tree-based directory indexing.

As we explained earlier, a significant portion of the performance improvement

in the last two micro-benchmarks can be attributed to the indexed lookup of file

names rather than the write-optimized LSM infrastructure. Since we wanted to

isolate the performance gains of using the write-optimized LSM-tree, we built

a random metadata update microbenchmark. In this benchmark, we perform

200,000 metadata operations (chmod, chown, utime) on randomly-chosen files in

a three-level directory tree of 200,000 files. The number of files per directory was

deliberately restricted to 64 (the number of entries per directory block in the old

104 CHAPTER 4. METADATA MANAGEMENT

Macrobenchmark Loris (MFS) Loris (New)

PostMark 744 (1.0) 511 (0.69)

Applevel

Copy 46.4 (1.0) 40.9 (0.88)

Build 95.0 (1.0) 92.0 (0.97)

Find 22.4 (1.0) 10.7 (0.48)

Delete 32.6 (1.0) 29.1 (0.89)

Table 4.5: Transaction time for PostMark and wall clock time for Applevel bench-

marks. All times are in seconds. The table shows both absolute and relative perfor-

mance numbers, comparing our new naming layer with the original one.

naming layer) to avoid the lookup bottleneck of the old naming layer. Thus, each

lookup operation in the old naming layer has to retrieve only one directory block,

and perform a linear scan over 64 entries. At such a small scale, linear lookups

provide performance comparable to indexed lookups. As shown in table 4.4, this

benchmark shows an improvement of about 34%, which can be attributed to the

batched flushing of metadata performed by the write-optimized LSM-tree.

4.4.3 Macrobenchmarks

Metadata performance

We used two macrobenchmarks, namely Postmark and Applevel, to evaluate the

overall performance of the new naming layer. We configured PostMark to per-

form 20,000 transactions on 10,000 files, spread over 100 subdirectories, with

file sizes ranging from 200 to 400 KB, and read/write granularities of 4 KB. Our

application-level benchmark consists of a set of very common file system opera-

tions, including copying, compiling, searching, and deleting. The copy-phase in-

volves copying over 75,000 files, including the MINIX 3 source tree. This source

tree is compiled in the build-phase. The find-phase traverses the resulting direc-

tory tree and stats each file. Finally, the delete-phase removes all files. The results

are listed in Table 4.5.

The PostMark numbers show a performance increase of roughly 31%, demon-

strating the effects of better metadata management when working with many small

files. The application-level benchmark is much more data-oriented than the previ-

ous benchmarks. Consequently the results only show a moderate increase in per-

formance, except in the find-component of the benchmark, which is completely

metadata-oriented and twice as fast.

4.4. EVALUATION 105

Query Indexed search Find

Query 1 0.33 (1.0) 8.24 (25.0)

Query 2 0.30 (1.0) 7.90 (26.3)

Table 4.6: Time for attribute-based searches to complete, in seconds, comparing Loris

indexed search with the same query done using the Unix find utility.

Query performance

We will now present our evaluation of the metadata search functionality in Loris.

We evaluated the total time taken to resolve two typical administrative queries: 1)

find all files owned by uid 100 with size > 1 MB, and 2) find all files modified

in the last hour. The queries were run over a randomly-generated, three-level

hierarchy containing 200,000 files. The query results encompass 1% of the total

amount of files.

We are currently experimenting with different interface setups and do not yet

have a fully working query resolver. Instead, we simulated queries by hardcoding

index lookups. Thus, the performance numbers presented here reflect only index

lookup times and do not include the overhead of other aspects of query process-

ing, like parsing. The running times are listed in Table 4.6. For comparison, we

ran the same query with find. We see that our indexing scheme achieves excel-

lent performance—both the range scans for getting the matching file IDs and the

pathname generation step are performed almost instantly.

4.4.4 Attribute indexing overhead

Finally, we reran the previous macrobenchmarks (PostMark, and Applevel with-

out delete) with attribute indexing on for the following POSIX attributes: size, uid,

gid, atime, mtime and ctime. Only files are indexed, not directories. We relaxed

the merging parameters of the LSM-tree used for indexing purposes and included

the running times in Table 4.7.

The results show that the overhead of indexing hovers between 4–19% for our

tests. File creates are the most expensive, as exemplified by the copy-phase of the

Applevel benchmark. This is because each new file adds an index entry for each

indexed attribute plus an index entry in the name index. We believe this overhead

is acceptable as it is possible to perform selective indexing of both attributes and

files easily to reduce the overhead.

106 CHAPTER 4. METADATA MANAGEMENT

Benchmark Indexing disabled Indexing enabled

PostMark 511 (1.0) 572.0 (1.12)

Applevel

Copy 40.9 (1.0) 48.7 (1.19)

Build 92.0 (1.0) 105.2 (1.14)

Find 10.7 (1.0) 11.1 (1.04)

Table 4.7: Attribute indexing overhead measurements. Time for PostMark and

Applevel macrobenchmarks to complete, in seconds, with attribute indexing en-

abled/disabled.

4.5 Related Work

In this section, we will present related work and compare our Loris-based meta-

data management infrastructure with other approaches. We classify related work

into three categories based on whether it deals with metadata storage management,

metadata interface management, or both.

4.5.1 Storage management

Today, most file systems use B-trees or their variants for indexing directory en-

tries. Unfortunately, while these do provide efficient keyed lookup, it is well

known that they are slow for high-entropy inserts due to their in-place updating of

records which requires one disk seek per tree level in the worst case [92].

Spyglass is a user-level search application that proposed using multidimen-

sional indexing structures in combination with hierarchical partitioning to provide

scalable metadata search. In effect, Spyglass builds a user-level metadata man-

agement subsystem and as a result suffers from problems inherent to such sys-

tems. We, on the other hand, propose a modular integration of such functionalities

within the Loris storage stack. We would like to point out here that even though

we used LSM-tree-based indexing, our framework is flexible enough to support

other types of indices. As we will discuss later, we are working on modifying

our prototype to support and evaluate different partitioning strategies to provide

scalable searching. BabuDB is a custom-built database back-end intended to be

used as a metadata server back-end for any distributed file system. BabuDB uses

LSM-trees for storing file system metadata and their mapping of hierarchical file

systems to database records is similar to our approach. They also exploit the snap-

shoting capabilities of the LSM-tree to support database snapshots. As BabuDB

targets only the storage management aspect of metadata management systems,

it does not provide real-time attribute indexing, or search-friendly interfaces for

querying metadata.

4.6. FUTURE WORK 107

4.5.2 Interface management

In order to cope with the hierarchical model’s restrictions, file systems have been

fitted with hard and symbolic links, allowing files to be referenced from multiple

names. Unfortunately, such links are unidirectional. A problem, for example,

is that when you delete the symbolic link target, you end up with a dead link.

Gifford et al. introduced the concept of Semantic File Systems (SFS), providing

associative access to files [32]. Virtual directories are used to list files matching a

specified attribute-value pair; file type-specific transducers are used to extract this

metadata from file contents. Although the path-based queries are syntactically

POSIX-compatible, only conjunctive queries are possible. Others have extended

upon these concepts [14] [83] [95].

HAC [35] exposes similar functionality through semantic directories: persis-

tent directories associated with a query that are updated periodically. Unlike SFS’s

read-only virtual directories, semantic directories are tightly integrated into the hi-

erarchy, and HAC allows adding and removing files from them. HAC has been

architected such that it is possible to choose different mechanisms for associa-

tive access. For example, rather than the default full-text retrieval scheme, more

sophisticated schemes can be used. All these systems focus primarily on the in-

terface specification to enable content-based access and do not consider storage

management issues.

4.5.3 End-to-end metadata management

Since databases have optimized storage formats for storing structured data, Inver-

sion proposed using a relational database as the core file system structure [69].

By using several PostgreSQL tables to store file metadata and data, Inversion was

able to extend transactional semantics of databases to file systems. Further, such

a database could also be queried declaratively to search over metadata. However,

it has been shown that such a database-based metadata back end suffers from

significant performance limitations, making it unsuitable for performance-critical

installations [59].

Magellan [59] is an on-disk file system that supports scalable searching of

metadata. It integrates the search-optimized data structures used by Spyglass

within a file system and provides a custom-built search interface, thus provid-

ing an end-to-end metadata management framework. However, the approach of

integrating metadata management with on-disk file systems lacks modularity.

4.6 Future Work

The new Loris-based metadata management framework opens up several possible

avenues for future work. We will outline some possible directions in this section.

108 CHAPTER 4. METADATA MANAGEMENT

4.6.1 Partitioning

Spyglass and Magellan showed how partitioning could be used to achieve scal-

able search performance in large installations. We are working on implementing a

simple file volume-based partitioning of the LSM-tree to improve scalability. The

fundamental idea behind this partitioning strategy is to maintain a set of LSM-

trees, both data and index trees, on a per-volume basis. Since indices are sep-

arated on a volume basis, and since users search for files in their own volumes

most of the time, query evaluation can be sped up considerably as only the target

volume’s index is used to find matching files. Other partitioning techniques, like

hierarchical partitioning, can also be implemented easily using our infrastructure.

4.6.2 Exploiting heterogeneity

As we explained earlier, the Loris stack can use the attribute infrastructure to

exchange policy information between layers. For instance, the naming layer uses

this infrastructure to inform the logical layer to mirror directories on all local

devices. We plan to use the same infrastructure to assign different files to different

types of storage devices. For instance, the Loris files used by the LSM-tree that

contains key-value entries representing file system metadata can be stored on an

SSD while the secondary indices could be stored on disk drives. Such an approach

trades off query performance for space-efficient usage of SSD, as the SSD is used

only for serving metadata requests.

4.7 Conclusion

Application-level metadata management subsystems have evolved as a common

solution in several application areas to provide scalable metadata indexing and

search functionalities lacking in file systems. In this paper, we showed how Loris

acts as a modular framework for integrating efficient metadata management sub-

systems with the storage stack. We presented the design of our Loris-based meta-

data subsystem and showed how it provides significant performance speedups for

metadata intensive workloads. We also showed how our LSM-tree-based indices

and attribute-based search interface enable scalable, efficient metadata search.

Chapter 5

Integrating Flash-based SSDs

into the Storage Stack

Abstract

Over the past few years, hybrid storage architectures that use high-performance

SSDs in concert with high-density HDDs have received significant interest from

both industry and academia, due to their capability to improve performance while

reducing capital and operating costs. These hybrid architectures differ in their

approach to integrating SSDs into the traditional HDD-based storage stack. Of

several such possible integrations, two have seen widespread adoption: Caching

and Dynamic Storage Tiering.

Although the effectiveness of these architectures under certain workloads is

well understood, a systematic side-by-side analysis of these approaches remains

difficult due to the range of design alternatives and configuration parameters in-

volved. Such a study is required now more than ever to be able to design effective

hybrid storage solutions for deployment in increasingly virtualized modern stor-

age installations that blend several workloads into a single stream.

In this paper, we first present our extensions to the Loris storage stack that

transform it into a framework for designing hybrid storage systems. We then illus-

trate the flexibility of the framework by designing several Caching and DST-based

hybrid systems. Following this, we present a systematic side-by-side analysis of

these systems under a range of individual workload types and offer insights into

the advantages and disadvantages of each architecture. Finally, we discuss the

ramifications of our findings on the design of future hybrid storage systems in the

light of recent changes in hardware landscape and application workloads.

109

110 CHAPTER 5. HYBRID STORAGE

5.1 Introduction

Over the last decade, flash-based SSDs (Solid State Disks) have revolutionized

the storage landscape. Though modern flash SSDs perform much better than

their rotating media counterparts under both random and sequential workloads,

flash-only storage installations continue to be prohibitively expensive for most,

if not all, enterprises due to the high cost/GB of SSDs. As a result, storage re-

searchers have proposed implementing systems based on hybrid storage architec-

tures that use high performance flash SSDs in concert with high-density HDDs

(Hard Disk Drives) to reduce capital and operating costs, while improving overall

performance.

Of all such architectures, two have gained widespread adoption—Caching [2]

and Dynamic Storage Tiering (DST) [3; 42; 56]. The Caching architecture in-

volves extending the two-level memory hierarchy to the third level by using flash

devices as intermediate caches that sit between HDDs and memory. The DST ar-

chitecture, on the other hand, uses SSDs for primary data storage by establishing

tiers of high-performance flash storage and high-density disk storage.

Due to their popularity, these two architectures have also been in the limelight

of research over the past few years, and the effectiveness of Caching and DST

under certain specific workloads is well understood [37; 53]. However, with the

wide spread adoption of storage virtualization, modern storage installations blend

I/O requests from different workloads together into a single stream. Designing ef-

ficient hybrid architectures for such workloads requires answering two important

questions: 1) how do existing architectures fare under such workloads?, and 2)

should future hybrid systems support not one, but multiple architectures, and pair

workloads with their ideal architectures?

In order to answer these questions, we need to perform 1) a side-by-side com-

parison of existing architectures under such mixed workloads, and 2) a system-

atic study of interactions between architectural design alternatives and workload

parameters. Unfortunately, due to the wide range of configuration parameters

and design alternatives involved in building Caching and DST-based systems,

performing such a study would be infeasible in the absence of a hybrid storage

framework.

In this paper, we will show how the Loris storage stack, with a few extensions,

can be transformed into a modular framework for implementing and evaluating

hybrid storage systems. To illustrate the flexibility of the framework, we will

implement several flavors of Caching and DST. We will then use several mac-

robenchmarks and file system workload generators to perform a systematic study

of the effectiveness of these Loris-based hybrid systems under a variety of work-

loads. Based on our evaluation, we will offer insights into 1) the design of current

hybrid systems by investigating design factors that impact performance, and 2)

the design of future systems in light of recent changes in hardware landscape and

5.2. HYBRID STORAGE SYSTEMS 111

application workloads.

The rest of the paper is organized as follows. In Sec. 5.2, we will present a

classification of Caching and DST architectures based on several design parame-

ters. In Sec. 5.3, we will introduce the Loris stack and describe the plugin-based

extensions that transform it into a hybrid storage framework. Following this, we

will describe how we used this framework to implement Loris-based Caching and

DST systems in Sec. 5.4. We will then present our side-by-side evaluation of these

hybrid systems using several benchmarks in Sec. 5.5. Finally, we will discuss the

ramifications of our findings in Sec. 5.6, and conclude in Sec. 5.7.

5.2 Hybrid storage systems

As we mentioned earlier, Caching and DST architectures differ in the way they

integrate SSDs into the HDD-based traditional storage stack. In this section, we

will explore the design space of these hybrid architectures and classify them based

on several design parameters.

5.2.1 Caching

Caching architectures use SSDs as a non-volatile, intermediate caches between

the system memory (RAM) and HDDs. Thus, in all Caching architectures, SSDs

contain only cached copies of HDD-resident primary data.

Based on when data is cached, Caching architectures can be classified as On-

demand or Interval-driven. While data is cached as a side effect of a read oper-

ation is On-demand Caching, Interval-driven Caching monitors data blocks and

periodically, once every preconfigured interval, trades old SSD-resident “cold”

data for new HDD-resident “hot” data.

Irrespective of when data is cached, Caching architectures can be classified as

read-only or read-write caches depending on their behavior with respect to write

operations. Read-only caches maintain only clean data. Thus, writes to uncached

data blocks are not buffered by the SSDs, and updates to cached data blocks in-

validate the cached copies. ZFS’s L2ARC [62] and NetApp’s FlashCache [2] are

examples of read-only caches used to speed up workloads dominated by random

reads.

Read-write caches, on the other hand, cache both data reads and writes. They

can be further classified into Write-back and Write-through caches. A Write-back

cache eliminates all foreground HDD writes by buffering them in the SSD and

resynchronizing the primary HDD copy later. Since the cached SSD copy and pri-

mary HDD copy can be out of sync in a Write-back Caching system, extra book-

keeping is required to maintain consistency and prevent data loss across power

failures or system reboots. EMC’s FastCache [5] is an example of a Write-back

112 CHAPTER 5. HYBRID STORAGE

cache that uses flash drives configured as RAID1 mirror pairs to guarantee relia-

bility in the face of system or power failures.

A Write-through cache, on the other hand, forwards writes to both the cached

SSD copy and the primary disk copy. By maintaining all data copies in sync,

Write-through caching avoids additional (potentially synchronous) metadata up-

dates at the expense of foreground write performance. One could further classify

a Write-through cache into a Write-through-all cache or Write-through-update

cache depending on how writes to uncached blocks are handled. While a Write-

through-all cache admits uncached data blocks, a Write-through-update cache

sieves new data by admitting only cached data writes. Azor [53] is an exam-

ple of a Write-through Caching system that supports both Write-through-all and

Write-through-update Caching.

5.2.2 Dynamic Storage Tiering

Dynamic Storage Tiering architectures (DST) organize high-performance, flash-

based SSDs and high-density, magnetic HDDs into multitier systems and partition

data between tiers depending on several price, performance, or reliability factors.

Thus, unlike Caching architectures, each data item in a DST system is stored in

only one location.

Based on the initial allocation policy used, DST architectures can be classified

into Hot-DST and Cold-DST types. With Hot-DST architectures, data is initially

allocated on the HDD tier. Periodically, “hot” data are migrated to the SSD tier.

With “Cold-DST” architectures, data are initially allocated on the SSD tier and

“cold” data are periodically demoted to the HDD tier. IBM’s EasyTier [96], Com-

pellent’s tiering systems [4], EDT [37] and HyStor [19] are a few examples of

Hot-DST systems. Hot-DST architectures can be further classified depending on

the time at which “hot” data are migrated. In Dynamic Hot-DST systems, “hot”

data from the HDD tier are migrated on demand, while in Interval-driven Hot-DST

systems, data are migrated at predefined intervals. Almost all Hot-DST systems

we are aware of are interval driven.

At a very high level, Hot-DST and Caching architectures appear to be identi-

cal with respect to their mode of operation. Both Interval-driven architectures mi-

grate/cache data at periodic intervals. Both On-demand architectures migrate/cache

data as a side effect of a read operation. Furthermore, in order to be able to map

data to their ideal storage targets, both Caching and DST architectures observe

access patterns and classify data as “hot” or “cold.” For instance, all Caching

architectures use a second-level caching algorithm (like L2ARC [62]) and all

DST architectures use some “hot” data identification mechanism (like inverse

bitmaps [19]), to identify “hot” data that must be serviced by the SSDs. This

raises two questions: 1) can popular DST algorithms be used for implementing

efficient Caching architectures and vice versa?, and 2) all other factors considered

5.3. BACKGROUND: THE LORIS STORAGE STACK 113

identical, is there a performance impact associated with the most important design

difference—presence or absence of a data copy?

Later, in Sec. 5.4, we will address the first question by showing how we use a

popular DST algorithm to implement efficient Caching systems. Then, in Sec. 5.5,

we will evaluate the Caching and DST implementations side by side to answer

the second question. Having described several hybrid architectures, we will now

give a brief overview of the Loris stack and show how we use it as framework to

implement hybrid systems.

5.3 Background: The Loris storage stack

In prior work, we proposed Loris [9], a redesign of the storage stack. Loris is

made up of four layers as shown in Figure 5.1. The interface between these layers

is a standardized file interface consisting of operations such as create, delete, read,

write, and truncate. Every Loris file is uniquely identified using a <volume iden-

tifier, file identifier> pair. Each Loris file is also associated with several attributes,

and the interface supports two attribute manipulation operations—getattribute and

setattribute. Attributes enable information sharing between layers, and are also

used to store out-of-band file metadata. We will now briefly outline the responsi-

bilities of each layer in a bottom-up fashion.

5.3.1 Physical layer

The physical layer is tasked with providing 1) device-specific layout schemes,

and persistent storage of files and their attributes, 2) end-to-end data verification

using parental checksumming, and 3) fine-grained data sharing and individual

file snapshoting. Thus, the physical layer exports a snapshotable physical file

abstraction to the logical layer. Each storage device is managed by a separate

instance of the physical layer, and we call each instance a physical module.

5.3.2 Logical layer

The logical layer provides both device and file management functionalities. It is

made up of two sublayers, namely the file pool sublayer at the bottom, and the

volume management sublayer at the top. The logical layer exports a logical file

abstraction to the cache layer. A logical file is a virtualized file that appears to be a

single, flat file to the cache layer. Details such as the physical files that constitute

a logical file, the RAID levels used, etc. are confined within the two sublayers.

We will now briefly describe the functionalities of each sublayer.

The volume management sublayer is responsible for providing both file vol-

ume virtualization and per-file RAID services. It maintains data structures that

track the membership of files in file volumes and mapping between physical files

114 CHAPTER 5. HYBRID STORAGE

File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Figure 5.1: This figure depicts (a) the arrangement of layers in the traditional stack,

and (b) the new layering in Loris. The layers above the dotted line are file aware; the

layers below are not.

and logical files. It also provides file management operations that enable snap-

shoting and cloning of files or file volumes. In prior work, Loris has been used to

design a new storage model [10]. File pools simplify storage administration and

enable thin provisioning of file volumes [10]. The file pool sublayer maintains

data structures necessary for tracking device memberships in file pools, and pro-

vides device management operations for online addition, removal and hot swap-

ping of devices.

Each file volume is represented by a volume index file that tracks logical files

belonging to that volume. The volume index is created during volume creation,

and it stores an array of entries containing the configuration information for each

logical file in that volume. This configuration information is 1) the RAID level

used, 2) the stripe size used, and 3) the set of physical files that make up the

logical file. Similar to the way files are tracked by the volume index file, file

volumes themselves are tracked using the meta index file. This file also contains

an array of entries, one per file volume, containing file volume metadata. Thus,

using these two data structures, the volume management sublayer supports file

volume virtualization. Multiple file volumes can be created in a single file pool in

Loris which makes thin provisioning of file volumes possible.

5.3. BACKGROUND: THE LORIS STORAGE STACK 115

5.3.3 Cache and Naming layers

The cache layer provides data caching. As the cache layer is file-aware, it can

provide different data staging and eviction policies for different files or types of

files.

The naming layer acts as the interface layer. Our prototype naming layer im-

plements the traditional POSIX interface. The naming layer uses Loris files to

store data blocks of directories that contain directory entries. It also uses the

attribute infrastructure in Loris to store POSIX attributes of each file as Loris at-

tributes. All POSIX semantics are confined to the naming layer. For instance, as

far as the logical layer is concerned, directories are just regular files.

5.3.4 Tiering Framework

All hybrid storage systems, irrespective of how they integrate flash into the storage

stack, essentially attempt to pair data with their ideal storage device to maximize

performance. In order to do so, all these systems have to 1) collect and maintain

access statistics to classify data, and 2) implement background migration to trans-

parently relocate data to their designated target. We had to extend Loris to support

these two functionalities in order to transform it into a framework.

We did this by extending Loris’ logical layer. There were three main reasons

for extending the logical layer compared to other layers. First, the logical layer

uses the logical file abstraction to implement per-file RAID algorithms by mul-

tiplexing requests across physical files. We can exploit the same abstraction to

support transparent migration of files between devices/physical modules. Second,

the logical layer has information about both file access patterns and device perfor-

mance characteristics, making it the ideal spot for implementing algorithms that

take into account both these factors. Third, access statistics collected at the logi-

cal layer reflect the real storage workload after caching effects have been filtered

out. Thus, by confining changes to the logical layer, we modularly extend the

Loris stack to implement hybrid systems without affecting algorithms in any of

the other layers.

Data collection plugin

Several DST and Caching systems have proposed collecting different access statis-

tics for classifying data. For instance, EDT [37] is a DST system designed for

installations that consist of SSD, SAS (Serial Attached SCSI) and HDD tiers. For

achieving optimal performance under such multitier installation, EDT classifies

hot extents into IOPS-heavy and bandwidth-heavy types, and stores IOPS-heavy

extents on the SSD tier and bandwidth-heavy extents on the SAS tier. Thus for

implementing an EDT-style DST system, one must collect and maintain IOPS and

116 CHAPTER 5. HYBRID STORAGE

bandwidth requirements for each file. Azor [53], on the other hand, is an SSD-

based Caching system that maintains access frequencies for each cached SSD

block and uses it to perform cache admission control. Thus for implementing an

Azor-style Caching system, one must maintain access counts for each file.

To support multiple such design alternatives, we extended the logical layer

using a generic plugin model. The data collection plugin is responsible for col-

lecting and maintaining access statistics for each file. Each plugin implementation

is required to support a standard set of callback routines. During the startup phase,

depending on the type of hybrid configuration to be deployed, the appropriate data

collector is registered with the logical layer, which then invokes the callback rou-

tines at strategic points during execution.

We implemented a data collection plugin that uses inverse bitmaps [19] to

identify performance-critical files that should be cached or migrated. During every

read and write operation, the inverse bitmap b is calculated as shown below.

b = 2
6−⌊log

2
(N)⌋ (5.1)

In the equation, N refers to the number of 4-KB pages read/written from the file.

The value 6 is an implementation-specific constant chosen based on the maximum

number of 4-KB file pages read or written by the cache layer in a single operation

(64). The computed value is then added to a 32-bit counter associated with that

file. Thus, the inverse bitmap assigns a large weight to files read/written in small

chunks, which could either be small files or large files randomly read/written in

small chunks, thereby prioritizing random accesses over sequential ones.

Our current prototype maintains an in-memory array of counters, one per tier.

When queried for the “hottest” file in the disk tier, the plugin picks the most

recently used file with the highest counter value. When queried for the “coldest”

file in the SSD tier, the plugin picks the least recently used file with the lowest

counter value. Thus, we extend the original inverse bitmap design [19] by using

recency as a tiebreaker among files with identical counter values. The in-memory

approach is probably not scalable as modern installations consist of millions of

files, so we are currently considering using priority dequeues using external heap

variants or dynamic histograms with delayed updates for scalable maintenance of

access statistics.

Our data collection plugin also explicitly keeps track of the counter value of

the last file that has been evicted from the SSD tier during cleanup. It uses this

value to perform admission control. A file is qualified for migration to the SSD

tier only if its counter value is higher than that of the last evicted file.

We would like to point out here that all hybrid architectures we present in

Sec. 5.4 use the inverse bitmap plugin as their data collector. Thus, although

inverse bitmaps were originally introduced and used in Hystor [19] for DST, we

show how it can also used to implement high performance Caching architectures.

5.3. BACKGROUND: THE LORIS STORAGE STACK 117

Thus, as we mentioned earlier, most data collection algorithms are architecture

neutral.

We would also like to point out that although we do not consider multitier

installations (such as ones including SAS drives) as a part of this work, extending

Loris to such configurations only requires replacing relevant plugins.

File migration

As we mentioned earlier, we exploited the logical file abstraction of the logical

layer to support transparent file migration between physical modules. Our current

implementation locks each file during migration to prevent foreground requests

from accessing the source during migration. We are also working on implement-

ing transparent, incremental migration of file data. The incremental migration

implementation would first take a snapshot of the target file using the individual

file snapshoting functionality present in Loris, following which it would copy the

snapshot’s data and attributes to the designated target. After successfully copying

the snapshot, the migration plugin would then, if need be, perform an incremental

transfer of data modified since the snapshot.

5.3.5 Loris as a platform for storage tiering - The Pros

There are several advantages in using Loris as the basis for implementing DST

solutions. First, most DST solutions exploit device heterogeneity to improve per-

formance. For instance, Avere’s DST system [3] stores all write-only files on the

SAS tier using a log-structured layout to optimize write throughput. Since the

Loris stack provides the capability to pair devices with their ideal layout algo-

rithms, it can be used to exploit heterogeneity inherent in tiered systems.

Second, several DST systems use semantic information to identify crucial data

(like file system metadata). As we mentioned earlier, semantic information is

exchanged between layers in the Loris stack using the attribute infrastructure. In

the Loris stack, each file create carries with it a file type attribute that informs

the logical layer if the file is a metadata file (directory) or a data file. Thus, the

logical layer can use this semantic information to assign different policies to files

or file types. We will show later how we use semantic information to implement

1) type-aware sieving of large files, and 2) per-file tiering policy later in the paper.

Third, administrative operations like hot-swapping and online addition and

removal of devices are mandatory features in any enterprise DST system. The file

pool model in Loris simplifies storage administration and is capable of supporting

all these features.

118 CHAPTER 5. HYBRID STORAGE

5.3.6 Loris as a platform for storage tiering - The Cons

Since Loris’ logical layer maintains mapping information at the granularity of

whole files, implementing Caching or DST systems that operate on a sub-file ba-

sis is not possible. Consider an append write to an uncached file for instance.

In order to implement Write-back Caching, Loris would have to buffer this write

in the SSD. Doing so would require the logical layer to map two sets of logical

file offsets to two different physical files (offset range <0, old file size −1> to

physical file stored in HDD, and range <old file size, new file size −1> to a phys-

ical file on the SSD). The current mapping infrastructure only supports mapping

a whole logical file to one or more physical files.

However, we would like to emphasize the fact that this is a limitation of just

the current implementation. We are working on designing a new mapping format

for the logical layer that supports sub-file mapping. With the new infrastructure,

Loris would select the mapping type on a per-file basis. For instance, while all

small files and files read/written in their entirety could be stored in a mapping file

based on the old format, a file that is read/written in 4-KB chunk could use the new

format that could potentially map each 4-KB logical block to a different physical

file. By using this extension mapping infrastructure, we intend to evaluate block,

extent and file-level tiering and Caching implementations side by side as a part of

future work.

We would also like to point out that despite the lack of subfile mapping ca-

pability in Loris, all the results we present in this work are equally applicable to

block or extent-level implementations. As all Caching and DST architectures are

implemented using a single framework, and as all of them share the same data col-

lection plugin (which maintains access statistics at the granularity of whole files),

we believe that a block or extent-based realization of these architectures, under

similar workloads, using the same access statistics would produce comparative

results identical to our study.

5.4 Loris-based hybrid systems

Having described the plugins, we will now show how we use these plugins to im-

plement several Caching and DST systems for a two-tier (SSD/disk) installation.

Common to all these systems is the type-aware sieving of large files. During pre-

liminary evaluation of these hybrid systems, we found out that certain benchmarks

(Web Server) create large, append-only log files that were never read. As these

files received a lot of writes, their bitmap counter values were high. As a result

all hybrid systems pinned these log files to the SSD tier, thereby wasting valuable

space that could be used for housing other “genuinely hot” files. To prevent this,

we added type-aware sieving to Loris. With sieving, any file larger than a config-

urable threshold, which in our current prototype is 1-MB, will not be cached or

5.4. LORIS-BASED HYBRID SYSTEMS 119

migrated to the SSD. Similar, any SSD-resident file is explicitly demoted (in the

case of DST) or invalidated (in the case of Caching) when it grows beyond 1-MB.

Type-aware sieving is an example of how we use semantic awareness of the Loris

stack to improve the performance of all hybrid systems.

Also common to all these systems is the cleaner implementation. A cleanup

of the SSD tier is triggered when a write operation to the SSD tier cannot be com-

pleted due to lack of space. This can happen either during a foreground write

operation to a file in the SSD tier, or during background migration/caching of a

file from the disk tier. In both cases, the cleaner consults the data collection plugin

to determine the set of cold files to evict from the SSD tier. The action taken by

the cleaner depends on the architecture being implemented. For Caching architec-

tures, the cleaner simply invalidates the cached file copy by deleting it from the

SSD. For DST implementations, the cleaner invokes the migration plugin, demot-

ing those files back to the disk tier. This cold migration continues until enough

space has been cleared to finish the write operation. In addition to such fore-

ground cleaning, we also run the cleaner in the context of a background thread,

to proactively clean the SSD tier, under certain hybrid configurations as we will

show later.

We will now describe how we implemented several hybrid storage systems

using the Loris stack.

5.4.1 Loris-based Hot-DST systems

We will now describe the Loris-based implementation of two Hot-DST architec-

tures. As explained in Sec. 5.2, all Hot-DST architectures allocate data on the

HDD tier. They differ based on when they migrate “hot” data to the SSD tier.

Dynamic Hot-DST

Our Dynamic Hot-DST implementation migrates “hot” files as a side effect of a

read operation that is serviced by the HDD tier. It first queries the data collection

plugin to determine if the file is a valid migration candidate. As we mentioned

earlier, our data collection plugin considers a file to be a valid candidate if its

counter value is higher than that of the file last evicted from the SSD tier. In such

a case, the DST implementation queues the file for migration with the migration

plugin.

Interval-driven Hot-DST

We also implemented a system based on the Interval-driven Hot-DST architecture.

Every preconfigured number of seconds, our Hot-DST implementation runs in the

context of a background thread and migrates “hot” files identified by the data

collection plugin to the SSD tier. Hot file migration continues until all potential

120 CHAPTER 5. HYBRID STORAGE

candidates have been migrated or the “hottest” file in the disk is colder (has a

lower counter value) than the “coldest” file in the SSD tier. The data collection

plugin verifies the latter condition by comparing the next candidate file’s access

counter with that of the file last evicted from the SSD.

As the interval of migration is a configuration parameter, we will use two ver-

sions (five and eighty seconds) of our Interval-driven Hot-DST system to evaluate

the impact of migration interval on overall performance.

5.4.2 Loris-based Cold-DST architectures

We will now describe the Loris-based implementation of three Cold-DST archi-

tectures. As explained in Sec. 5.2, all Cold-DST architectures allocate data on the

SSD tier.

Plain Cold-DST

This is conceptually the simplest of all DST implementations. This system does

not perform any form of “hot” file migration. Foreground write requests to files in

the SSD tier that are unable to complete due to lack of space automatically trigger

tier cleanup. Files that are demoted during cleaning are never migrated back to

the SSD tier, not even if they become “hotter” at a later point in time. Thus, this

implementation uses the data collection plugin only to determine which files to

evict from the SSD tier.

Dynamic Cold-DST

While the Plain Cold-DST system would work well with workloads where newly

created data accounts for a significant fraction of accesses, it would perform

poorly under workloads with shifting locality. This is because any access to data

that has been “cold” migrated will be serviced by the disk tier.

We solve this problem by adding on-demand “hot”-file migration to the Plain

Cold-DST system. Similar to the Dynamic Hot-DST system, data-collector-approved

files are migrated in the background as a side effect of a read operation that finds

the file in the HDD tier. However, unlike the Hot-DST counterpart, new files

continue to be allocated on the SSD tier in the Dynamic Cold-DST system.

Dynamic Cold-DST with background cleaning

When operating with a full SSD, dynamic migration and foreground write requests

trigger tier cleanup. As cleaning requires migrating “cold” files off the SSD tier,

these writes blocks until sufficient free space has been generated. To avoid stalling

write requests, we added a proactive background cleaner to our Dynamic Cold-

DST implementation. The cleaner implementation maintains a running counter

5.5. EVALUATION 121

of the total amount of “cold” data evicted from a full SSD tier as a side effect of

foreground or dynamic migration writes. It uses this counter as an estimate of the

amount of space to recover for speeding up future write operations. The cleaner

runs in the context of a background thread and starts evicting “cold” files as a side

effect of the first blocking write request.

5.4.3 Loris-based Caching

As we explained earlier, the whole-file mapping infrastructure of our current pro-

totype makes it impossible to implement Write-back or Write-through-all Caching

systems. We will now describe the implementation of two Write-through-update

Caching architectures.

On-demand Caching

On-demand Caching, for most part, works similar to Dynamic Hot-DST system.

with the only difference being the fact that files are cached rather than being mi-

grated. As the primary file copy continues to reside in the HDD, unlike the Hot-

DST counterpart, cleaning the SSD only requires deleting “cold” files to invalidate

them. As cleaning can happen as a side-effect of foreground write operation, and

as On-demand Caching is identical to Dynamic Hot-DST in every other aspect, we

can compare the two implementations head-to-head to measure the SSD cleaning

overhead.

Interval-driven Caching

Interval-driven Caching works identical to the Interval-driven Hot-DST imple-

mentation with the exception that files are copied rather than migrated. Similar to

its Hot-DST counterpart, all files are initially allocated on the HDD. Periodically,

at a configurable interval (five seconds in our current prototype), the statistics

accumulated by the data collector are used to cache “hot” files in the SSD tier.

Similar to the Dynamic Hot-DST—Caching comparison, we can also compare

the two Interval-driven architectures to measure the impact of cleaning on overall

performance.

5.5 Evaluation

Having described how we implemented various hybrid architectures, we will now

present a systematic analysis of the effectiveness of these architectures under a

wide range of workloads. We will first describe the hardware setup and bench-

marking tools we used for our evaluations. We will then present a side-by-side

122 CHAPTER 5. HYBRID STORAGE

evaluation of these architectures and offer insights into the interaction between

design alternatives and workload parameters.

5.5.1 Test Setup

All tests were conducted on an Intel Core 2 Duo E8600 PC, with 4-GB RAM, us-

ing a 500-GB 7200-RPM Western Digital Caviar Blue SATA hard disk (WD5000AAKS),

and a OCZ Vertex3 Max IOPS SSD. Table 5.1 lists the performance characteris-

tics of these devices. We ran all tests on 8-GB test partitions at the beginning of

the devices.

Device BB/s Random 4K IOPS

WD5000AAKS 126/126 112/91

OCZ Vertex 3 MAX IOPS 550/500 35000/75000

Table 5.1: Device properties: The table lists the read/write performance characteristics

of the two SATA devices we use for evaluating various hybrid architectures.

The Loris prototype has been implemented on the MINIX 3 multiserver op-

erating system [44]. We deliberately configured Loris to run with a 64-MB data

cache to ensure that the working set generated by benchmarks is at least an order

of magnitude larger than the in-memory cache. Thus, using a low cache size, we

heavily stress the I/O subsystem.

To estimate the effect that SSD size has on the effectiveness of various DST

models, we modified the Loris stack to keep track of the amount of user data

written to the SSD and used it to artificially limit the available SSD size. We used

this to evaluate the effectiveness of various architectures at three different SSD

sizes, namely, 25%, 50%, and 75% of the total working set size. We determined

the working set size by running each workload using a disk-only configuration.

We are aware of the fact that certain consumer grade SSDs exhibit perfor-

mance deterioration when occupied at 100% capacity. Although our artificial ap-

proximation of available SSD size sidesteps this issue, we believe that the results

we derive are still applicable as we target enterprise installations that are likely to

use enterprise-grade SSDs. Unlike consumer-grade SSDs, these high-end SSDs

are known to overprovision large amounts of scratch space to avoid the write-cliff

phenomenon [41].

5.5.2 Benchmarks and Workload Generators

Since we wanted to systematically analyze the interactions between architectural

design alternatives and workload parameters, we used Postmark and FileBench to

generate four different classes of server workloads. Postmark is a widely used,

5.5. EVALUATION 123

configurable file system benchmark that simulates a Mail Server workload. It

performs a specified number of transactions, where each transaction pairs a whole-

file read or append operation with a create or delete operation. We report the

transaction time, which excludes the initial file preallocation phase, for all hybrid

systems.

FileBench is an application-level workload simulator that can be used to model

workloads using a flexible workload modeling language (WML). We used two

predefined workload models to generate File Server and Web Server workloads.

We ran each workload for half an hour and we present the IOPS reported by

FileBench for all hybrid systems. Preliminary evaluation revealed wide variations

in results across different FileBench runs (even with the same hybrid architecture).

We traced this back to the variation in random seed selection between runs. In or-

der to reliably compare different hybrid architectures, we modified FileBench to

use a fixed random seed across all runs. With this patch, all the results we obtained

were reproducible.

5.5.3 Workload Categories

Using Postmark and FileBench, we were able to vary a variety of workload pa-

rameters like file size distribution, read-write ratios, access patterns (sequential vs.

random) and access locality (random vs Zipf). We will now detail the properties

and configuration parameters of each workload.

Mail Server

We configured Postmark to perform 80,000 transactions on 40,000 files, spread

over 10 subdirectories, with file sizes ranging from 4-KB to 28-KB, and read/write

granularities of 4-KB. The resulting workload is dominated by small file accesses,

has a 1:2 read-write ratio, and exhibits random access pattern with very little lo-

cality.

File Server

We configured FileBench to generate 10,000 files, using a mean directory width

of 20 files. The median file size used is 128-KB, which results in files an order of

magnitude larger than the rest of the workloads. The workload generator performs

a sequence of create, write, read, append (using a fixed I/O size of 1-MB), delete

and stat operations, resulting in a write-biased workload. As all files are read in

their entirety, and as append operations are large, the access pattern is sequential.

The workload lacks locality as file access distribution is uniform.

124 CHAPTER 5. HYBRID STORAGE

Web Server

The Web Server configuration generates 25,000 files, using a mean directory width

of 20 files. The median file size used is 32-KB, which results in a workload dom-

inated by small file accesses, with the only exception being an append-only log

file. The workload generator performs a sequence of ten whole-file read opera-

tions, simulating reading web pages, followed by an append operation (with an

I/O size of 16-KB) to a single log file. This results in a 10:1 read-write ratio

unlike other benchmarks. Though files are read in their entirety, the small file

size results in the file access pattern being essentially random. Similar to the File

Server workload, this workload also lacks locality due to the uniform file access

distribution.

Web Server (Zipf Distribution)

All the workloads described above lack locality which is present in several real-

life workloads. For instance, while the Web Server workload generated by FileBench

lacks locality, it is well known that file accesses in web servers tend to follow a

Zipf distribution [38]. Thus, we modified FileBench to generate a Zipf-based file

access distribution. In addition, we also wanted to evaluate the effectiveness of

Dynamic Cold-DST architecture under workloads with shifting locality. To do so,

we modified the default Web Server workload to generate two sets of 25,000 files

instead of one. As a result, the first fileset get flushed out to the HDD tier as a

part of cleaning up the SSD tier to accommodate the second one. We then ran the

workload generator on the first set, thereby simulating shifting workload locality

- the adversarial case for the Plain Cold-DST architecture.

5.5.4 Comparative evaluation

Having described the workload parameters, we will now present our evaluation of

various hybrid systems. We will first analyze Loris-based DST systems to identify

the impact of architecture-specific design alternatives (Sec. 5.5.4, Sec. 5.5.4). We

will then compare DST systems with their Caching counterparts to identify top

performers under various workloads (Sec. 5.5.4). Finally, we will present the

side-by-side comparison of these top performers under a mixed workload that

simulates a virtualized workload (Sec. 5.5.5).

Hot-DST Architectures

Figures 5.2, 5.3, 5.4, 5.5 show the performance of various Hot-DST configura-

tions. There are a number of interesting observations to be made from the results.

First, as can be seen in Figure 5.5, locality plays a major role in deciding the

effectiveness of Hot-DST architectures. Even at SSD sizes covering as little as

5.5. EVALUATION 125

 0

 200

 400

 600

 800

 1000

 1200

 20 30 40 50 60 70 80

T
ra

n
s
a
c
ti
o
n
 t
im

e
 (

s
e
c
)

SSD Size

Dynamic Hot-DST
Interval-driven Hot-DST(5s)

Interval-driven Hot-DST(80s)
SSDOnly
DiskOnly

Figure 5.2: Transaction time (seconds) under Postmark for various Hot-DST architec-

tures.

 0

 500

 1000

 1500

 2000

 2500

 3000

 20 30 40 50 60 70 80

IO
P

S

SSD Size

Dynamic Hot-DST
Interval-driven Hot-DST(5s)

Interval-driven Hot-DST(80s)
SSDOnly
DiskOnly

Figure 5.3: IOPS delivered under FileBench’s File Server workload by various Hot-

DST architectures.

126 CHAPTER 5. HYBRID STORAGE

 0

 500

 1000

 1500

 2000

 2500

 20 30 40 50 60 70 80

IO
P

S

SSD Size

Dynamic Hot-DST
Interval-driven Hot-DST(5s)

Interval-driven Hot-DST(80s)
SSDOnly
DiskOnly

Figure 5.4: IOPS delivered under FileBench’s Web Server workload by various Hot-

DST architectures.

 0

 500

 1000

 1500

 2000

 2500

 20 30 40 50 60 70 80

IO
P

S

SSD Size

Dynamic Hot-DST
Interval-driven Hot-DST(5s)

Interval-driven Hot-DST(80s)
SSDOnly
DiskOnly

Figure 5.5: IOPS delivered under FileBench’s Web Server (with Zipf) workload by

various Hot-DST architectures.

5.5. EVALUATION 127

25% of the total working set, all Hot-DST configurations show significant perfor-

mance improvement compared to the HDD-only case.

Second, under all workloads, the migration interval has a significant impact on

overall performance. For instance, under the Web Server workload (Figure 5.4),

the five-second, Interval-driven Hot-DST system delivers lower IOPS than even

the HDD-only case. The eighty-second Hot-DST system, on the other hand, im-

proves performance significantly. As we mentioned earlier, the Web Server and

File Server workloads access files uniformly in sequence without any locality. As

a result, when we traced migration patterns at the logical layer, we found quite

a large number of files shuttling back and forth between tiers, with the number

of such files increasing as the migration interval decreases. Thus, the thrashing

of files caused by the workload’s uniform access pattern destroys performance by

interfering with foreground reads and writes serviced by the HDD tier.

Third, unlike other workloads, the eighty-second, Interval-driven Hot-DST

performs poorly under Postmark. At low SSD sizes, it takes longer than the HDD-

only configuration to finish the transactions. Even at high SSD sizes covering as

much 75% of the working set, it performs only slightly (12%) faster. Analy-

sis revealed that this was due to two factors. First, as we mentioned earlier, the

workload generated by Postmark lacks locality. Thus, it is adversarial in nature

for locality-dependent algorithms like Interval-driven Hot-DST. Second, unlike

FileBench, Postmark is transaction-bound rather than time-bound (the termina-

tion condition is a limit on the number of transactions). Although we perform

80,000 transactions, analysis revealed that the total transaction time was not long

enough for Interval-driven Hot-DST to stabilize.

Fourth, while Dynamic Hot-DST performs similar to other Hot-DST architec-

tures under File Server (Fig. 5.3) and Web Server (Fig. 5.4) workloads, it provides

significant improvement under Postmark (Fig. 5.2). This is unexpected, especially

given the fact that the aforementioned reasons that slow down Interval-driven Hot-

DST also apply to Dynamic Hot-DST. By profiling the system, we found the

source of this performance improvement to be a counterintuitive increase in the

number of writes serviced by the SSD tier under Dynamic Hot-DST. As we men-

tioned earlier, Postmark pairs creates/deletes with reads/writes. Writes issued by

Postmark append data to existing files. As these append operations are typically

not block aligned, they trigger an “append-read” operation to fetch the append tar-

get (the file’s last data block). The ensuing “append write” is then buffered by the

data cache (caching layer). As a side effect of this read operation, the target file’s

access counter gets updated by a large increment (due to the small amount of data

being read), which results in the file being migrated to the SSD. When the data is

flushed from the cache at a later time, it gets serviced by the SSD (which now hosts

the “hot” file) resulting in the performance improvement. Interval-driven DST ar-

chitectures do not benefit from these “append-reads” as they miss the window of

opportunity due to not performing on-demand migration. We verified that this

128 CHAPTER 5. HYBRID STORAGE

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 30 40 50 60 70 80

T
ra

n
s
a
c
ti
o
n
 t
im

e
 (

s
e
c
)

SSD Size

None
Dynamic Cold-DST

Dynamic Cold-DST+Cleaner
SSDOnly
DiskOnly

Figure 5.6: Transaction time (seconds) under Postmark for various Cold-DST archi-

tectures.

was indeed the case by not updating access statistics on append reads. Under such

circumstances, the Interval-driven Hot-DST outperformed Dynamic Hot-DST.

Cold-DST Architectures

Figures 5.6, 5.7, 5.8, 5.9 show the performance of various Cold-DST configura-

tions. As can be seen in Figure 5.9, the adversarial workload with locality results

in Plain Cold-DST performing poorly when compared to the Dynamic Cold-DST

architecture. An interesting observation is that the Plain Cold-DST architecture

still performs noticeably better than the HDD-only case. On investigating this,

we found that during the preallocation phase, directories receive quite a lot of

read/write accesses. These accessess cause directories to possess high counter

values in comparison to other files. As a result, despite the barrage of creates

and writes during the preallocation phase, directories remain pinned to the SSD

tier. Thus, all directory accesses during the workload run are serviced by the SSD

causing a noticeable performance improvement over the HDD-only case.

If we consider workloads without locality, we see that the Dynamic Cold-DST

architecture deteriorates performance compared to Plain Cold-DST. Due to the

lack of locality, the performance gained by servicing reads from the SSD tier does

not match the overhead of migrating “hot” data from the HDD tier. However, an

interesting observation is how, despite similar access patterns (uniform without

5.5. EVALUATION 129

 0

 500

 1000

 1500

 2000

 2500

 3000

 20 30 40 50 60 70 80

IO
P

S

SSD Size

None
Dynamic Cold-DST

Dynamic Cold-DST+Cleaner
SSDOnly
DiskOnly

Figure 5.7: IOPS delivered under FileBench’s File Server workload by various Cold-

DST architectures.

 0

 500

 1000

 1500

 2000

 2500

 20 30 40 50 60 70 80

IO
P

S

SSD Size

None
Dynamic Cold-DST

Dynamic Cold-DST+Cleaner
SSDOnly
DiskOnly

Figure 5.8: IOPS delivered under FileBench’s Web Server workload by various Cold-

DST architectures.

130 CHAPTER 5. HYBRID STORAGE

 0

 500

 1000

 1500

 2000

 2500

 20 30 40 50 60 70 80

IO
P

S

SSD Size

None
Dynamic Cold-DST

Dynamic Cold-DST+Cleaner
SSDOnly
DiskOnly

Figure 5.9: IOPS delivered under FileBench’s Web Server (with Zipf) workload by

various Cold-DST architectures.

locality), File Server and Web Server workloads produce different comparative

results. While Dynamic Cold-DST catches up with Plain Cold-DST under the

File Server workload (Figure 5.7), it continues to lag behind by a huge margin

under the Web Server workload (Figure 5.8).

On investigating this further, we found that the delete operations performed

by the File Server workload play an indirect, albeit crucial, role in improving the

overall performance of Cold-DST architectures. Logically speaking, creating new

files in an already full SSD tier should have an adverse impact on performance

as these writes cannot be completed without evicting “cold” data. However, in

reality, newly written data is first buffered by Loris’ data cache (cache layer) be-

fore being flushed out to the SSD. Unlike write operations, file deletes propagate

down through the layers immediately. These delete operations free up space in the

SSD tier indirectly accelerating both delayed foreground writes and background

dynamic migrations. As the performance gained by allocating new files on the

SSD tier offsets the performance drop caused by migrating “hot” files, Dynamic

Cold-DST catches up with Plain Cold-DST under the File Server workload.

We saw only marginal improvement (at best) from adding background clean-

ing to the Dynamic Cold-DST architecture. We believe that this is due to our

cleaner being overly conservative in freeing up space. During experimentation,

we found out that aggressive cleaning had a negative impact on performance un-

der most workloads we used in this study. However, recent analysis of network

5.5. EVALUATION 131

 0

 200

 400

 600

 800

 1000

 1200

 20 30 40 50 60 70 80

T
ra

n
s
a
c
ti
o
n
 t
im

e
 (

s
e
c
)

SSD Size

On-demand Caching
Interval Caching

Dynamic Hot-DST
Interval Hot-DST(80s)

Plain Cold-DST
SSDOnly
DiskOnly

Figure 5.10: Transaction time (seconds) under Postmark for Caching and DST archi-

tectures.

file system traces indicate that over 90% of newly created files are opened less

than five times [61]. Under such conditions, a Dynamic Cold-DST implementa-

tion would definitely benefit from aggressive cleaning. We intend to perform a

reevaluation of our Cold-DST implementations under trace-driven workloads as a

part of future work.

DST vs Caching

Figures 5.10, 5.11, 5.12, 5.13 show the performance of the two Caching archi-

tectures. In addition, we also include the top performers from other architecture

types (Dynamic Hot-DST, Interval-Driven Hot-DST (eighty-second), and Plain

or Dynamic Cold-DST depending on the workload) so that we can perform a

side-by-side comparison of Caching and DST architectures. Several interesting

observations can be made from these figures.

First, as the Web Server workload with Zipf locality reveals (Figure 5.13), all

hybrid configurations perform significantly better than the HDD-only case at all

SSD sizes, thus, proving the effectiveness of hybrid architectures.

Second, On-demand Caching consistently outperforms Interval-driven Caching

under all workloads. The same reasoning behind Dynamic Hot-DST being faster

than its Interval-driven counterpart applies here as well—Interval-driven Caching

suffers from the same thrashing issues as its DST counterpart.

132 CHAPTER 5. HYBRID STORAGE

 0

 500

 1000

 1500

 2000

 2500

 3000

 20 30 40 50 60 70 80

IO
P

S

SSD Size

On-demand Caching
Interval Caching

Dynamic Hot-DST
Interval Hot-DST(80s)

Plain Cold-DST
SSDOnly
DiskOnly

Figure 5.11: IOPS delivered under FileBench’s File Server workload by Caching and

DST architectures.

 0

 500

 1000

 1500

 2000

 2500

 20 30 40 50 60 70 80

IO
P

S

SSD Size

On-demand Caching
Interval Caching

Dynamic Hot-DST
Interval Hot-DST(80s)

Plain Cold-DST
SSDOnly
DiskOnly

Figure 5.12: IOPS delivered under FileBench’s Web Server workload by Caching and

DST architectures.

5.5. EVALUATION 133

 0

 500

 1000

 1500

 2000

 2500

 20 30 40 50 60 70 80

IO
P

S

SSD Size

On-demand Caching
Interval Caching

Dynamic Hot-DST
Interval Hot-DST(80s)

Dynamic Cold-DST
SSDOnly
DiskOnly

Figure 5.13: IOPS delivered under FileBench’s Web Server (with Zipf) workload by

Caching and DST architectures.

Third, Postmark and File Server workloads (Figures 5.10, 5.11) reveal the im-

pact of an important design parameter—the presence or absence of a data copy.

As we mentioned earlier, the DST and Caching implementations are identical

in all aspects except for the fact that Caching implementation copies files while

the DST implementation migrates them. Since we implemented Write-through-

update Caching, any writes to these cached copies are also written through to their

primary disk replica. Since Postmark and File Server workloads consist of append

operations, all Caching architectures suffer due to the necessity to keep the two

copies in sync. Thus, they perform consistently worse than their DST counter-

parts. This shows how Hot-DST architectures are preferable over their Caching

counterparts under workloads with a low read:write ratio.

Fourth, the Web Server workload (Figures 5.12, 5.13) reveals a drawback in-

herent to DST. Unlike Postmark and File Server, we see that the Caching archi-

tectures outperform their DST counterparts at low SSD sizes. As we mentioned

earlier, under the Web Server workload, the only write operations issued are those

that append data to the log file. Since our implementation pins the log file to

the HDD tier, SSDs are used for serving only reads. As a result, Caching archi-

tectures incur no consistency-related overhead. Furthermore, SSD tier cleaning

under Caching architectures involves invalidating the cached copy by just delet-

ing it. DST architectures, on the other hand, have to migrate “cold” data back to

the HDD tier incurring an additional overhead. This shows how Caching architec-

134 CHAPTER 5. HYBRID STORAGE

tures are preferable over their Hot-DST counterparts under workloads with a high

read:write ratio.

Fifth, Cold-DST architectures meet or exceed the performance achieved by

other architectures under all workloads except the Web Server workload with lo-

cality (Figure 5.13). We believe that this oddity is in large part due to the preal-

location phase. As we explained earlier, FileBench first preallocates files before

starting the workload generators. As Cold-DST architectures allocate files on the

SSD tier, they start operating with a full SSD tier. Hot-DST and Caching architec-

tures, on the other hand, start with a near-empty SSD tier as they perform initial al-

location on the HDD tier. Thus, “hot” file migration under Hot-DST and Caching

architectures incurs no cleaning overhead until the SSD tier gets full. However,

dynamic migration under Cold-DST architectures incurs cleaning overhead from

the very beginning causing a noticeable performance drop.

5.5.5 Mixed Workloads and Hybrid Architectures

In order to analyze the effect of storage virtualization on the performance of var-

ious hybrid architectures, we wrote a FileBench workload model that blends File

Server and Web Server workloads into a single stream. We used the same config-

uration parameters as the individual workloads. In addition, we also preallocated

a dummy fileset to simulate shifting locality by flushing valid data off the SSD.

Type-aware DST

In order to understand if pairing workloads with ideal architectures is better than

adopting a “one-architecture-for-all” approach, we modified the Loris stack to

support Type-aware DST. Our Type-aware DST implementation associates a tier-

ing policy with each file volume (a rooted hierarchy of files and directories). We

created two file volumes, one per workload, and tag volumes with policies that

directed the logical layer to pair On-demand Caching with the Web Server work-

load and Dynamic Hot-DST with the File Server workload. Thus, our Type-aware

DST implementation caches or migrates “hot” files depending on whether they

belong to the Web Server or File Server volume.

Figure 5.14 shows the performance of individual Caching and DST architec-

tures side-by-side with our Type-aware DST architecture under the mixed work-

load. There are three important observations to be made. First, Dynamic Cold-

DST meets the performance of type-aware tiering at low SSD sizes, and exceeds

it at higher sizes. Contrasting this with the performance of Dynamic Cold-DST

under just the Web Server workload (Figure 5.8), we clearly see that the perfor-

mance improvement achieved by allocating new files in the SSD tier overshadows

the adverse effect of dynamic migration.

Second, the Caching configuration suffers under the mixed workload. This

5.6. DISCUSSION 135

 0

 500

 1000

 1500

 2000

 2500

 20 30 40 50 60 70 80

IO
P

S

SSD Size

Dynamic Cold-DST
Dynamic Hot-DST

On-demand Caching

Type-aware tiering
SSDOnly
DiskOnly

Figure 5.14: IOPS delivered under FileBench’s mixed workload by Caching and DST

architectures.

can be attributed to the synchronization overhead caused by append operations in

the File Server workload.

Third, the Type-aware DST outperforms both individual architectures at all

SSD sizes as it possesses the advantages of both Caching and Dynamic Hot-DST

architectures without any of their disadvantages. By migrating files created by

the File Server workload, and caching files created by the Web Server workload,

Type-aware DST reduces the cleaning overhead without incurring the expensive

synchronization overhead. This illustrates the benefit of pairing workloads with

their ideal architectures. The Type-aware DST architecture we implemented is

only one of many possible alternatives. For instance, one could also pair Cold-

DST architecture with the File Server workload and Dynamic Hot-DST architec-

ture with the Web Server workload. We intend to implement such architectures

and evaluate them using file system traces as a part of future work.

5.6 Discussion

Based on our experience designing and evaluating various hybrid architectures,

we will now present a few open research problems that need to be solved in order

to be able to design efficient hybrid storage architectures.

136 CHAPTER 5. HYBRID STORAGE

5.6.1 Analyzing Cold-DST

While Hot-DST systems have received a lot of attention over the past years, we be-

lieve Cold-DST architectures have been ignored due to two main reasons, namely,

poor write performance, and inferior reliability. The design of early hybrid sys-

tems that used first generation SSDs focused on improving the overall system

performance by pairing read-only data with SSD tier and write-only data with the

HDD tier. Researchers have pointed out that the limited lifetime (erasure cycles)

of NAND-flash-based SSDs must be considered as a critical factor in the design of

hybrid storage systems, and have even proposed using HDD-based logging to im-

prove the longevity of SSDs [89]. As Cold-DST architectures write significantly

more data to the SSD tier than other architectures, they will most certainly wear

out these SSDs faster.

However, unlike first generation SSDs, which suffered from poor random write

performance due to inefficient Flash Translation Layer (FTL) designs (among

several other reasons), modern SSDs have exceptionally high write performance,

sometimes even exceeding read performance. Similarly, modern enterprise-grade,

SLC flash-based SSDs have reasonably high reliability. For instance, OCZ Ver-

tex2 EX SLC SSD has an MTBF rating of 10 million hours.

In light of these recent changes in the storage hardware landscape, modern

DST systems (like Hystor [19]) have started allocating dedicated write-back ar-

eas in SSDs to improve write performance. Cold-DST architectures are capable

of meeting the performance offered by Write-back Caching without any of the

synchronization-related performance issues. However, there are several important

design factors that require further research. Should a Cold-DST implementation

partition the SSD space into read and write areas, and if so, can it dynamically

determine partition sizes? Recent analysis of network file system traces indicate

that over 90% of newly created files are opened less than five times [61]. Can we

utilize SSD parallelism to perform aggressive cold migration without affecting

foreground accesses under such workloads?

5.6.2 Other hybrid architectures

In addition to DST and Caching architectures, there are several other ways SSDs

could be integrated into the storage stack. For instance, SSDs could be used as

dedicated data stores for housing specific data types. One such example is us-

ing SSDs for exclusively storing file system metadata, executables and shared li-

braries, as suggested by the Conquest file system [104]. Researchers have shown

how MEMS-based storage can be used in several capacities to accelerate per-

formance of disk arrays [100]. Similarly, SSDs could also be used in heteroge-

neous disk arrays to eliminate redundancy-related performance bottlenecks. To

our knowledge, such configurations have not been compared side-by-side with

5.7. CONCLUSION 137

DST or Caching architectures, and such a systematic study would help determine

the best possible way to integrate SSDs into the storage stack.

5.6.3 Caching vs Tiering Algorithms

Earlier in this paper, we showed how inverse bitmaps, a “hot” data identification

mechanism originally used to implement a DST system, can also be used to im-

plement effective Caching architectures. The cross-architecture applicability of

several data collection algorithms raises several research questions like 1) how ef-

fective are second-level buffer cache management algorithms when used to imple-

ment DST architectures?, 2) does the relative performance of various architectures

remain unaffected across different data collection algorithms?

We intend to use the Loris stack to implement several hybrid architectures and

answer these research questions as a part of future work.

5.7 Conclusion

We showed how our plugin-based extensions to the Loris stack transform it into

a framework for implementing hybrid storage solutions. Using the Loris frame-

work, we illustrated the effectiveness of DST and Caching by showing how these

hybrid architectures can outperform a disk-only configuration even with SSD sizes

covering as little as 25% of the working set. Based on our evaluation, we offered

several insights into interactions between architecture-specific design alternatives

and workload parameters. We also discussed the ramifications of our work by

highlighting a few areas that deserve more attention from storage researchers.

Chapter 6

File-Level, Host-Side Flash

Caching with Loris

Abstract

As enterprises shift from using direct-attached storage to network-based storage

for housing primary data, flash-based, host-side caching has gained momentum as

the primary latency reduction technique. In this paper, we make the case for inte-

gration of flash caching algorithms at the file level, as opposed to the conventional

block-level integration. In doing so, we will show how our extensions to Loris,

a reliable, file-oriented storage stack, transform it into a framework for design-

ing layout-independent, file-level caching systems. Using our Loris prototype,

we demonstrate the effectiveness of Loris-based, file-level flash caching systems

over their block-level counterparts, and investigate the effect of various write and

allocation policies on the overall performance.

139

140 CHAPTER 6. HOST-SIDE CACHING

6.1 Introduction

Over the past few years, many enterprises have shifted from using direct-attached

storage to network-based storage for housing primary data. By providing shared

access to a large volume of data and by consolidating all storage resources at a sin-

gle spot, network-based storage improves scalability and availability significantly.

The storage industry has also witnessed an equally phenomenal increase in the

adoption of flash-based solid state storage. While flash can be used in several ca-

pacities (data/metadata caches, primary storage devices, etcetera) in a networked

storage server, recent research has shown that using flash at the host rather than

server side has several advantages [18; 82]. First, a hit on the host-side flash cache

can be serviced immediately without an expensive network access. Second, by fil-

tering requests, a host-side cache significantly reduces the number of requests that

need to be serviced by the storage server. By eliminating bursty traffic, host-side

caching enables storage servers to be provisioned for average I/O volumes, rather

than peak volumes, thereby reducing capital expenses.

Figure 6.1 shows the architecture and components involved in a typical host-

side caching implementation. As shown in the figure, storage resources consoli-

dated at the server side are exported to the host side using a Storage Area Network

(SAN) protocol like iSCSI. File systems at the host, which traditionally managed

direct-attached storage devices, are now used to manage remote storage volumes.

Several systems integrate caching into the storage stack below the file system and

above the iSCSI client, thereby retaining backward compatibility with existing file

systems.

Block-level caching systems can be classified into two types depending on

their write policy, namely, write through and write back. A write-through cache

issues writes to both the networked primary storage and the local flash cache in the

order in which they were received and waits for these writes to complete before

passing back an acknowledgement to the file system. A write-back cache, on the

other hand, acknowledges writes as complete as soon as they are serviced by the

local flash cache. The networked primary storage is updated asynchronously in

background. Under write-intensive workloads, write-back caching is guaranteed

to improve performance as it converts high-latency, foreground writes into asyn-

chronous, low-latency background writes. However, as a block-level, write-back

cache intercepts and caches file system requests, it absorbs writes to both meta-

data and data blocks alike, thereby causing several problems as it silently changes

the file system-enforced data ordering.

The first issue is the impact on the correctness of several server-side adminis-

trative operations such as backup, snapshoting and cloning. For instance, a snap-

shot initiated at an inopportune time might capture an inconsistent image of the

data volume. Thus, backups made off this snapshot would not help in disaster

recovery, as the host file system might not be able to fix the inconsistency in the

6.1. INTRODUCTION 141

File

System

VFS

Flash Cache

SATA iSCSI

IP SAN

Figure 6.1: Traditional host-side flash caching architecture. The figure shows pooled

storage resources at the server side exported to the host side over an IP-based Storage

Area Network. On the host side, the dotted lines demarcate file-aware layers from

those that are not. Thus, the flash cache is managed by a file-unaware, block-level

cache driver that uses the SATA and iSCSI subsystems to communicate with the local

cache device and remote primary storage. The semantically-aware file system remains

oblivious to the usage of a cache device.

restored snapshot. Second, a loss of file system metadata due to an SSD fail-

ure could have a negative impact on availability as it can cause substantial data

loss. Third, almost all state-of-the-art enterprise storage systems adopt the “re-

lease consistency” model [18] when multiple storage clients access the same stor-

age volume. Under this model, a volume is shared across clients in a serial fashion

with only one client maintaining exclusive access at any time. When block-level

write-back caching is used in such a setting, the failure of one client can render the

network storage inconsistent or, in the worst case, unusable by any other client. In

light of these issues, it is not surprising that several write-back caching implemen-

tations even make explicit disclaimers warning administrators about storage-level

inconsistencies after a cache failure [21].

6.1.1 Consistent, Block-Level Write-Back Caching

To solve these issues caused by unordered write-back policy, two solutions were

proposed recently [54]. The first technique, referred to as Ordered Write Back, is

142 CHAPTER 6. HOST-SIDE CACHING

based on the simple idea that consistency at the networked storage system can be

maintained by evicting blocks in the same order in which they were received by

the cache. The intuition behind this idea is the fact that file systems already main-

tain a consistent disk image by enforcing ordering of write requests (for example,

journaled writes must precede actual data writes). However, this approach has

several bottlenecks that impose a significant performance penalty. For instance,

the cache must keep track of dependencies between data blocks – an operation

with non-trivial compute and memory requirements. It must also preserve and

write back all dirty copies of the same block, thereby wasting cache space and

network bandwidth.

To solve problems with Ordered Write Back, Journaled Write Back has been

proposed. The idea behind this approach is to use a host-side, persistent journal, in

concert with a journal on the server side, to bundle file system updates into trans-

actions that are checkpointed asynchronously to remote storage in the background.

Thus, the Journaled Write Back approach enables consistent, block-level, write-

back caching at the host side only when used in concert with networked storage

servers that provide a atomic-group-write interface. In addition, under certain con-

figurations, this approach would suffer from performance issues due to redundant

use of journaling by both the file system and block-level cache to protect the same

data and metadata blocks. Recently, researchers have shown how such redundant

journaling, albeit in a different context (SQLite database and ext4 file system),

deteriorates application performance significantly in the Android stack [47].

6.1.2 Filesystem-Based Caching

Given that all modern file systems use techniques like journaling and shadow

copying to ensure metadata consistency across reboots, the natural alternative to

integrating caching at the block level is to modify existing file systems to be cache

aware. However, such an integration has one major issue – its lack of portability.

A caching algorithm integrated into a file system is restricted to work only within

the scope of that file system. This lack of portability would only be an inconve-

nience rather than a show stopper if device heterogeneity were nonexistent.

Heterogeneity exists both within and across device families. New devices,

with interfaces different from the traditional block-based read/write interface, are

emerging in the storage market. For instance, some flash devices and Storage

Class Memory devices are byte accessible, while Object-based storage devices, on

the other hand, work with objects rather than blocks. Integrating these devices into

the storage stack requires building custom file systems, and hence reimplementing

the caching algorithm, for each device family.

Similarly, different SSDs, sometimes even from the same vendor, have dif-

ferent performance characteristics. For instance, Intel X25-V SSD design makes

a price/performance trade-off, as it sacrifices sequential read/write throughput by

6.1. INTRODUCTION 143

reducing the number of channels populated with NAND flash. Intel X25-M, on the

other hand, has equally impressive random and sequential read/write performance

figures. Achieving optimal performance in such cases requires pairing devices

with their ideal layout algorithms. For instance, a log-structured layout might be

best suited for an Intel X25-M, while it could deteriorate performance when used

with X25-V. This heterogeneity in layout management forces one to reimplement

caching algorithms not just across device families, but also for each new layout

algorithm within device families.

6.1.3 Our Contributions

Solving the heterogeneity issues faced by file system-based caching solutions re-

quires decoupling flash-cache management from layout management. In prior

work, we proposed Loris [9], a fresh redesign of the storage stack that imple-

ments layout-independent, file-level RAID algorithms. In this paper, we present

our design extensions to Loris that transform it into a framework for implementing

layout-independent caching solutions. In doing so, we make three major contri-

butions to state of the art.

First, in contrast to traditional approaches, we make the case for integrating

caching algorithms at a different level in the storage stack (Section 6.2). With

the new integration, caching algorithms work at a higher level of abstraction by

managing files rather than disk blocks. As we will see later in this paper, one

of the major challenges with such an integration is implementing efficient subfile

caching. Thus, our second contribution is the Loris-based subfile caching frame-

work that can be used by any caching algorithm to map each logical file block

to a different storage target (Section 6.3). Our third contribution is a thorough

comparative evaluation of our Loris prototype with a block-level solution to prove

the effectiveness of our approach against a traditional block-level cache, and to

understand the impact of caching policies on overall performance (Section 6.4).

File-level caching has been implemented earlier in the context of distributed

file systems like AFS [46] and Coda [52]. In these systems, the client imple-

mentation runs as a user-space application and uses the local file system to per-

form coarse-grained, whole-file caching of application data (not system metadata)

stored in a networked file store. We, on the other hand, integrate flash-caching

algorithms directly into the local storage stack and show how a file-level (but not

whole file) integration of caching algorithms can be used to implement unified,

block-granular caching of both application data and system metadata, without any

of the consistency issues or performance overheads of the traditional block-level

integration.

144 CHAPTER 6. HOST-SIDE CACHING

File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Figure 6.2: The figure depicts (a) the arrangement of layers in the traditional stack,

and (b) the new layering in Loris. The layers above the dotted line are file aware; the

layers below are not.

6.2 The Case For File-level Host-Side Caching With Loris

In this section, we will first provide a quick overview of the Loris storage stack.

Following this, we will show how Loris makes layout-independent integration

of flash caching possible, and we will make the case for such an integration by

describing its advantages over file system-based and block-level approaches.

6.2.1 Loris - Background

Loris is made up of four layers as shown in Figure 6.2. The interface between

these layers is a standardized file interface consisting of operations such as create,

delete, read, write, and truncate. Every Loris file is uniquely identified using a

<volume identifier, file identifier> pair. Each Loris file belongs to a file volume,

which is a rooted collection of files and directories. Each Loris file is also associ-

ated with several attributes, and the interface supports two attribute manipulation

operations—getattribute and setattribute. Attributes enable information sharing

between layers, and are also used to store out-of-band file metadata. We will now

briefly outline the responsibilities of each layer in a bottom-up fashion.

6.2. THE CASE FOR FILE-LEVEL HOST-SIDE CACHING WITH LORIS 145

Data blocks

Inodes

In-core volume index

In-core meta index

Logical layer

Physical layer

Meta index inode Volume index inode Data file inode

V1

F1

I1 I2

Figure 6.3: The figure shows the relationship between meta index and volume

index. The figure shows the meta index file containing the file volume meta-

data entry for volume V1, which could be <V1, REGULARVOL, volume index

configuration=<raidlevel=1, stripesize=N/A, physicalfiles=<D1:I1>>. Thus, in-

ode I1 in physical module D1 is used to store the volume index file data (an ar-

ray of logical file configuration entries) for file volume V1. The logical file con-

figuration entry for file <V1, F1> could be <raidlevel=1, stripesize=INVALID,

physicalfiles=<D1:I2>>. Thus, inode I2 in physical module D1 is used to store

file F1’s data.

Physical Layer

The physical layer exports a physical file abstraction to the logical layer. A physi-

cal file is a stream of bytes that can be read or written at any random offset. Thus,

details such as the device interface and on-disk layout are abstracted away by the

physical layer.

Each physical layer implementation is tasked with providing 1) device-specific

layout schemes for persistent storage of files data/attributes, and 2) end-to-end

data verification using parental checksumming. Each storage device is managed

by a separate instance of the physical layer, and we call each instance a physical

module. Our current physical layer prototype is based on the traditional UNIX file

system layout. Each physical file is represented by an inode. Each inode contains

enough space to store the file’s Loris attributes, seven direct data block point-

ers, and one single, double and triple indirect block pointer. Free blocks/inodes

are tracked using block/inode bitmaps. Although our physical layer implements

parental checksumming of all data and metadata, we will omit the details as we

do not use it in our evaluation.

Logical Layer

The logical layer exports a logical file abstraction to the cache layer. A logical

file is a virtualized file that appears to be a single, flat file to the cache layer.

Details such as the physical files that constitute a logical file, the RAID levels

146 CHAPTER 6. HOST-SIDE CACHING

used, etc. are confined within the logical layer. The logical layer works with

physical files to provide both device and file management functionalities. It is

made up of two sublayers, namely the file pool sublayer at the bottom, and the

volume management sublayer at the top.

In prior work, we introduced a new Loris-based storage model called File

Pooling, that simplifies management of storage devices [10]. File pools simplify

storage administration and enable thin provisioning of file volumes. The file pool

sublayer maintains data structures necessary for tracking device memberships in

file pools, and provides device management operations for online addition, re-

moval and hot swapping of devices.

The volume management sublayer supports file volume virtualization. As we

mentioned earlier, each logical file belongs to a file volume. Each file volume

is physically represented by a volume index file which is created at file volume

creation time. This file stores file configuration information entries for all files

belonging to its volume. This configuration information consists of 1) RAID level

used, 2) stripe size used (for certain RAID levels), and 3) list of physical files that

store the logical file’s data.

Similar to the way the volume index file tracks the membership of files in

file volumes, file volumes themselves are tracked by the meta index file. This

file contains file volume metadata entries, one per volume, that record: 1) the

number of files in that volume, 2) tiering/caching policy used, and 3) physical

file(s) that store the volume index data among other details. Figure 6.3 describes

the relationship between these two data structures with an example.

Cache and Naming Layers

The cache layer provides in-core caching of data pages. Our prototype cache layer

implements the LRU cache replacement algorithm.

The naming layer acts as the interface layer. Our prototype naming layer im-

plements the traditional POSIX interface by translating POSIX files and attributes

into their Loris counterparts. It implements the directory abstraction by using

Loris files to store directory entries. All POSIX semantics are confined to the

naming layer. However, the naming layer uses the attribute infrastructure to help

the other layers discern Loris metadata from application data. For instance, as far

as the logical layer is concerned, directories are just regular files with special at-

tributes that mark them as important. It uses this information to mirror directories

on all physical layers for improving availability.

Crash Recovery in Loris

Similar to other systems, Loris also uses snapshot-based recovery to maintain

metadata consistency across system failures. Due to lack of space, we will just

6.2. THE CASE FOR FILE-LEVEL HOST-SIDE CACHING WITH LORIS 147

present an overview here and we would like to direct the reader to [102] for

further details. During normal operation, after every preconfigured time interval,

Loris takes a system-wide snapshot. During this operation, all Loris layers flush

out any dirty data and metadata that is yet to be written. Then, the logical layer

asks each physical module to take a snapshot of all metadata (both physical mod-

ule’s layout-specific metadata and those belonging to the other Loris layers) and

tag the snapshot with a common timestamp. It is important to note here that only

metadata, not application data, is snapshotted and the physical layer can distin-

guish metadata from data using attributes as we mentioned earlier. Thus, each

global metadata snapshot can be identified using a single timestamp across all

physical modules.

After a system failure, logical layer probes all physical modules for their latest

timestamp. If the system had shutdown gracefully, all physical modules would

return back the same timestamp. A disparity in timestamp indicates an unclean

shutdown, upon which the logical layer instructs all physical modules to roll back

metadata to the latest common timestamp. Thus, in a nutshell, the task of provid-

ing consistency in Loris is divided between the logical and physical layers. Each

physical module is tasked with implementing some form of metadata snapshoting.

The logical layer works with physical module snapshots and coordinates recovery

to a globally consistent snapshot after a system failure.

6.2.2 File-level Host-side Caching With Loris

Comparing Loris with the traditional stack (Figures 6.1, 6.2), one can observe two

things. First, the file system, which is a monolithic module in the traditional stack,

has been decomposed into naming, cache, and physical layers in the Loris stack.

Second, as the dotted line indicates, all Loris layers operate at the file level in

contrast to the traditional stack, where RAID and caching algorithms operate at the

block level. It is because of these two fundamental design differences that Loris

enables a new level (the logical layer) at which flash caching can be integrated.

Figure 6.4 shows how Loris can be used as a host-side cache. Loris runs

on the host machine as the primary file system and manages both the local SSD

and the remote iSCSI volume. Physical layer implementations customized for

SSD and iSCSI storage map device blocks to Loris physical files. The caching

logic (allocation and replacement algorithms), however, is implemented at the file

level, in the logical layer, in contrast to the traditional caching design where it is

integrated at the block level. This integration possesses all the advantages of a file

system-based approach without any of its disadvantages.

First, the file-level implementation of caching makes it device or storage inter-

face agnostic. Switching to a new type of caching device (like MEMS or Object-

based Storage (OSD) instead of SSD) requires just implementing corresponding

physical modules. Thus, file-level caching obviates translation layers as there is

148 CHAPTER 6. HOST-SIDE CACHING

Naming

VFS

Cache

Logical

Cache Phys iSCSI Phys

IP SAN

Layout Mgmt.

Flash Cache Mgmt.

RAM Cache Mgmt.

I/f & Policy Mgmt.

Figure 6.4: Host-side flash caching with the Loris stack. The figure shows the roles

and responsibilities of each layer when the Loris stack is used as a host-side caching

solution. Contrasting this with Figure 6.1, one can see that the local flash cache is

managed by the file-aware logical layer.

no necessity to map any device interface to a generic block interface. In the ab-

sence of such abstractions, device-specific physical layer implementations can im-

plement highly-customized optimizations that exploit advantages specific to each

device family. For instance, one could implement a short-circuit-shadow-paging-

based physical layer for a PCM device [20], or a physical layer that exploits the

virtualized-flash-storage abstraction offered by modern PCI Express SSDs [48],

without affecting the caching implementation. Later in this paper, to show the

benefit of interface-agnostic flash caching, we will describe our implementation

of a simplified NFS-client-like physical layer that enables to usage of any net-

worked, file-based remote storage system as primary data store.

During normal operation, the logical layer treats all physical modules (local

and remote) alike and establishes global metadata checkpoints across them. Irre-

spective of where they are stored, all metadata updated between two checkpoints

get persisted as a part of the next global checkpoint, or reverted during recovery

after a crash, as a single atomic unit. Thus, the second benefit is that any Loris-

based caching implementation can recover from OS crashes and power failures on

the host side using Loris’ built-in consistency mechanism without any additional

effort.

We would like to explicitly mention here that these consistency-enforcing

metadata checkpoints are created and maintained by the physical layer imple-

mentations and thus, have no influence on logical layer-resident, flash-cache man-

6.2. THE CASE FOR FILE-LEVEL HOST-SIDE CACHING WITH LORIS 149

agement algorithms that perform caching of application data. Also, these check-

points are different from administrator-triggered file volume snapshoting of all

data and metadata. While Loris is capable of supporting such snapshoting, and

while the interaction between snapshoting and caching certainly requires special

attention [18], our focus in this paper is on using Loris as a host-side cache with

any server-side NAS or SAN appliance. In this scenario, administrators typically

use server-side (not client-side) snapshoting facilities for performing various ad-

ministrative operations. We intend to integrate host-side snapshoting with the

caching framework described in this paper as a part of future research which in-

volves investigating the utility of Loris as a hypervisor flash cache in virtualized

data center (Section 6.5).

Third, by being file aware, Loris can use different caching policies for different

file types. For instance, Loris could associate all metadata with the write-through

policy. Thus, even if the user specifies a write-back policy for all application data,

writes by the naming layer to directory files and by the logical layer to volume

index file will be written through immediately to the networked storage server.

By having all metadata written through immediately, Loris can recover from all

host side failures. For instance, a failure of the SSD on the host side would only

result in application data loss and never renders the networked primary storage

unusable. Inconsistencies between data and metadata caused by an SSD failure

can be easily identified by the logical layer and propagated to the application on

demand, thereby providing high availability. Thus, Loris provides a framework for

implementing persistent, file-level write-back caching systems that do not suffer

from any of consistency issues that plague the block-level integration.

Fourth, as the caching algorithms are plugin-based, Loris can easily pair work-

loads with ideal caching algorithms in contrast to even modern, state-of-the-art

cache-aware file systems that adopt a single, one-size-fits-all approach to flash

caching. This flexibility is especially important in modern data centers where

server consolidation forces a single host-side caching system to service requests

from disparate workloads with different RPOs. For instance, ZFS [6] uses SSDs

that can sustain high random IOPS for caching read-only data and SSDs with high

sequential write throughput for storing the ZFS journal (ZIL) [62] irrespective of

application workload. Loris, on the other hand, could pair workloads with write-

back or write-through caching depending on their RPO.

Although Loris provides a convenient framework for implementing host-side

caching systems, the whole-file nature of mapping maintained by the logical layer

makes it impossible to implement fine-grained, subfile caching, as caching a sin-

gle file block requires caching the entire file. Even worse if the fact that such

subfile caching is mandatory for implementing write-back caching, where files

can be arbitrarily written/updated in small chunks. Thus, the logical layer must be

completely redesigned to support fine-grained, subfile caching.

150 CHAPTER 6. HOST-SIDE CACHING

V0

F1:V1

V2V1

F2:V2

I1 I2 I3

F1:B2 F2:B1

Inodes

Data blocks

Volume index

Meta index

Logical layer

Physical layer

F1:B1

Figure 6.5: File-as-a-volume subfile mapping approach: The figure shows blocks

F1:B1, F1:B2 of file < V0, F1>, and block F2:B1 of file < V0, F2> are mapped

to physical files I1, I2 (for F1), and I3 (for F2).

6.3 Loris-based Host-side Cache: Architecture

Our new logical layer consists of three plugin-based sublayers: 1) the volume

management sublayer with extended support for subfile caching, 2) the cache

management sublayer that manages the flash-based host-side cache, and 3) the

file pool sublayer which provides device management and RAID services. Each

of these sublayers has a well-defined interface, similar to the Loris interface, and

can be replaced without changing the other sublayers. As device management and

RAID algorithms are out of the scope of this paper, we will now describe in detail

the first two sublayers.

6.3.1 Volume Management Sublayer: Subfile Mapping

As we mentioned earlier, our original logical layer maps each logical file to one

or more physical files. However, implementing subfile caching requires mapping

each logical file block (not the whole file) to one or more physical files. In ad-

dition, we also need to maintain metadata that identifies the block cached in the

SSD as clean or dirty; the action taken during cache eviction varies depending on

the block state (clean data can be just discarded whereas dirty data must be written

back to primary storage).

As the relationship between files and blocks is very similar to the relationship

between file volumes and files, we initially implemented this indirection by re-

cursively extending the file volume abstraction. When a logical file was created,

an entry was allocated for it in its parent file volume’s volume index as before.

In addition, we created a new volume, whose logical configuration information

entries record the logical block–physical file(s) mapping for each block as shown

in Figure 6.5. Thus, by treating each logical file as a file volume, we were able to

extend the existing abstraction to support subfile mapping with minimal effort.

6.3. LORIS-BASED HOST-SIDE CACHE: ARCHITECTURE 151

However, preliminary evaluation revealed that the overhead caused by meta-

data allocation and lookup was a significant source of performance degradation.

With the aforementioned subfile mapping, we were storing physical file informa-

tion for each logical block. Each physical file is represented by a <moduleid,

inode number> pair, which is encoded using four bytes in our current implemen-

tation. Assuming an block size of 4-KB, and assuming that all blocks are cached

on the SSD, a 4-GB file would require 8-MB (eight bytes per block, four for HDD

physical file and four for the SSD one).

To eliminate the metadata overhead, we increased the mapping granularity

from a block to an extent - a logically contiguous group of blocks. While this

did improve performance significantly, it still suffered from two problems. First,

as each extent was stored as a separate physical file, at small extent sizes, most

read/write requests would need to be serviced by reading/writing multiple physi-

cal files. Despite the fact that our prototype exploits the Native Command Queu-

ing (NCQ) capability of both HDD and SSD by queuing these reads/writes in

parallel, we found that splitting a single, large read/write request into several

constituent extent-sized requests had a significant performance impact. Second,

extent-granular mapping complicates write-back caching as caching algorithms

and staging/eviction of data must be extent aligned. In addition, writes misses

force the entire extent to be read from the disk, if not already cached, causing

performance deterioration at large extent sizes. Thus, we abandoned the “file-as-

a-file-volume” approach and adopted a newer one.

Our new approach is based on the insight that rather than storing each logical

block in a separate physical file, we could use a single physical file to pack related

blocks. In other words, each logical file could be associated with two physical

files, one on the SSD, and the other on the iSCSI volume. By doing so, for each

logical block, we would need to record whether 1) it has been cached on the SSD

physical file, and 2) if the SSD copy is dirty. We could easily accomplish this with

just two bits per block. Thus, in contrast to the previous approach, a 4-GB file can

be encoded using 128-KB for caching status bits, 128-KB for the dirty bits, and 8

bytes for the physical file information. Thus, we reduce the metadata footprint by

a factor of 32 (8 bytes to 2 bits per entry). In addition, a large request spanning

multiple blocks would now translate to a single physical file read (assuming that

the corresponding blocks are all sequential and collocated in the same device).

In our current prototype, we implemented this new mapping by modifying the

file configuration information stored by the volume management sublayer. The

new configuration information contains 1) physical file information for the pri-

mary file in the iSCSI physical layer, 2) physical file information for the cached

SSD file (if cached), 3) a 32-byte block status bitmap, and 4) a 32-byte dirty

bitmap. In order to implement fine-grained caching, we use a block size equal to

the OS page size of 4-KB. Thus, the block information for all files up to 1-MB re-

sides entirely within its logical configuration information. When a file grows over

152 CHAPTER 6. HOST-SIDE CACHING

1-MB, we dynamically create a new physical file and use it to store both bitmap

blocks.

6.3.2 Cache Management Sublayer

There are two main design parameters that influence the operation of a host-side

caching system. The first parameter is the write policy (write through or write

back, as we mentioned in Section 6.1). The second parameter is the allocation

policy that controls when data is admitted into the cache. Based on this policy,

caches can be classified as write-allocate and write-no-allocate (also known as

write-around). As the names imply, the former policy admits data on write misses

while the latter does not. As we wanted to systematically study the effect of each

parameter on overall performance, we implemented all four possible host-side

caching alternatives as a separate cache management plugin.

Although these plugins differ with respect to write and allocation policies, they

all share two things in common. First, they all admit data into the cache as a side

effect of a read miss. Second, they all use the LRU replacement algorithm to

manage the flash cache. In our current prototype, the algorithm is implemented

as a separate component independent of all plugins. It maintains an in-memory

list of entries, on per logical file block, in LRU order. As this list does not contain

information about the physical location of logical file blocks (which is recorded in

volume index entries and protected using Loris’ consistency mechanism), it can

be maintained entirely in memory as a power failure or system crash would result

only in the loss of recency information. In addition, as each list entry only needs

to store the logical file id and offset for currently cached blocks, it can easily scale

to large cache sizes.

6.3.3 Physical Layer Support For Subfile Caching

The aforementioned changes to the logical layer make fine-grained cache admis-

sion possible. However, as caching algorithms work at a page granularity, they

also require the capability to evict individual pages for freeing up cache space. As

caching algorithms operate at the logical layer, there were two ways a Loris-based

cache implementation could free up space, namely, deleting a physical file or trun-

cating it. We found both these operations to be too coarse grained and inefficient

as it is impossible to implement fine-grained individual page/block evictions using

either of these methods.

To solve these problems, we added a new rdelete(range delete) operation to

the physical layer API. Only those physical modules that will be used to manage

cache devices need to support this operation. The logical layer uses rdelete to free

arbitrary data ranges in physical files. When space is needed in the flash cache

for accommodating new data, the LRU algorithm is invoked to find the longest

6.4. EVALUATION 153

sequence of logically contiguous file blocks (blocks belonging to the same logical

file at consecutive offsets). The logical layer then issues an rdelete call to the

physical module that manages the flash cache which, in turn, frees those data

blocks and associated indirects, effectively creating holes in that physical file.

6.3.4 Network File Store

Although our traditional Loris physical layer can be used over an iSCSI volume,

we wanted to prove the utility of layout-independent, file-level flash caching. So,

we implemented a new physical module that can communicate with any file server

that support four basic calls to create, delete, read from and write to a file. This

network file client is essentially a simplified NFS client that maps calls from the

Loris interface to the limited file server interface. To make our client portable

across file servers, we also implemented support for attribute handling at the client

side. Each client maintains a special file, which is created during startup, in which

it stores the attributes for all Loris files. Thus, while read/write calls for Loris files

get mapped onto file server read/write calls, getattr and setattr operations directed

at the network client are implemented reading/writing into this special file.

6.4 Evaluation

In this section, we will first describe the hardware/software setup and benchmark-

ing tools following which we will present our comparative analysis of the four

Loris-based cache management architectures to understand the impact of each

policy on overall performance.

6.4.1 Setup

The client machine we used in all tests was an Intel Core 2 Duo E8600 PC, with 4-

GB RAM. We used a OCZ Vertex3 Max IOPS SSD as our host-side flash cache.

Our networked file server is an Intel Core2Duo E8600 PC, with 4-GB of RAM

and a 500-GB 7200 RPM Western Digital Caviar Blue (WD5000AAKS) SATA

drive. In all experiments, we used the first 8-GB of both SSD and HDD to house

all data.

Both client and server machines run MINIX 3, a microkernel, multiserver op-

erating system [97]. Loris runs on the client machine and manages the flash cache

while we use the MINIX 3 File System on the server machine as our network file

store. We deliberately configured Loris (on the client side) to run with only 64-MB

RAM cache (cache layer) to ensure that our flash-caching subsystem (in Logical

and Physical layers) is stressed thoroughly. As we vary the flash cache size in

some experiments, we will report the actual SSD size used while describing the

results of each experiment.

154 CHAPTER 6. HOST-SIDE CACHING

Benchmark WB WB-WA WT WT-WA

Postmark (secs) 458 2084 1348 2304

File Server (IOPS) 1046 231 255 199

Web Server (IOPS) 3423 2856 3472 2859

Table 6.1: Execution time (in seconds) and IOPS achieved by write-back (WB) and

write-through (WT) cache plugins, with and without write-around (WA) allocation,

under various benchmarks, at a cache size of 1536-MB.

Although we implemented all the features we described in Section 6.3 in our

prototype, we will focus only on the performance aspect of Loris-based file-level

caching in this paper.

6.4.2 Benchmarks and Workload Generators

We used Postmark and FileBench to generate four different classes of server work-

loads for our comparative evaluation. Postmark is a widely used, configurable file

system benchmark that simulates a mail server workload. We configured Post-

mark to perform 80,000 transactions on 40,000 files, forming a dataset of roughly

1-GB, spread over 10 subdirectories, with file sizes ranging from 4-KB to 28-

KB, and read/write granularities of 4-KB. We report the transaction time, which

excludes the initial file preallocation phase, for all cases.

FileBench is a flexible, application-level workload simulator. We used two

predefined workload models to generate File Server and Web Server workloads.

For the File Server workload, we configured FileBench to generate 10,000 files,

using a mean directory width of 20 files, and a median file size of 128-KB. The

workload generator performs a sequence of create, write, read, append (using a

fixed I/O size of 1-MB), delete and stat operations, resulting in a write-biased

workload. The Web Server configuration generates 25,000 files, using a mean di-

rectory width of 20 files. The median file size used is 32-KB, which results in a

workload dominated by small file accesses, with the exception being an append-

only log file. The workload generator performs a sequence of ten whole-file read

operations, simulating reading web pages, followed by an append operation (with

an I/O size of 16-KB) to a single log file. Unlike Postmark, the total data size gen-

erated by the FileBench workloads varies between 1.5-GB and 4-GB depending

on the performance of the underlying caching system.

6.4.3 Comparative Evaluation: Caching Policies

Our first goal in evaluating the Loris prototype is to understand the impact of vari-

ous caching policies on overall performance. Table 6.1 shows the IOPS/execution

6.4. EVALUATION 155

time achieved by various benchmarks under Loris in the networked configuration.

These results were obtained by fixing the host-side flash cache to 1.5-GB. There

are three important observations to be made from Table 6.1.

First, notice that both write-back and write-through caching offer identical

performance under Web Server. This is because of the fact that at 1.5-GB, the flash

cache has a 100% read hit rate and all benchmark reads are satisfied entirely on

the host side under both write-back and write-through schemes. The only writes

under Web Server are appends to the log file which are never read back. Thus, this

result proves that our caching algorithms work as expected.

Second, clearly, write-back caching has a significant impact on overall perfor-

mance. It registers an impressive 310% improvement in IOPS under File Server

and 66% reduction in execution time under Postmark. This clearly indicates the

importance of using the host-side flash cache as a read-write cache (as opposed to

a read-only cache).

Third, notice that write-around allocation policy consistently deteriorates per-

formance of both write-back and write-through caching under all benchmarks.

Without the write-around policy, all write misses allocate data in the SSD under

both write-back and write-through caching policies. Thus, when the cache is large

enough to hold a substantial portion of the working set, most read/write requests

can be satisfied entirely on the host side. But with write around enabled, cache

allocation happens only as a side effect of a read miss. Thus, the first read request

for each data block has to be serviced by the networked file server, thereby re-

ducing performance. As we found this to be the general case irrespective of the

benchmark/experimental setting, we will not discuss write-around caching any

further.

6.4.4 Network Performance Sensitivity

One of the rationales used by proponents of write-through caching is that the

performance advantage of write-back caching would only be marginal, at best,

when deployed in a setting with high-speed network interconnects and storage

backends. In order to understand the sensitivity of write-caching policies with

respect to network performance, we reran the experiments on the host machine

using a direct-attached SATA HDD instead of the network file server as the storage

backend. In this configuration, we used the default Loris physical module we

described earlier to manage the layout of both SSD and HDD.

Looking at the results under cache size 1536-MB in Figures 6.6, 6.7, and

6.8, one can see that write-back caching still produces a 56% reduction in exe-

cution time under Postmark and a 234% increase in IOPS under the File Server

benchmark. Based on these results, we believe that write-back caching is valuable

even when used in a setting with low-latency interconnects and high-performance

storage backends.

156 CHAPTER 6. HOST-SIDE CACHING

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 200 400 600 800 1000 1200 1400 1600

IO
P

S

SSD Size

Write-Back
Write-Through

SSDOnly
DiskOnly

Figure 6.6: Figure shows the IOPS achieved by Loris under both single-device

(HDD/SSD) and multi-device caching configurations at various cache sizes in MBs

(axis labels) under the File Server benchmark.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 200 400 600 800 1000 1200 1400 1600

IO
P

S

SSD Size

Write-Back
Write-Through

SSDOnly
DiskOnly

Figure 6.7: Figure shows the IOPS achieved by Loris under both single-device

(HDD/SSD) and multi-device caching configurations at various cache sizes in MBs

(axis labels) under the Web Server benchmark.

6.4. EVALUATION 157

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200 400 600 800 1000 1200 1400 1600

T
ra

n
s
a
c
ti
o
n
 t
im

e
 (

s
e
c
)

SSD Size

Write-Back
Write-Through

SSDOnly
DiskOnly

Figure 6.8: Figure shows the transaction time achieved by Loris under both single-

device (HDD/SSD) and multi-device caching configurations at various cache sizes in

MBs (axis labels) under the PostMark benchmark.

6.4.5 Cache Size Sensitivity

While write-back caching would have a clear edge over its write-through counter-

part at cache sizes where the read hit rate is 100%, it is important to understand if it

is still beneficial at smaller cache sizes. In order to do so, we reran the experiments

in the direct-attached HDD configuration while varying the flash cache size. Fig-

ures 6.6, 6.7, and 6.8 report the IOPS/execution time of write-back/write-through

caching policies under various benchmark-cache size combinations.

There are three important observations. First, one can see that even at the

smallest cache size, write-back caching produces a 30% reduction in execution

time under PostMark and a 75% increase in IOPS under File Server when com-

pared to the disk-only case, thereby proving the utility of caching.

Second, as exemplified by the Web Server benchmark, read-intensive bench-

marks derive no benefit from write-back caching. This is expected as the only

writes under this benchmark are those issued to the append-only log that is never

read. Thus, one might as well resort to using write-through caching, perhaps even

with existing block-level solutions, under such read-intensive benchmarks.

Third, under write-intensive benchmarks, write-back caching always matches

or outperforms write-though caching, but the performance of write-back caching

is extremely sensitive to both the read/write ratio and cache size. For instance,

158 CHAPTER 6. HOST-SIDE CACHING

 0

 500

 1000

 1500

 2000

 2500

 200 400 600 800 1000 1200 1400 1600

IO
P

S

SSD Size

Loris Block

Figure 6.9: Figure shows the IOPS achieved by both Loris and block-level write-back

caching implementations at various cache sizes in MBs (axis labels) under the File

Server benchmark.

at cache size of 256-MB, while IOPS increases by a sizeable 72% under the File

Server benchmark with write-back caching, Postmark results are more modest.

However, at all other cache sizes, write-back caching improves execution time by

16% to 63% under Postmark.

6.4.6 File-Level and Block-Level Caching Comparison

One of the goals in evaluating our Loris prototype was to prove the effective-

ness of file-level caching as opposed to block-level caching. In order to do so,

we implemented a LRU-based caching filter driver that is positioned between the

file system and AHCI disk driver. The cache driver works similar to its file-level

counterpart by maintaining an in-memory list of disk blocks in LRU order. It

implements write-back caching of data stored in the direct-attached HDD by in-

terposing file system requests and satisfying both reads and writes from the SSD

if possible. To make a fair comparison, we ran Loris over the block-level cache.

Thus, in this configuration, Loris is not used as a caching framework, but rather as

just a regular file system that manages the logical disk exposed by the block-level

cache implementation.

Figures 6.9, 6.10, and 6.11 show the performance of the two caching im-

plementations. Clearly, the Loris-based file-level caching implementation out-

6.4. EVALUATION 159

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 200 400 600 800 1000 1200 1400 1600

IO
P

S

SSD Size

Loris Block

Figure 6.10: Figure shows the IOPS achieved by both Loris and block-level write-

back caching implementations at various cache sizes in MBs (axis labels) under the

Web Server benchmark.

 0

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400 1600

T
ra

n
s
a
c
ti
o
n
 t
im

e
 (

s
e
c
)

SSD Size

Loris Block

Figure 6.11: Figure shows the transaction time achieved by both Loris and block-level

write-back caching implementations at various cache sizes in MBs (axis labels) under

the PostMark benchmark.

160 CHAPTER 6. HOST-SIDE CACHING

performs its block-level counterpart by a significant margin under both Postmark

at high cache sizes and under File Server at all cache sizes. On further inves-

tigation, we found out this to be due to the impact of file deletions on the two

caching implementations. When a file is deleted, the Loris-based implementation

frees all cached data associated with it in the SSD. In the block-level case, on

the other hand, deletions are handled by the file system. Hence, the block-level

cache driver never gets a notification from the file system about deleted file blocks.

Thus, unlike Loris, which never migrates deleted data blocks, the block-level im-

plementation incurs heavy penalty due to unwarranted caching and migration of

useless deleted data. While this drawback could be overcome by having the file

system share such semantic information with a block-level cache (using the TRIM

command for instance), we would like to emphasize here that a file-level imple-

mentation has easy access to such rich semantic information out of the box. The

conclusion we would like to draw from these results is that file-level caching im-

plementations are capable of meeting the performance of their block-level coun-

terparts without resorting to suboptimal, redundant consistency management.

6.5 Conclusion

As flash devices grow in density, we believe that write-back caching will become a

standard feature in all future host-side caching systems. In this paper, we showed

how a file-level integration of caching algorithms solves, by design, various con-

sistency issues that plague the traditional block-level integration. Using our Loris

prototype, we dispelled the myth that file-level caching implementations cannot

work efficiently on a subfile basis. Although we used Loris as our framework, we

would like to point out that one could theoretically build file-level caching systems

using the traditional storage stack with the assistance of the stackable file system

framework [43].

Given the very many benefits of file-level caching, an interesting area of future

research is investigating its integration in modern virtualized data centers, where

NAS-based filers are being increasingly deployed as backend stores for storing

disk images of consolidated server virtual machines. Recent research has shown

that unwarranted translations enforced by layers of virtualization have a huge neg-

ative impact on performance, and that such overhead could be eliminated by using

a paravirtualized NAS client in the guest OS [98]. Thus, an alternative to the tra-

ditional approach of having the hypervisor perform caching of VM-disk-image

blocks [18] would be to use a hypervisor-resident, file-level flash-caching imple-

mentation (like Loris) in combination with the paravirtualized NAS client to cache

files rather than blocks. We intend to investigate the understand the pros and cons

of such an approach as a part of future research.

Chapter 7

Discussion

As we mentioned in Chapter 1, this thesis is organized as a collection of refereed

publications. In this section, we will elaborate on certain aspects of Loris that

were not discussed in detail in these publications due to lack of space.

7.1 Metadata Management

Each Loris layer maintains and manages metadata relevant to its operation inde-

pendent of other layers, as the requirements regarding persistence and reliability

of metadata differ significantly across layers. For instance, the Cache layer uses

metadata to track file pages currently buffered in memory. This metadata is dy-

namically updated when file pages are staged into (or evicted from) memory and

is not persisted as the DRAM-based page cache is itself volatile. In contrast to

this, the metadata managed by the Logical layer, that maps logical to physical

files, for instance, needs to be stored reliably across reboots, power failures, and

system crashes.

Such independent metadata management raises two questions that have not

been answered elaborately in previous chapters: How is metadata consistency

maintained in Loris? What are the reliability guarantees offered by metadata man-

agement? As we mentioned in Chapter 1, these research issues were deliberately

left out of this thesis as they form a part of another thesis that focuses on reliability

extensions to Loris. Having mentioned that, we will now discuss certain reliability

aspects in order to clarify the interaction between features described in this thesis

and reliability extensions.

7.1.1 Metadata Consistency

Typically, dirty metadata blocks buffered by each layer are flushed to stable stor-

age on two occasions: 1) during cache eviction to make room for staging new

161

162 CHAPTER 7. DISCUSSION

metadata blocks, 2) during a sync operation. As each layer dictates when layer-

specific metadata is evicted and flushed to persistent storage, it is likely that the

global state of on-disk metadata will be inconsistent at any given point in time.

Hence, in the absence of any consistency mechanism, a system crash or a power

failure would leave the on-disk metadata in an inconsistent state, and might cause

data loss.

To protect metadata against such inconsistencies, Loris implements a coarse-

grained consistency mechanism that uses system-wide metadata snapshoting to

atomically move cross-stack metadata from one consistent on-disk state to another

at well-defined synchronization points. In our current prototype, this synchro-

nization point intentionally coincides with the periodic, five-second, POSIX sync

call issued by the MINIX update daemon. On receiving the sync call, the Loris

Naming layer finishes all ongoing operations, flushes all dirty metadata blocks by

writing them out to the Cache layer, and finally, forwards the sync call down to

the Cache layer. The Cache layer, in turn, flushes all dirty blocks and forwards the

sync call to the Logical layer.

On receiving the sync call, the Logical layer performs three steps. First, it

flushes all dirty metadata blocks. Second, it forwards the sync call to all Physical

layers. After all the Physical layers complete the sync call successfully, the Logi-

cal layer initiates the third step by asking all Physical layers to snapshot the current

on-disk state and tag the snapshot using a common timestamp. A successful com-

pletion of this last step moves the entire system to a new, consistent on-disk state.

A failure, on the other hand, results in the Logical layer coordinating roll back

by directing all Physical layers to switch to the last common timestamp. Thus,

the sync-based consistency mechanism essentially wraps all system metadata in

a single transaction which spans the period between two sync calls, and ensures

that all metadata modifications in that transactions commit or rollback atomically.

One side effect of the sync-based checkpointing approach used by Loris is the

lack of support in our current prototype for the POSIX fsync system call (MINIX

3 VFS does not support this call either). Supporting fsync is complicated, as se-

lectively flushing data corresponding to a single file requires selective metadata

flushing, which, in turn, requires explicitly tracking dependencies between vari-

ous different types of metadata (directory blocks, inodes, bitmap blocks, etcetera)

managed by different layers. We would like to point out here that the fsync issue

is not just Loris specific as it is applies to other file systems as well. Rather than

tracking and maintaining complicated dependency relationships, most file systems

solve the fsync problem by a) using dedicated intent logs for logging application

data, b) journaling data in addition to metadata, c) buffering data in non-volatile

memory, or d) using fine-grained application-driven transactions. All these solu-

tions are equally applicable to Loris and we leave the task of identifying the right

division of labor between layers for implementing low-overhead fsync as future

work.

7.1. METADATA MANAGEMENT 163

7.1.2 Metadata Reliability

Layers in the Loris stack can be classified into two types depending on the mech-

anism used to protect layer-specific metadata, namely, stack-dependent layers,

and self-managed layers. We will elaborate on these two types now. Recall that

each Physical layer implementation in Loris is required to support some form of

parental checksumming, which is used for verification of data on all reads. As

all the layers above the Physical layer store layer-specific metadata in physical

files, they can rely on the checksumming provided by the Physical layer to detect

data corruption. Similar, the per-file RAID algorithms implemented in the Logi-

cal layer can be used by Loris to mirror all metadata across all available physical

modules. Thus, metadata generated by all layers above the Logical layer, includ-

ing Logical layer’s own metadata, can be protected against device failures using

RAID algorithms. Thus, Naming, Cache, and Logical layers are stack-dependent

layers, as they Loris functionality typically used to protect application data is also

used to protect system metadata for these layers.

In contrast to the three upper layers, Loris’s Physical layer has to use custom

logic to protect layer-specific metadata. As described in Chapter 3, the Physi-

cal layer can use the parental checksumming implementation to protect its own

metadata against silent data corruption. However, in order to be able to recover

metadata when corruption occurs, the Physical layer must explicitly manage re-

dundancy of metadata blocks, as it cannot rely on file-level RAID algorithms im-

plemented in the Logical layer to provide such redundancy. While one might

perceive the duplication of redundancy logic in the logical and Physical layer as

a drawback of the Loris layering, in reality, such is not the case the case due to

three reasons.

First, compared to the Logical layer, which needs to implement sophisticated

parity-based RAID algorithms that dynamically allocate and free data across sev-

eral devices, the redundancy requirements of the Physical layer are substantially

simple as they are specific to a single device. For instance, space for replicas of

all metadata blocks can be allocated once when a device is first formatted.

Second, replication logic in the Physical layer must account for device-specific

failure characteristics that need not be taken into account by the Logical layer

RAID algorithms. For instance, two copies of metadata blocks must be stored in

non-sequential disk blocks, preferably separated by a large distance in the LBA

address space, to prevent correlated sector errors. Mirrored copies of a data block

generated by RAID algorithms, in contrast, could be stored on any physical file

in two different physical modules without any constraint on the exact on-disk

location.

Third, the Physical layer needs to selectively replicate only a subset of its

metadata, as a) all metadata belonging to higher levels are replicated on several

devices, and b) logical redundancy can be used to recover several metadata blocks

164 CHAPTER 7. DISCUSSION

without physical redundancy. For instance, it is not necessary to replicate di-

rectory data blocks within a physical module as they are mirrored across several

devices. Similarly, if a bitmap block is identified to be corrupt on a read opera-

tion, the Physical layer could recover that block in the background by using block

allocation information present in inodes, thus, obviating the need to maintain re-

dundancy. Thus, given that the redundancy requirements for layout metadata are

different enough from other stack metadata, we believe that adding customized

logic does not violate our modularity principle.

Having said that, the current Physical layer implementation used in our pro-

totype does not protect its own metadata using redundancy. Thus, a corruption in

certain critical layout metadata, like the root inode block, would render an entire

physical module unusable until the corruption is resolved. Note, however, that

failures in other metadata blocks, like individual inode blocks, would be propa-

gated as a checksum error to the Logical layer, which, in turn, would reissue the

request to other physical modules and satisfy the application request. An inter-

esting direction we are exploring as a part of future work involves extending the

snapshoting mechanism in the Physical layer to provide sufficient redundancy in

such situations.

7.2 Flash Management

We will now discuss certain aspects of flash-based storage tiering and caching that

were omitted in Chapters 5 and 6 due to lack of space.

7.2.1 Tiering

In Chapter 5, we showed how Loris could be used as a framework for evaluating

hybrid storage configurations that use flash-based SSDs in concert with HDDs

in the context of an enterprise storage server. As our focus was on comparing

the performance of various tiering and caching policies under a range of server

workloads, we left open several aspects as future work. For instance, our Loris-

based framework was only capable of performing whole-file caching or tiering

due to a limitation of the Logical layer’s mapping. This inability of Loris to map

parts of a file to different storage targets made it unsuitable for certain workloads,

like Virtual Desktop Infrastructure workloads, where different portions of a single

large file (like Virtual Hard Disks) exhibit different access characteristics.

Since that work, we have extended Loris in several ways to implement other

features. One such extension is the work presented in Chapter 6 which demon-

strates the utility of Loris as a persistent, client-side cache in virtualized data cen-

ters. In order to support write-back caching, we modified Loris’s Logical layer

described in Chapter 5, which originally used a logical file as the granularity of

7.2. FLASH MANAGEMENT 165

mapping, by switching to a new, fine-grained mapping that multiplexed logical

files across physical files at the granularity of a 4-KB block. Although we used

this new mapping only for evaluating write-back and write-through caching in a

client context, it would be trivial to extend Loris and implement subfile tiering. In

such a case, using the same subfile mapping presented in Chapter 6, Loris could

easily map each logical file block, or an logical file extent, to a different tier de-

pending on its usage characteristics. However, doing so also requires modifying

the mechanism used for collecting and maintaining access statistics.

Originally, as described in Chapter 5, Loris used a separate in-memory array

of access counters, one per file, in order to perform its data classification task.

This approach had two benefits. First, by maintaining access statistics on a per

file basis, we reduce the amount of metadata substantially compared to block-level

systems that have to maintain per-block access counters. For instance, maintaining

per-file statistics for an installation with a billion 1-GB files (1-EB of data) would

require roughly 4-GB of additional memory (assuming a 4-byte access counter).

A per-block (or per-extent) mechanism, in contrast, would need 4-TB even with an

extent size of 1-MB. Second, by decoupling this metadata from the file mapping

metadata, and by maintaining access statistics only in memory, we trade off the

persistence of access statistics after a power failure for steady-state performance

and ease of implementation. This trade off was made based on two observations.

First, the loss of file classification information on power failure or system crash

does not affect correctness, as file mapping metadata is always protected in such

scenarios. Second, even though such a failure results in the loss of access history,

data cached or tiered in the SSD continues to be serviced by the SSD, as file

mapping information is preserved across reboots.

Despite its advantages, there are scenarios, like the VDI use case we men-

tioned earlier, where Loris would benefit from fine-grained subfile access tracking.

However, tracking access statistics on a subfile granularity requires maintaining

these statistics for each logical file block or file extent, which, as we mentioned

earlier, poses a scalability issue when in-memory data structures are used. Thus,

as a part of future work, we intend to extend Loris to support tracking and record-

ing access statistics using other compact data structures that spill to secondary

storage like external heaps.

7.2.2 Caching

The current Loris prototype supports the association of different write policies

with system metadata and application data. An interesting aspect of Loris that

was not described in detail in this thesis is the resilience offered by various write

policies with respect to client-side SSD-cache failures. By default, Loris uses

write-back caching policy for both metadata and user data. This configuration was

chosen to derive a fair comparison between the Loris and the block-level caching

166 CHAPTER 7. DISCUSSION

implementation described in Chapter 6, which, unlike Loris, did not even offer

consistency guarantees in the face of system crash or power failure. Although

this default Loris configuration offers protection against power failures, it has the

obvious drawback that it fails to protect metadata and user data from client-side

caching device failures.

As we mentioned Chapter 6, Loris can easily protect metadata against such

failures by switching to a configuration which uses a write-through caching policy

for all system metadata, thanks to the file-awareness of layers, and attribute-based

out-of-band hinting infrastructure present in Loris. With this configuration, a loss

of the caching device would only result in the application data loss, as all updates

to metadata from higher layers are forwarded to both the cache device and the

networked primary data store. It is important to note here that Loris never returns

corrupt data to an application even though such failures might render metadata

out of sync with application data. For instance, consider a size-increasing append

to a file that is buffered by the SSD cache. While the actual data block is writ-

ten only to the SSD, the metadata reflecting the new file size would be written

through to the networked primary store. If the SSD fails before the dirty data

block is synchronized to the primary store, the file size stored in the system meta-

data becomes invalid. However, when a read request for this file is processed by

the Logical layer, it identifies a mismatch between the logical file size stored in

the file mapping and the actual size of the physical file stored in the data store. As

a result, any read request for the lost data block would result in Loris returning

an error to the application. Similarly, overwrites to existing data that are lost due

to SSD failures would also be identified by the Logical layer, as the file mapping

information would identify these data blocks as dirty blocks that have not yet been

synchronized.

While data loss in the face of device failures might be an acceptable trade

off for some applications, certain others with non-zero Recovery Point Objective

(RPO) might demand strict consistency even in the face of caching device fail-

ures. For these applications, Loris can be parameterized to selectively support

write-through caching for application data in addition to system metadata. How-

ever, it is important to note that protecting from both power failures and device

failures requires using write-through caching in combination with checkpointing

of application data. Thus, depending on the type of mechanism used for check-

pointing, it might not be feasible to implement such stringent failure resilience

without sacrificing performance. This is certainly true with the current check-

pointing mechanism supported by Loris [102] which is optimized for metadata-

only checkpointing. In the future, we intend to implement a copy-on-write-based

Physical layer in Loris similar to NetApp’s Write Anywhere File Layout [45] and

investigate the performance impact of using this “write-through-and-checkpoint-

all” configuration.

Chapter 8

Summary and Conclusion

The storage hardware landscape has changed dramatically in the last five decades.

New devices with interfaces and price/performance/reliability tradeoffs radically

different from traditional block-based, magnetic storage media are now common-

place. Application demands on storage systems have also changed substantially.

Modern storage systems are expected to be reliable in the face of crashes, power

outages, hardware failures and even disasters, flexible in on-demand provisioning,

allocation and removal of storage, and offer high performance under a variety of

workloads.

The storage stack found in most operating systems today is the product of sev-

eral decades evolution to accommodate these changes in hardware landscape and

application requirements. Although the stack has grown horizontally, due to addi-

tion of several protocols within a layer, and vertically, due to the addition of new

layers, its evolution has been driven by a single overarching factor – compatibil-

ity with existing installations. The result of such compatibility-driven evolution

is a protocol layering that is riddled with outdated design assumptions that get

invalidated time and again with the addition of each new functionality.

In this thesis, we outlined several performance, flexibility, reliability, and het-

erogeneity problems that plague the traditional stack and presented Loris, a new

storage stack that solves all these problems by design. We will now summarize

the key results of our research, following which, we will highlight potential areas

where further research is required.

8.1 Summary

Fundamental to the design of Loris is the file-level integration of all storage pro-

tocols traditionally implemented at the block level, and the modular division of

labor that enables storage protocols in each layer to evolve independently.

167

168 CHAPTER 8. SUMMARY AND CONCLUSION

In Chapter 2, we presented the division of labor among layers in the Loris

stack for implementing reliable RAID algorithms. We showed how the modular

isolation of layout and RAID algorithms makes Loris heterogeneity friendly, as

layout algorithms can be paired with devices while using a common RAID imple-

mentation. By assigning the role of data integrity verification to the lowest layer,

we showed how end-to-end data integrity can achieved without redundant, cross-

layer data verification. We highlighted the benefit of file-level RAID integration

by showing how advanced reliability features like graceful degradation can be

realized easily.

In Chapter 3, we presented our extensions to the Loris stack for implement-

ing file volume virtualization and device management. We introduced File Pools,

our new storage model, and demonstrated how it radically simplifies storage man-

agement. We showed how file-level integration of file volume management and

storage management algorithms makes them device agnostic, thus, making them

portable across several device families. We described the modular policy–mecha-

nism split that enables the use of a single, efficient, fine-grained snapshoting im-

plementation in the physical layer for realizing fine-grained per-file snapshoting

and even open-close versioning. We also presented version directories, a unified

interface for browsing through snapshoting history.

In Chapter 4, we demonstrated the benefit of Loris’s modularity by show-

ing how naming layer implementations can be changed, and can even co-exist,

without modifying the rest of the storage stack. We showed how this modular-

ity enables integration of domain-specific metadata management into the storage

stack. With such an integration, we obviate the need for application-level meta-

data management, as the storage stack effectively functions as a high-performance

database for storing, retrieving and querying metadata. Thus, Loris-based meta-

data management systems no longer suffer from performance or efficiency issues

that limit the scalability of their application-level counterparts. Using Loris as a

framework, we presented the design and implementation of a new naming layer

that used customized LSM-trees for high-performance storage and an attribute-

based query language for facilitating scalable metadata search.

In Chapter 5, we showed how Loris can be used as a framework for design-

ing hybrid storage systems that use flash-based SSDs in concert with HDDs for

providing high-performance, high-density primary data storage. We implemented

several caching and tiering algorithms using the Loris as a framework and pre-

sented a comparative performance evaluation, highlighting pros and cons of each

approach.

In Chapter 6, we considered the problem of integrating flash-based SSDs as

second-level host-side caches in modern data centers. We showed how the block-

level flash-caching solutions suffer from poor reliability due to lack of crash con-

sistency. Using Loris as a framework, we made the case for file-level integration

of flash caching algorithms and showed how consistency management techniques

8.2. FUTURE WORK 169

that protect locally stored data from power outages or system crashes can be ex-

tended to cover cached data and networked primary data as well. As a natural

extension to the work presented in Chapter 5, where we used Loris to implement

several whole-file caching and tiering algorithms, we designed and implemented

extensions to Loris’s logical layer for performing efficient, subfile mapping of

logical file data to different storage targets. Using these extensions, we imple-

mented both write-back and write-through variants of second-level flash caching,

and presented a comparative evaluation of Loris-based, file-level and traditional,

block-level caching implementations to prove the efficiency of file-level caching.

We hope our work on Loris inspires storage system designers to consider file-

level integration of storage protocols in designing next-generation storage sys-

tems. We believe that the compatibility benefit offered by the traditional block-

level integration of storage protocols is not reason enough to ignore the perfor-

mance, reliability, flexibility, and heterogeneity pitfalls. The retirement of the

traditional storage stack is long overdue and this delay has resulted in the de-

velopment of other parallel, custom-made stacks for dealing with specific device

families. For instance, Linux has an entire storage stack dedicated for managing

byte-granular flash devices to work around the limitations of the traditional stor-

age stack [1]. We believe that a clean-slate approach to storage protocol layering

is required now, more than ever, to prevent such redundant effort.

8.2 Future Work

We believe that our research on alternative protocol layering in the storage stack

opens up several venues for future research.

8.2.1 Alternative Storage Stacks

Loris is certainly not the last word in storage stack design. The protocol layering

used in Loris is only one of many other possible arrangements [6], [3]. As we

mentioned earlier in this thesis, while these other stacks do employ alternative

layering to solve some of the reliability or flexibility issues, Loris is the only stack

to solve all issues by design while remaining heterogeneity friendly. Although we

used Loris as the framework for implementing various file-level storage protocols,

we believe that our research is not just Loris specific. An interesting avenue of

future research involves investigating the integration of our file-based protocols in

other storage stacks. We will give two such examples.

Stackable File Systems

File system stacking has long been touted as an alternative approach for adding

new storage protocols to the traditional stack [43], [108]. In contrast to the tra-

170 CHAPTER 8. SUMMARY AND CONCLUSION

ditional approach of adding protocols to the block-level RAID layer, file system

stacking, as the name implies, involves layering several custom-tailored file sys-

tems, each implementing a storage protocol, between VFS, which forms the top-

most layer, and an on-disk file system, which forms the bottom-most layer. Thus,

theoretically speaking, all file-level storage protocols we designed and imple-

mented in thesis can be ported to the traditional storage stack using the stackable

file system framework. Pushing the idea to its extreme, one could even transform

the traditional stack into the Loris stack using just file system stacking. However,

realizing this practice necessitates overcoming certain performance and reliabil-

ity issues like maintaining cache coherence and avoiding redundant data caching

across file system layers, and investigating a unified approach for protecting all

layers from crashes and power failures [107].

Object-Based Storage

Originally proposed as a solution for achieving direct-access to networked data

(similar to a Storage Area Network protocol) without sacrificing NAS-like se-

curity [31], the object-based storage interface is being considered as a potential

replacement for the semantically-impoverished block interface [77], [50]. Using

this new interface to address flash-based SSDs is essentially a radical shift in the

division of labor between file and storage systems, as device-specific layout man-

agement, originally performed by file systems, will now be performed by the de-

vice controller firmware. Thus, the integration of such devices into the traditional

storage stack is clearly out of question.

Unlike the block-level integration of storage protocols in the traditional stack,

Loris’s file-level RAID, volume management, and caching protocols can be used

unaltered with the new object-based storage device interface (OSD). Thus, the

entirely software-based Loris stack we presented in this thesis can be extended to

span across both OS and device firmware. Similarly, the file-level protocols we

presented here can be recast and implemented in the context of an OSD controller

that manages several direct-attached OSDs using object-based (rather than file-

based) storage protocols [105].

8.2.2 Integrating New Storage Protocols

Although we used Loris to implement several features typically expected from

modern storage systems, there are still several others which are yet to be inte-

grated. For instance, several enterprise systems support encryption for providing

secure storage and compression or deduplication for improving storage utiliza-

tion. Integrating these new protocols into the Loris requires careful deliberation

as they pose new design challenges.

8.2. FUTURE WORK 171

Size Changing Algorithms

Unlike the protocols we implement in this thesis, compression is size changing in

nature, as it does not perform a one to one mapping between a logical file block

and a physical file block. Recent research has shown that such size-changing al-

gorithms can be integrated, albeit with some performance penalty, at the file level

using the stackable file system framework [109]. Further research is required to

identify if a well-thought-out division of labor and policy–mechanism split be-

tween Loris layers can help ameliorate the performance penalty.

Deduplication

Although recent research has argued in favor of whole-file deduplication [65],

there are certain use cases, like virtual desktop infrastructure (VDI) installations,

where block-granular deduplication is certainly worth the effort [27]. Implement-

ing scalable deduplication at the block level is a challenging endeavor in itself due

to the size of the index that tracks the logical–physical block relationships. Inte-

grating deduplication protocols at the file level increases the index size as we must

now map each logical file block to the corresponding physical file block. Thus it

is important to investigate the impact of this increased metadata footprint on per-

formance and scalability, and if auxiliary datastructures, like bloom filters [110],

can assist in speeding up index lookup even at the file level.

Although file-level integration of these storage protocols is challenging, it also

creates several opportunities for optimizations hard to achieve in a block-level

setting. Powered by semantic awareness, one could easily pair compression algo-

rithms with file types, or use different encryption schemes based on data impor-

tance, or eliminate deduplication-induced defragmentation by grouping file blocks

together.

8.2.3 Extensions to Existing Protocols

As our goal in this research was to demonstrate the benefits of integrating vari-

ous protocols at the file level, we made certain assumptions, also made by other

comparable, state-of-the-art academic research projects, about the target storage

installation or application workloads to simplify implementation effort. Thus, an

obvious area of future research involves implementing advanced versions of these

protocols for supporting multitenant storage installations and multilevel host-side

caches.

Integrating Flash-Based SSDs

As we already mentioned, virtualization-driven server consolidation is a norm in

modern data centers. Extending our Loris-based file-level cache to support multi-

172 CHAPTER 8. SUMMARY AND CONCLUSION

ple virtualized workloads requires investigating several design parameters. First,

as we mentioned in chapter 6, one needs to analyze the pros and cons of us-

ing a hypervisor-integrated file-level cache in concert with a paravirtualized NAS

client, as opposed to the traditional approach of caching virtual machine disk im-

ages. Second, cache partitioning algorithms must be implemented to dynamically

divvy up the flash cache among competing workloads based on SLOs or other

performance metrics [84], [36]. Third, the interaction between caching and file

volume snapshoting must be reexamined to eliminate any inefficiencies caused by

redundant data caching [18].

Integrating Phase Change Memory

Despite the advantages of flash-based solid state storage when compared to mag-

netic media, its eccentricities, like asymmetric read/write performance, limited

lifetime, and density-scaling issues, have encouraged research on alternative mem-

ory technologies as potential flash, and possibly DRAM, replacement. Of these

technologies, Phase Change Memory (PCM) has been touted as the “Unified Stor-

age” medium capable of replacing both DRAM and flash due to its ability to offer

persistent data storage with performance comparable to DRAM [57]. As the name

indicates, PCM is a resistive memory technology that works by inducing a phase

change in the storage material during writes which is detected during reads. Thus,

unlike charge-based memory technologies like flash and DRAM, which require

precise control over charge placement in floating gates or capacitors, PCM is ex-

pected to scale better due to the absence of charge-retention and leakage issues at

low cell sizes.

Recently analyst predictions indicate that within the next few years, the cost/GB

of PCM will drop to half that of DRAM, making PCM the second least expen-

sive caching medium after flash [40]. Given such cost dynamics, and given the

rapid adoption of virtualization-based server consolidation, servers equipped with

gigabytes (or even terabytes) of PCM and flash are likely be used as clients in

next-generation data centers for running storage-intensive workloads. As PCM

has performance comparable to DRAM, researchers have shown that the optimal

way of interfacing with it from a hardware point of view is to directly expose

PCM-based storage to the CPU using the memory bus rather than hiding it behind

the I/O controller and treating it as a storage device [20], [66].

An interesting area of future research is investigating the integration of PCM

into the file-based Loris storage stack. A straightforward approach involves using

PCM in place of RAM in the cache layer as a first-level data cache. While this

approach would certainly simplify integration into the Loris stack, more research

is required to understand if alternative layering brings any benefits. For instance,

researchers have proposed hybrid file systems that combine PCM with flash in sev-

eral capacities to improve performance and reliability [58], [106]. An alternative

8.2. FUTURE WORK 173

approach for integrating PCM into the Loris stack would be designing one such

physical layer that unifies the management of PCM and flash. Such a physical

layer would obviate the cache layer reducing the Loris stack to just three layers.

A third approach would be to directly expose PCM to applications by integrat-

ing PCM-management algorithms into domain-specific application libraries [103]

that could also provide custom naming schemes. With such an integration, Loris

would be reduced to just the bottom two layers used for managing the second-level

flash cache.

References

[1] Memory technology devices. http://www.linux-mtd.infradead.org/.

[2] NetApp’s Solid State Hierarchy. ESG White Paper, 2009.

[3] Avere Systems, The Avere Architecture for Tiered NAS, 2009.

[4] Compellent Harnessing SSD’s Potential. ESG Storage Systems Brief,

2009.

[5] EMC Fast Cache - A Detailed Review. EMC White Paper, 2011.

[6] Sun Microsystems, Solaris ZFS file storage solution. Solaris 10 Data

Sheets, 2004.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and

R. Panigrahy. Design tradeoffs for ssd performance. In Proc. of the USENIX

Ann. Tech. Conf., 2008.

[8] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum. Block-

level raid is dead. In Proc. of the Second USENIX Work. on Hot topics in

Storage and File Sys., 2010.

[9] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum. Loris - A

Dependable, Modular File-Based Storage Stack. In Proc. of the 16th IEEE

Pacific Rim Intl. Symp. on Dep. Comp., 2010.

[10] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum. Flexible,

Modular File Volume Virtualization in Loris. In Proc. of 27th IEEE Conf.

on Mass Storage Sys. and Tech., 2011.

[11] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum. Integrating

Flash-based SSDs into the Storage Stack. In Proc. of 28th IEEE Conf. on

Mass Storage Sys. and Tech., 2012.

[12] R. Appuswamy, D. C. van Moolenbroek, S. Santhanam, and A. S. Tanen-

baum. File-level, host-side flash caching with loris. In Proc. of the 19th

IEEE Intl. Conf. on Parallel and Distr. Sys., 2013.

175

http://www.linux-mtd.infradead.org/

176 REFERENCES

[13] M. Blaum, J. Brady, J. Bruck, and J. Menon. Evenodd: an optimal scheme

for tolerating double disk failures in raid architectures. In Proc. of the 21st

Ann. Intl. Symp. on Comp. Arch., 1994.

[14] S. Bloehdorn, O. Görlitz, S. Schenk, and M. Völkel. TagFS – tag semantics

for hierarchical file systems. In Proc. of the Sixth Intl. Conf. on Know.

Mgmt., 2006.

[15] S. Brandt, C. Maltzahn, N. Polyzotis, and W. Tan. Fusing data management

services with file systems. In Proc. of the 4th Ann. Work. on Petascale Data

Storage, 2009.

[16] A. Brown and D. A. Patterson. Towards availability benchmarks: a case

study of software raid systems. In Proc. of the USENIX Ann. Tech. Conf.,

2000.

[17] A. B. Brown and D. A. Patterson. To err is human. In Proc. of the First

Work. on Eval. and Arch. Sys. Dep., 2001.

[18] S. Byan, J. Lentini, A. Madan, and L. Pabon. Mercury: Host-side flash

caching for the data center. In Proc. of 28th IEEE Conf. on Mass Storage

Sys. and Tech., 2012.

[19] F. Chen, D. A. Koufaty, and X. Zhang. Hystor: Making the Best Use of

Solid State Drives in High Performance Storage Systems. In Proc. of the

Intl. Conf. on Supercomp., 2011.

[20] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and

D. Coetzee. Better i/o through byte-addressable, persistent memory. In

Proc. of the 22nd ACM Symp. on Oper. Sys. Prin., 2009.

[21] J. Corbett. A bcache update. http://lwn.net/Articles/497024/, 2012.

[22] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and

S. Sankar. Row-diagonal parity for double disk failure correction. In Proc.

of the Third USENIX Conf. on File and Storage Tech., 2004.

[23] R. C. Daley and P. G. Neumann. A general-purpose file system for sec-

ondary storage. In Proc. of the Fall Joint Comp. Conf., 1965.

[24] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Bridging

the Information Gap in Storage Protocol Stacks. In Proc. of the USENIX

Ann. Tech. Conf., 2002.

[25] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Journal-

guided resynchronization for software raid. In Proc. of the Fourth USENIX

Conf. on File and Storage Tech., 2005.

http://lwn.net/Articles/497024/

REFERENCES 177

[26] J. K. Edwards, D. Ellard, C. Everhart, R. Fair, E. Hamilton, A. Kahn,

A. Kanevsky, J. Lentini, A. Prakash, K. A. Smith, and E. Zayas. Flexvol:

Flexible, efficient file volume virtualization in wafl. In Proc. of the USENIX

Ann. Tech. Conf., 2008.

[27] J. Feng and J. Schindler. A deduplication study for host-side caches in

virtualized data center environments. Proc. of the 29th IEEE Conf. on Mass

Storage Syst. and Tech., 2013.

[28] E. Gal and S. Toledo. Algorithms and data structures for flash memories.

ACM Comp. Surv., 37(2):138–163, 2005.

[29] G. R. Ganger, M. K. McKusick, C. A. N. Soules, and Y. N. Patt. Soft

updates: a solution to the metadata update problem in file systems. ACM

Trans. Comp. Sys., 18(2):127–153, 2000.

[30] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In

Proc. of the 19th ACM Symp. on Oper. Sys. Prin., 2003.

[31] G. A. Gibson and R. Van Meter. Network attached storage architecture.

Commun. ACM, 43(11):37–45, 2000.

[32] D. Gifford, P. Jouvelot, M. Sheldon, and J. O’Toole, Jr. Semantic file sys-

tems. In Proc. of the 13th ACM Symp. on Oper. Sys. Prin., 1991.

[33] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The cedar file system.

Commun. ACM, 31:288–298, 1988.

[34] C. Giuffrida and A. S. Tanenbaum. Cooperative update: a new model for

dependable live update. In Proc. of the Second Intl. Work. on Hot Topics in

Software Upgrades, 2009.

[35] B. Gopal and U. Manber. Integrating content-based access mechanisms

with fierarchical file systems. In Proc. of the Third USENIX Symp. on Oper.

Syst. Design and Impl., 1999.

[36] P. Goyal, D. Jadav, D. Modha, and R. Tewari. Cachecow: Qos for storage

system caches. In Proc. of the Intl. Work. on Quality of Service, 2003.

[37] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami. Cost

Effective Storage using Extent Based Dynamic Tiering. In Proc. of the

Ninth USENIX Conf. on File and Storage Tech., 2011.

[38] A. Gulati, M. Naik, and R. Tewari. Nache: Design and Implementation of

a Caching Proxy for NFSv4. In Proc. of the Fifth USENIX Conf. on File

and Storage Tech., 2007.

178 REFERENCES

[39] R. Hagmann. Reimplementing the cedar file system using logging and

group commit. In Proc. of the 11th ACM Symp. on Oper. Sys. Prin., 1987.

[40] J. Handy. Phase-change memory becomes a reality.

http://objective-analysis.com/, 2009.

[41] L. G. Harbaugh. Storage Smackdown: Hard drives vs SSDs.

http://www.networkworld.com/reviews/2010/041910-ssd-hard-drives-test.html,

2010.

[42] J. Harler and F. Oh. Dynamic Storage Tiering: The Integration of Block,

File and Content, 2010.

[43] J. S. Heidemann and G. J. Popek. File-system development with stackable

layers. ACM Trans. Comp. Sys., 12(1):58–89, 1994.

[44] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Con-

struction of a Highly Dependable Operating System. In Proc. of the Sixth

European Dep. Comput. Conf., 2006.

[45] D. Hitz, J. Lau, and M. Malcolm. File system design for an nfs file server

appliance. In Proc. of the USENIX Winter Tech. Conf., 1994.

[46] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-

narayanan, R. N. Sidebotham, and M. J. West. Scale and performance in a

distributed file system. ACM Trans. Comp. Sys., 6(1):51–81, 1988.

[47] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/O Stack Optimization for

Smartphones. In Proc. of the USENIX Ann. Tech. Conf., 2013.

[48] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li. Dfs: A file system for

virtualized flash storage. In Proc. of the Eigth USENIX Conf. on File and

Storage Tech., 2010.

[49] N. Joukov, A. M. Krishnakumar, C. Patti, A. Rai, S. Satnur, A. Traeger, and

E. Zadok. RAIF: Redundant Array of Independent Filesystems. In Proc. of

24th IEEE Conf. on Mass Storage Sys. and Tech., 2007.

[50] Y. Kang, J. Yang, and E. L. Miller. Object-based scm: An efficient interface

for storage class memories. In Proc. of the 27th Symp. on Mass Storage

Syst. and Tech., 2011.

[51] G. Karche, M. Mamidi, and P. Massiglia. Using Dynamic Storage Tiering.

Tech. report, 2006.

[52] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the coda

file system. ACM Trans. Comp. Sys., 10(1):3–25, 1992.

http://objective-analysis.com/
http://www.networkworld.com/reviews/2010/041910-ssd-hard-drives-test.html

REFERENCES 179

[53] Y. Klonatos, T. Makatos, M. Marazakis, M. D. Flouris, and A. Bilas. Azor:

Using Two-Level Block Selection to Improve SSD-Based I/O Caches. In

Proc. of the Sixth Intl. Conf. on Net., Arch., and Storage, 2011.

[54] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala, and

M. Zhao. Write policies for host-side flash caches. In Proc. of the 11th

USENIX Conf. on File and Storage Tech., 2008.

[55] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan,

R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dussea. Parity lost

and parity regained. In Proc. of the Sixth USENIX Conf. on File and Stor-

age Tech., 2008.

[56] B. Laliberte. Automate and Optimize a Tiered Storage Environment -

FAST! Tech. report, 2009.

[57] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change

memory as a scalable dram alternative. In Proc. of the 36th Ann. Intl. Symp.

on Comp. Arch., 2009.

[58] E. Lee, H. Bahn, and S. H. Noh. Unioning of the buffer cache and journal-

ing layers with non-volatile memory. In Proc. of the 11th USENIX Conf.

on File and Storage Tech., 2013.

[59] A. Leung, I. Adams, and E. Miller. Magellan: A searchable metadata ar-

chitecture for large-scale file systems. Tech. Report UCSC-SSRC-09-07,

University of California, Santa Cruz, 2009.

[60] A. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. Miller. Spyglass: fast,

scalable metadata search for large-scale storage systems. In Proc. of the

Seventh USENIX Conf. on File and Storage Tech., 2009.

[61] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller. Measurement

and Analysis of Large-Scale Network File System Workloads. In Proc. of

the USENIX Ann. Tech. Conf., 2008.

[62] A. Leventhal. Flash Storage Memory. Commun. ACM, 51(7), 2008.

[63] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system

for unix. ACM Trans. Comput. Syst., 2(3):181–197, 1984.

[64] L. W. McVoy and S. R. Kleiman. Extent-like Performance from a UNIX

File System. In Proc. of the Winter USENIX Conf., 1991.

[65] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. In Proc.

of the Ninth USENIX Conf. on File and Storage Tech., 2011.

180 REFERENCES

[66] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operating system

support for nvm+dram hybrid main memory. In Proc. of the 12th USENIX

Work. on Hot Topics in Oper. Sys., 2009.

[67] K.-K. Muniswamy-Reddy and D. A. Holland. Causality-based versioning.

In Proc. of the Seventh USENIX Conf. on File and Storage Tech., 2009.

[68] K.-K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and E. Zadok. A

versatile and user-oriented versioning file system. In Proc. of the Third

USENIX Conf. on File and Storage Tech., 2004.

[69] M. Olson. The design and implementation of the Inversion file system. In

Proc. of the Winter USENIX Tech. Conf., 1993.

[70] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The Log-Structured

Merge-Tree (LSM-Tree). Acta Informatica, 33(4):351–385, 1996.

[71] J. K. Ousterhout, H. Da Costa, D. Harrison, J. A. Kunze, M. Kupfer, and

J. G. Thompson. A trace-driven analysis of the unix 4.2 bsd file system. In

Proc. of the Tenth ACM Symp. on Oper. Sys. Prin., 1985.

[72] S. Patil and G. Gibson. Scale and concurrency of giga+: file system direc-

tories with millions of files. In Proc. of the Ninth USENIX Conf. on File

and Storage Tech., FAST’11, 2011.

[73] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of

inexpensive disks (raid). In Proc. of the 1988 ACM SIGMOD Intl. Conf. on

Management of data, 1988.

[74] Z. Peterson and R. Burns. Ext3cow: a time-shifting file system for regula-

tory compliance. ACM Trans. on Storage, 1:190–212, 2005.

[75] M. Polte, J. Simsa, and G. Gibson. Enabling enterprise solid state disks

performance. In Proc. of the First Work. on Integ. Solid-state Memory into

the Storage Hierarchy, 2009.

[76] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Iron file systems. In Proc. of

the 20th ACM Symp. on Oper. Sys. Prin., 2005.

[77] A. Rajimwale, V. Prabhakaran, and J. D. Davis. Block management in

solid-state devices. In Proc. of the USENIX Ann. Tech. Conf., 2009.

[78] D. M. Ritchie and K. Thompson. The unix time-sharing system. Commun.

ACM, 17(7):365–375, 1974.

[79] D. Roselli, J. R. Lorch, and T. E. Anderson. A comparison of file system

workloads. In Proc. of the USENIX Ann. Tech Conf., 2000.

REFERENCES 181

[80] M. Rosenblum and J. K. Ousterhout. The design and implementation of a

log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52, 1992.

[81] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton,

and J. Ofir. Deciding when to forget in the elephant file system. In Proc. of

the 17th ACM Symp. on Oper. Sys. Prin., 1999.

[82] M. Saxena, M. M. Swift, and Y. Zhang. Flashtier: a lightweight, consistent

and durable storage cache. In Proc. of the 17th ACM European Conf. on

Comp. Sys., 2012.

[83] S. Sechrest and M. McClennen. Blending hierarchical and attribute-based

file naming. In Proc. of the 12th Intl. Conf. on Dist. Comp. Sys.

[84] P. Sehgal, K. Voruganti, and R. Sundaram. Slo-aware hybrid store. In Proc

of the 28th IEEE Symp. on Mass Storage Sysems and Tech., 2012.

[85] B. Sidebotham. Volumes: the andrew file system data structuring primitive.

Tech. Report CMU-ITC-053, 1986.

[86] G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring data integrity in stor-

age: techniques and applications. In Proc. of the ACM Work. on Storage

Sec. and Surviv., 2005.

[87] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Life or death at block-level. In Proc. of the Sixth Conf. on

Symp. on Oper. Sys. Design & Impl., 2004.

[88] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Improving storage system availability with d-graid. ACM Trans.

on Storage, 1(2):133–170, 2005.

[89] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber. Ex-

tending SSD lifetimes with disk-based write caches. In Proc. of the Eighth

USENIX Conf. on File and Storage Tech., 2010.

[90] C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying file system protec-

tion. In Proc. of the USENIX Ann. Tech. Conf., 2001.

[91] L. Stein. Stupid file systems are better. In Proc. of the Tenth USENIX Work.

on Hot Topics in Oper. Systems, 2005.

[92] J. Stender, B. Kolbeck, M. Hoĺgqvist, and F. Hupfeld. Babudb: fast and

efficient file system metadata storage. In Proc. of the Sixth Intl. Work. on

Storage Net. Arch. and Parallel I/Os, 2010.

182 REFERENCES

[93] D. Stodolsky, G. Gibson, and M. Holland. Parity logging overcoming the

small write problem in redundant disk arrays. In Proc. of the 20th Ann. Intl.

Symp. on Comp. Arch., 1993.

[94] StorageReview. Intel x25v ssd review.

http://www.storagereview.com/intel_x25v_ssd_review_40gb, 2010.

[95] H. Tada, O. Honda, and M. Higuchi. A File Naming Scheme using

Hierarchical-Keywords. In Proc. of the 26th Ann. Intl. Comp. Soft. and

App. Conf.

[96] Taneja Group Technology Analysts. The State of the Core ? Engineering

the Enterprise Storage Infrastructure with the IBM DS8000. White Paper,

2009.

[97] A. S. Tanenbaum and A. S. Woodhull. Operating Systems Design and Im-

plementation (Third Edition). Prentice Hall, 2006. ISBN 0131429388.

[98] V. Tarasov, D. Hildebrand, G. Kuenning, and E. Zadok. Virtual machine

workloads: The case for new benchmarks for NAS. In Proc. of the 11th

USENIX Conf. on File and Storage Tech., 2013.

[99] D. Teigland and H. Mauelshagen. Volume managers in linux. In Proc of

the USENIX Ann. Tech. Conf., 2001.

[100] M. Uysal, A. Merchant, and G. A. Alvarez. Using MEMS-Based Storage

in Disk Arrays. In Proc. of the Second USENIX Conf. on File and Storage

Tech., 2003.

[101] R. van Heuven van Staereling, R. Appuswamy, D. C. van Moolenbroek,

and A. S. Tanenbaum. Efficient, modular metadata management with loris.

In Proc. of the Sixth Intl. Conf. on Net., Arch., and Storage, 2011.

[102] D. van Moolenbroek, R. Appuswamy, and A. Tanenbaum. Integrated sys-

tem and process crash recovery in the loris storage stack. In IEEE Seventh

Intl. Conf. on Net., Arch. and Storage, 2012.

[103] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: lightweight persistent

memory. In Proc. of the 16th Intl. Conf. on Arch. Supp. for Prog. Lang. and

Oper. Sys., 2011.

[104] A.-I. Wang, P. L. Reiher, G. J. Popek, and G. H. Kuenning. Conquest:

Better Performance Through a Disk/Persistent-RAM Hybrid File System.

In Proc. of the USENIX Ann. Tech. Conf., 2002.

[105] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Ze-

lenka, and B. Zhou. Scalable performance of the panasas parallel file sys-

tem. In Proc. of the Sixth USENIX Conf. on File and Storage Tech., 2008.

http://www.storagereview.com/intel_x25v_ssd_review_40gb

REFERENCES 183

[106] X. Wu and A. Reddy. Scmfs: A file system for storage class memory. In

Intl. Conf. on High Perf. Comp., Net., Storage and Analysis, 2011.

[107] E. Zadok. The layers are coming, the layers are coming. In Proc. of the

Linux Storage and File Syst. Workshop, 2008.

[108] E. Zadok, I. Badulescu, and A. Shender. Extending file systems using stack-

able templates. In Proc. of the USENIX Ann. Tech. Conf., 1999.

[109] E. Zadok, J. M. Andersen, I. Badulescu, and J. Nieh. Fast indexing: Sup-

port for size-changing algorithms in stackable file systems. In Proc. of the

USENIX Ann. Tech. Conf., 2001.

[110] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data

domain deduplication file system. In Proc. of the Sixth USENIX Conf. on

File and Storage Tech., 2008.

Samenvatting

Alle moderne besturingssystemen gebruiken een verzameling protocollen die uit

meerdere lagen zijn opgebouwd om de bekende hiërarchische abstractie van het

bestandssysteem aan applicaties te leveren. In overeenstemming met de liter-

atuur zullen we hier verder naar verwijzen als de “opslagstack”. Het opbouwen

van protocollen uit lagen is niet specifiek voor de opslagstack. Zo gebruiken

besturingssystemen bijvoorbeeld ook een gelaagde verzameling protocollen om

netwerkfaciliteiten aan applicaties aan te bieden, ook wel aangeduid als de “netwerk-

stack”. Het gebruik van lagen met vastgelegde abstracties er tussenin heeft in

beide gevallen de onafhankelijke evolutie van protocollen mogelijk gemaakt, waar-

bij wijzigingen in één laag geen gevolgen hebben voor de andere lagen.

Er is echter een belangrijk verschil tussen de twee stacks: in tegenstelling tot

de netwerkstack, waar de integratie van de protocollen gestandaardiseerd is op

basis van vaste ontwerpen, is de integratie van de lagen van de opslagstack enkel

gedreven door ondersteuning van oudere systemen.

In deze dissertatie bekijken we de traditionele opslagstack op basis van drie di-

mensies: betrouwbaarheid, flexibiliteit en heterogeniteit. We identificeren enkele

problemen met de traditionele opslagstack in elke dimensie en laten zien hoe oude

ontwerpbeslissingen zijn genomen op basis van aannames die door het toevoe-

gen van protocollen aan de opslagstack voor compatibiliteit niet meer geldig zijn

en hoe dit de oorzaak is van al deze problemen. Hiermee beargumenteren we

waarom de traditionele opslagstack beter uit gebruik genomen zou kunnen wor-

den, aangezien deze niet alleen ineffectief is in het beheer van hedendaagse op-

slagsystemen, maar ook niet voorbereid is om met de verwachte veranderingen

in opslagoplossingen van de toekomst overweg te kunnen. Vervolgens presen-

teren we Loris, een herontwerp van de opslagstack op een schone lei die zodanig

is ontworpen dat alle problemen van de traditionele opslagstack ermee opgelost

worden.

In de opbouw van de lagen van het Loris protocol maken we de bewuste

keuze om compatibiliteit met oude systemen op te geven zodat we de modulariteit

en ondersteuning voor heterogene apparaten kunnen verbeteren. Loris verbetert

de modulariteit door de monolitische bestandssysteemlaag uit de traditionele op-

185

186 SAMENVATTING

slagstack op te delen in drie lagen, namelijk Naamgeving, Cache en Indeling.

Daardoor kunnen protocollen in één laag vervangen worden zonder dat de an-

dere lagen hierdoor beïnvloed worden. Wij hebben van deze mogelijkheid ge-

bruik gemaakt om domein-specifieke naamgevingsprotocollen te implementeren

in Loris.

Loris ondersteunt heterogene hardware door nadrukkelijk apparaat-agnostische

opslagprotocollen op het bestandsniveau te implementeren in plaats van apparaat-

specifieke protocollen die afhankelijk van het onderliggende opslagapparaat op

het niveau van blokken, bytes of objecten geïmplementeerd zijn. Het resultaat

van de nadruk op modulariteit en heterogeniteit in het ontwerp is een opslagstack

waarin alle lagen kennis hebben van bestanden en alle protocollen werken op basis

van bestanden in plaats van blokken.

Deze dissertatie omschrijft een mogelijke realisatie van Loris: een op software

gebaseerde protocol stack die draait op het MINIX3 microkernel besturingssys-

teem. Hiermee leveren we de volgende bijdragen:

1. Nieuwe opslagstack

• Het ontwerp, de implementatie en de evaluatie van de lagen van het

Loris protocol samen met een diepgaande vergelijking van de Loris

protocollen met hun equivalenten in de traditionale opslagstack.

2. RAID op bestandsniveau en volume management

• File Pools, een nieuw opslagmodel dat het beheer van apparaten een-

voudiger maakt

• Een op Loris gebaseerde virtualizatie-infrastructuur die ondersteuning

biedt om thin-provisioned bestandsvolumes een enkele file pool te kun-

nen laten delen

• Een enkele geïntegreerde op Loris gebaseerde infrastructuur voor het

maken van momentopnames van volumes en bestanden en het bijhouden

van meerdere versies per bestand met een duidelijke scheiding tussen

beleid en mechanisme

3. Efficiënt beheer van metadata

• Een op Loris gebaseerd modulair systeem voor beheer van metadata

dat 1) metadata opslag met behulp van LSM-trees, 2) infrastructuur om

real-time te indexeren met gebruik van LSM-trees voor het bijhouden

van indices van attributen, en 3) schaalbaar metadata zoeken met be-

hulp van een op attributen gebaseerde zoektaal biedt

4. Flash-integratie op bestandsniveau

SAMENVATTING 187

• Een op Loris gebaseerd raamwerk dat het mogelijk maakt om op be-

standsniveau hybride primaire opslagsystemen te ontwikkelen die SSDs

samen met HDDs gebruiken in verschillende rollen en een empirische

studie van de voors en tegens van verschillende algoritmes voor caching

en gelaagde opslag.

• Het ontwerp en de implementatie van een op Loris gebaseerde flash

cache aan de kant van de host die fijnmazige caching uitvoert van delen

van bestanden zonder problemen met de consistentie

	ACKNOWLEDGEMENTS
	1 Introduction
	1.1 Evolution of File and Storage Systems
	1.1.1 File Systems
	1.1.2 Logical Addressing and RAID
	1.1.3 Volume Management
	1.1.4 User-Level Metadata Management
	1.1.5 Second-Level Flash Integration

	1.2 Retiring the Traditional Stack
	1.3 Introducing Loris
	1.4 Contributions of this Thesis
	1.5 Organization of this Thesis

	2 Loris
	2.1 Introduction
	2.2 Problems with the Traditional Storage Stack
	2.2.1 Reliability
	2.2.2 Flexibility
	2.2.3 Heterogeneity Issues

	2.3 Solutions Proposed in the Literature
	2.4 The Design of Loris
	2.4.1 The Physical Layer
	2.4.2 The Logical Layer
	2.4.3 The Cache Layer
	2.4.4 The Naming Layer

	2.5 The Advantages of Loris
	2.5.1 Reliability
	2.5.2 Flexibility
	2.5.3 Heterogeneity

	2.6 Evaluation
	2.6.1 Test Setup
	2.6.2 Evaluating Reliability and Availability
	2.6.3 Performance Evaluation

	2.7 Conclusion

	3 Volume Management
	3.1 Introduction
	3.2 Problems with existing approaches
	3.2.1 Lack of Flexibility
	3.2.2 Lack of support for heterogeneous devices

	3.3 The Loris storage stack
	3.3.1 Physical layer
	3.3.2 Logical layer
	3.3.3 Cache and naming layers

	3.4 File volume virtualization in Loris
	3.4.1 File pools: Our new storage model
	3.4.2 Infrastructure support for file pools
	3.4.3 Infrastructure support for file volume virtualization

	3.5 New functionality: file volume snapshoting in Loris
	3.5.1 Division of labor
	3.5.2 Physical layer(1): Copy-based snapshoting
	3.5.3 Physical layer(2): Copy-on-write-based snapshoting
	3.5.4 File volume snapshoting in the logical layer

	3.6 New functionality: Unifying file snapshoting and version creation policies
	3.6.1 Version volumes
	3.6.2 Open-close versioning in the naming layer

	3.7 New functionality: Version directories–a unified interface for browsing history
	3.7.1 Version directories – interface specification
	3.7.2 Version directories – implementation details

	3.8 Evaluation
	3.8.1 Test Setup
	3.8.2 Copy-based and copy-on-write snapshoting comparison
	3.8.3 Open-close versioning evaluation
	3.8.4 Overhead of file volume virtualization

	3.9 Comparison with other approaches
	3.9.1 Device management
	3.9.2 File management and file volume virtualization

	3.10 Future work
	3.10.1 Flexible cloning in Loris
	3.10.2 Hybrid file pools

	3.11 Conclusion

	4 Metadata Management
	4.1 Introduction
	4.2 Background: The Loris Storage Stack
	4.2.1 Physical layer
	4.2.2 Logical layer
	4.2.3 Cache layer
	4.2.4 Naming layer

	4.3 Efficient, Modular Metadata management with Loris
	4.3.1 Storage management sublayer
	4.3.2 Interface management sublayer

	4.4 Evaluation
	4.4.1 Test setup
	4.4.2 Microbenchmarks
	4.4.3 Macrobenchmarks
	4.4.4 Attribute indexing overhead

	4.5 Related Work
	4.5.1 Storage management
	4.5.2 Interface management
	4.5.3 End-to-end metadata management

	4.6 Future Work
	4.6.1 Partitioning
	4.6.2 Exploiting heterogeneity

	4.7 Conclusion

	5 Hybrid Storage
	5.1 Introduction
	5.2 Hybrid storage systems
	5.2.1 Caching
	5.2.2 Dynamic Storage Tiering

	5.3 Background: The Loris storage stack
	5.3.1 Physical layer
	5.3.2 Logical layer
	5.3.3 Cache and Naming layers
	5.3.4 Tiering Framework
	5.3.5 Loris as a platform for storage tiering - The Pros
	5.3.6 Loris as a platform for storage tiering - The Cons

	5.4 Loris-based hybrid systems
	5.4.1 Loris-based Hot-DST systems
	5.4.2 Loris-based Cold-DST architectures
	5.4.3 Loris-based Caching

	5.5 Evaluation
	5.5.1 Test Setup
	5.5.2 Benchmarks and Workload Generators
	5.5.3 Workload Categories
	5.5.4 Comparative evaluation
	5.5.5 Mixed Workloads and Hybrid Architectures

	5.6 Discussion
	5.6.1 Analyzing Cold-DST
	5.6.2 Other hybrid architectures
	5.6.3 Caching vs Tiering Algorithms

	5.7 Conclusion

	6 Host-Side Caching
	6.1 Introduction
	6.1.1 Consistent, Block-Level Write-Back Caching
	6.1.2 Filesystem-Based Caching
	6.1.3 Our Contributions

	6.2 The Case For File-level Host-Side Caching With Loris
	6.2.1 Loris - Background
	6.2.2 File-level Host-side Caching With Loris

	6.3 Loris-based Host-side Cache: Architecture
	6.3.1 Volume Management Sublayer: Subfile Mapping
	6.3.2 Cache Management Sublayer
	6.3.3 Physical Layer Support For Subfile Caching
	6.3.4 Network File Store

	6.4 Evaluation
	6.4.1 Setup
	6.4.2 Benchmarks and Workload Generators
	6.4.3 Comparative Evaluation: Caching Policies
	6.4.4 Network Performance Sensitivity
	6.4.5 Cache Size Sensitivity
	6.4.6 File-Level and Block-Level Caching Comparison

	6.5 Conclusion

	7 Discussion
	7.1 Metadata Management
	7.1.1 Metadata Consistency
	7.1.2 Metadata Reliability

	7.2 Flash Management
	7.2.1 Tiering
	7.2.2 Caching

	8 Summary and Conclusion
	8.1 Summary
	8.2 Future Work
	8.2.1 Alternative Storage Stacks
	8.2.2 Integrating New Storage Protocols
	8.2.3 Extensions to Existing Protocols

	REFERENCES
	SAMENVATTING

