TOWARDS A TRUE MICROKERNEL
OPERATING SYSTEM

A revision of MINIX that brings quality
enhancements and strongly reduces the kernel in
size by moving device drivers to user-space

Jorrit N. Herder

A thesis
in

Computer Science

Presented to the Vrije Universiteit Amsterdam in Partial Fulfillment
of the Requirements for the Degree of Master of Science

February 23, 2005

vrije Universiteit amsterdam

TOWARDS A TRUE MICROKERNEL
OPERATING SYSTEM

A revision of MINIX that brings quality
enhancements and strongly reduces the kernel in
size by moving device drivers to user-space

Jorrit N. Herder

APPROVED BY

prof.dr. Andrew S. Tanenbaum:
(supervisor)

dr. Bruno Crispo:
(second reader)

Abstract

An operating system forms the foundation for all of the user’s computer
activities. Therefore, it should be trustworthy and function flawlessly. Un-
fortunately, today’s operating systems, such as Windows and Linux, fail to
deliver to this ideal, because they suffer from fundamental design flaws and
bugs. Their monolithic kernel tend be overloaded with functionality that
runs at the highest privilege level. This easily introduces bugs and breaches
the Principle of Least Authorization (POLA) with all the related risks. A
malfunctioning third-party device driver, for example, can easily reek havoc
on the system and leave it in a state of total mayhem.

Microkernel operating systems have a different design that makes them
less vulnerable to these problems. A microkernel provides only a minimal set
of abstractions that runs at the highest privilege level. Extended operating
system functionality is typically available by means of user-space servers.
By splitting an operating system into small, independent parts, the system
becomes less complex and more robust, because the smaller parts are more
manageable and help to isolate faults, respectively.

This thesis describes an effort to create a more reliable operating system
by exploiting modularity. MINIX was chosen as the base operating system
for this project because it already is relatively small and simple, but provides
POSIX compliance at the same time. MINIX’ kernel can be characterized
as a hybrid microkernel because it includes device drivers. MINIX’ memory
manager (MM) and file system (FS), however, are already implemented as
independent user-space servers.

The main contribution of this work is that MINIX was fully revised to
become a true microkernel operating system. In kernel-space, several system
calls were added to support the user-space device drivers, MINIX’ interpro-
cess communication (IPC) facilities were improved, and a new shutdown
sequence was realized. In user-space, a new information server (IS) was
set up to handle debugging dumps and a library was created to maintain
a list watchdog timers. These modifications made it possible to strongly
reduce the size of MINIX’ kernel by transforming the PRINTER, MEM-
ORY, AT_WINI, FLOPPY and TTY tasks into independent, user-space device
drivers.

Preface

With the completion of this thesis a five and a half year period of Computer
Science studies comes to end. When I first came to the VU in September
1999 my first semester’s mentor happened to be Andy Tanenbaum. From
the mentor meetings I basically only remember that he welcomed his group
of students with homemade chocolate chip cookies.

After completing my Bachelor’s in January 2003 I decided to do my
Master’s at the Computer Systems section. By chance, Andy again became
my mentor. During a compulsory progress meeting he overwhelmed me with
the proposal to work on a project he had in mind. Although the project
conflicted with my regular courses I gladly accepted the challenge. This paid
off later when it was decided to let this project coincide with my master’s
project. This thesis describes the project’s outcome—thus far.

There is a number of people who I want to thank for helping me to
accomplish this result. First of all, I thank Andy Tanenbaum for asking me
to work on this great project and for his excellent support along the road.
The combination of Andy’s enthusiasm, sharp insights, and high standards
provide a rewarding environment to work in.

Furthermore, I thank Ruediger Weis for his highly motivating words
about this project. According to him I've been working on “the Crown
Jewels of Europe’s software history.” It’s also good to know that “MINIX
has potential to take over the world.” Let’s see where this goes ... "

While most of the work was done at home, Andy arranged a proper
workspace at the VU late 2004. I decided to work at the VU for a few days
per week to get familiar with the Computer Systems section. I thank the
entire section for their warm welcome. I feel lucky with my roommates and
the nice group of people that daily joins for lunch.

Finally, I thank my parents and my girlfriend, Eva Marinus, for their
invaluable support in the broadest sense of the word.

IMid 2004 a project proposal was submitted to NWO, which ranked it 1°* out of 58
computer science projects. Backed by an NWO grant I will continue my work on this
project as a Ph.D. student as of March 1.

vil

Copyright (© 2005 by Jorrit N. Herder

Contents

Introduction

1.1 Operating systems o

1.11
1.1.2
1.1.3

Basic concepts o oL
Operating system structures.
Kernel properties

1.2 Microkernel operating systems

1.2.1
1.2.2
1.2.3

Microkernel applications
Microkernel security
Performance issues

1.3 Imntroduction to MINIX
1.4 Problem statement
1.5 Approach followed, .
1.6 Outline of thisthesis

Problem analysis

2.1 Timing measurements

211
2.1.2

Test setup
Test results and discussion

2.2 Design options for system services

221
2.2.2
2.2.3

Inclusion in the system image
Load system services on demand
Approach taken in this project

2.3 Analysis of dependencies L.

2.3.1
2.3.2
2.3.3

How to remove dependencies
A functional classification
Message ordering problems

Kernel improvements

3.1 Supporting user-space device drivers

3.1.1
3.1.2
3.1.3
3.14

System calls for device I/O
Generic virtual copying
Interrupt handling
Getting system information

1x

13
13
13
14
15
15
16
17
17
19
20
22

CONTENTS

3.1.5 Other support functions 29
3.2 Interprocess communication 30
3.2.1 Rendezvous message passing 30
3.2.2 Implementation of rendezvous IPC 31
3.2.3 A revision of MINIX’ system call handler 32
3.3 Dealing with asynchronous events 36
3.3.1 Original implementation 36
3.3.2 A new notification construct 38
3.3.3 Handling of asynchronous events 40
3.4 A new shutdown sequence 41
3.4.1 Original implementation 41
3.4.2 New setup to cleanly bring down MINIX 42
3.4.3 Future modifications L. 46
New applications 47
4.1 A new information server 47
4.1.1 Debug dumps in MINIX 2.0.4 47
4.1.2 A distributed approach 49
4.1.3 Observing function keys 50
4.1.4 Debug dumps after a panic 51
4.2 Generic management of watchdog timers 53
4.2.1 Original implementation 53
4.2.2 Generic timer management 54
4.3 Dealing with unresponsive hardware 58
4.3.1 Exception handling in MINIX 2.04 59
4.3.2 New approaches to detect timeouts 60
Kernel reductions 63
5.1 A user-space PRINTER driver 63
5.1.1 Modification of the original PRINTER task 64
5.1.2 Setup of a user-space PRINTER driver 64
5.1.3 Generic multilevel scheduling 65
5.2 A user-space MEMORY driver 67
5.2.1 Setup of a user-space MEMORY driver 67
5.2.2 Reading the real time clock 68
5.2.3 Problems with the ‘ps’ utility 69
5.3 User-space AT_WINI and FLOPPY drivers 69
5.3.1 Detecting controller timeouts 70
5.3.2 Changes to the device independent code 70
5.3.3 Dynamic controller-driver mappings 72
54 A user-space TTY driver 73
5.4.1 Redesign of MINIX’ shutdown code 74
5.4.2 Making debug dumpso L 75

5.4.3 Outputting diagnostics 75

CONTENTS xi

6 Related work 79
6.1 CMUMach 79
6.1.1 Kernel properties 80

6.1.2 Applications of Mach 80

6.2 QNX Neutrino RTOS 81
6.2.1 System architecture 82

6.3 L4 microkernel APT 82
6.3.1 L4 implementations 83

6.3.2 Ld4Ka::Pistachio. 84

6.3.3 Examples of L4 applications 84

6.4 Comparison with MINIX 85

7 Summary and conclusion 87
7.1 Contributions 87
7.2 Retrospective oo 91
7.3 Futurework 92

A Source tree organization 99
A.1 Overview of all kernel files 99
A.2 Organization of the new source tree 101

B How to apply changes ... 103
B.1 Adding programs to the system image 103
B.2 Addingsystemcalls 104
B.3 Adding system libraries 105

C MINIX’ system calls 106
C.1 Organization of system call implementation 106

C.2 Overview of system calls in MINIX 3.00 107

List of Figures

1.1 Operating system structures based on kernel functionality . . 3
1.2 Properties of monolithic kernels and microkernels 5
1.3 Structure of microkernel applications 6
1.4 Structure of MINIX 2.0.4: multiserver, hybrid microkernel 9
1.5 Structure of MINIX 3.0.0: multiserver, true microkernel 11
2.1 Test setup for measuring performance penalty 14
2.2 Test results showing request-response overhead 15
2.3 Dependencies matrix based on missing symbols 18
2.4 Message ordering in MINIX 2.0.4 to prevent deadlocks 22
3.1 Data structures supported by the SYS.GETINFO call 28
3.2 MINIX’ new shutdown sequence 43
4.1 Distributed approach for making debug dumps 48
4.2 Debug dumps supported by the ISserver 49
4.3 Function key assignments at the TTY driver 50
4.4 User-space watchdog timer management 55
5.1 Dependencies of the PRINTER task in MINIX 2.0.4 64
5.2 Dependencies of the MEMORY task in MINIX 2.0.4 67
5.3 Dependencies of the AT_WINI and FLOPPY tasks 70
5.4 Dependencies of the TTY task in MINIX 2.04 74
5.5 Diagnotic output by system services 76
6.1 Structure of Mach 3.0: single-server, hybrid microkernel . . . 80
6.2 Structure of QNX 6.3: multiserver, hybrid microkernel . . . 81
6.3 Two applications on top of the L4 microkernel 85
6.4 A comparison of MINIX and related work 86
7.1 The outcome of this master’s project: MINIX 3.0.0 90
A.1 Source tree and system services of MINIX 3.0.0 102
C.1 Overview of system calls envisioned in MINIX 3.0.0 107

xiii

Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
5.3
5.4
9.5
5.6

Handler function for the SYS.DEVIO system call 24
A new generic virtual copying function 26
Generic interrupt handler at the kernel 27
Handler function for the SYS_GETINFO system call 29
A full revision of MINIX’ sys_call() function 33
The new notify() function for system events 39
The new code that prepares a shutdown of MINIX 44
The new stop sequence to cleanly bring down MINIX 45
Send a notification for observed function keys 51
Making debug dumps after a panic 52
Function prototypes of the timer management library 56
Generic timer management in the FLOPPY driver o7
Detecting a timeout with the new CLK_FLAGALRM alarm . . . 61
Handling timeouts with a synchronous alarm 62
The ready() function updates scheduling queues 65
The pick_proc() function selects a process torun 66
The driver structure of the device independent code 71
The FS dynamically maps drivers to major devices 72
Simplified version of printf() for the kernel 7
Kernel messages are accumulates in a circular buffer 78

Note: all listings in this thesis concern new or revised MINIX sources.

XV

Chapter 1

Introduction

Operating systems are the lowest level software that control the computer’s
bare hardware and provide the base upon which application programs can
be written. An operating system thus forms the foundation for all of the
user’s computer activities. Therefore, it should be trustworthy and function
flawlessly. Unfortunately, today’s operating systems, such as Windows and
Linux, fail to deliver to this ideal. Most computer users are accustomed to
frequent operating system crashes and are plagued by digital pests.

The reason for these problems is that today’s operating systems suffer
from fundamental design flaws and bugs. Their design can be character-
ized as a large monolithic program which is in full control of the machine.
Common design guidelines such as modularity and the principle of least au-
thorization (POLA) are typically violated to win some performance. Third
party device drivers, for example, normally are an integral part of the kernel
and have all privileges with which they can bring down the entire system.

Another major problem is the inevitable existence of bugs. Software
statistics typically provide a number of 1 to 20 bugs per 1000 lines of code
(LoC). This number may be even worse for operating systems that are more
complex than the average piece of software. Today’s most widely used op-
erating systems have millions of lines of code (MLoC) and thus may easily
have thousands of bugs. Windows XP, for example, has about 50 MLoC
which translates up to 1 million bugs in the worst case.

In this master’s project an effort is made to create a more reliable op-
erating system by exploiting modularity. By splitting an operating system
into small, independent parts the system becomes less complex and more
robust because the smaller parts are more manageable and help to isolate
faults, respectively. MINIX was chosen as the base operating system for
this project because it already is relatively small and simple, but provides
POSIX compliance at the same time. The primary goal is to transform
MINIX’ device drivers into independent programs so that MINIX becomes a
true microkernel operating system.

2 CHAPTER 1. INTRODUCTION

The remainder of this chapter is structured as follows. Section 1.1 pro-
vides an introduction to general operating system principles. Section 1.2
discusses microkernel operating systems in more detail and Section 1.3 in-
troduces MINIX. Section 1.4 provides a precise problem statement and Sec-
tion 1.5 presents the approach that was taken for this project. Finally,
Section 1.6 outlines the structure of the rest of this thesis.

1.1 Operating systems

This section introduces general operating systems principles. The next sub-
section starts with important operating system concepts. Subsection 1.1.2
classifies different operating system structures. Subsection 1.1.3 compares
the key properties of monolithic and microkernel operating systems

1.1.1 Basic concepts

In general, operating systems can be viewed from two perspectives. They
can be regarded as both a resource manager and an extended or wirtual
machine [1]. The resource manager is responsible for providing access to the
machine’s hardware and securely multiplexing all requests. Resources, for
example, may include the hard disk, CD-ROM, printer and video memory,
and may be shared among multiple applications.

The extended machine is meant to enhance the hardware’s capabilities
with higher-level functionality. Traditional operating systems may, for ex-
ample, provide file systems and windowing functionality. The extended ma-
chine defines the interface for the application programs. In contrast to the
resource management, this interface may be portable between different hard-
ware architectures.

The kernel is that part of the operating system that runs at the highest
privilege level, called kernel mode or supervisor mode. Kernel mode refers
to a CPU flag that indicates whether or not the running process is allowed
to execute all possible instructions. Programs that run in user mode do not
have this flag set and thus are not allowed to perform certain instructions.

The operating system interface is defined by the system calls that are
available to the programmer. System calls use a special machine instruc-
tion, called a trap, which causes the processor to change from user mode to
kernel mode and to dispatch the kernel’s system call handler. This way user
processes can request system services to perform restricted actions such as
accessing the hardware.

Processes can communicate with help of interprocess commmunication
(IPC) facilities that often are implemented by means of a system call. IPC,
for example, can be implemented by passing a request message followed by
a context switch. A context switch means to stop the running process and
save its volatile state, so that another process can be restored and restarted.

1.1. OPERATING SYSTEMS 3

EI User ‘ User ‘ User User ‘ User ‘ User User User User
Interface servers
oS 0OS 0oSs
2 1 n
g
T Kernel Device drivers
]
i~ o o -
Kernel Kernel
() (b) ()

Figure 1.1: A classification of operating systems. Monolithic kernels (a) are
usually unstructured. Microkernels (b) often have a layered structures. Exokernels
(c) are known as vertically structured operating systems.

The latter is done by issuing a special machine instruction after restoring a
process’ state.

A key issue for operating systems is to make sure that user applications
cannot interfere with the kernel and with each other. This is done by en-
capsulating processes in address spaces that are physically protected from
each other. The memory management unit (MMU) hardware enforces this
protection by verifying each attempt to access memory. Illegal accesses re-
sult in an exception that is caught by an exception handler in the kernel,
which can take appropriate actions.

1.1.2 Operating system structures

Operating systems can be categorized based on their kernel design. The
distinction between the resource manager and extended machine views on
an operating system turns out to be relevant for categorizing different struc-
tures. Three broad categories can be distinguished:

Monolithic kernels Monolithic kernels provide rich and powerful abstrac-
tions of the underlying hardware. All operating system services are
compiled as single, monolithic program that runs in kernel mode,
whereas applications run in user mode and can request system ser-
vices from the kernel. The kernel thus both is resource managemer
and an extended machine. From a high-level perspective, a monolithic
kernel is unstructured. This is illustrated in Figure 1.1(a). Examples
of monolithic operating systems are Windows, BSD UNIX and Linux.

Microkernels and hybrid kernels Microkernels are characterized by a
minimal set of kernel abstractions, but need not necessarily be small in
size. Microkernels provide a small set of simple hardware abstractions

4 CHAPTER 1. INTRODUCTION

and use applications called servers to provide more functionality. Only
a minimal part of the operating system runs in kernel mode, whereas
all applications run in user mode. In contrast to monolithic kernels,
a microkernel’s main function is resource management. A microker-
nel operating system has a loosely layered structure with client-server
communication between the layers. This is illustrated in Figure 1.1(b).
An example of a true microkernel is L4 [2].

Hybrid kernels are very much like microkernels, but are augmented
with additional services running in kernel-space for performance rea-
sons. MINIX [1] and Mach [3], for example, are part of this category
because their device drivers are part of the kernel. QNX [4] also is a
hybrid microkernel because its process manager is part of the kernel.

Virtual machines and exokernels Virtual machines and exokernels do
not provide a hardware abstraction layer like other operating systems;
instead, they respectively duplicate or partition the hardware resources
so that multiple operating systems can run next to each other with
the illusion of having a private machine. A virtual machine monitor
or exokernel runs in kernel mode and is responsible for the protection
of resources and multiplexing hardware requests, whereas each oper-
ating system runs in user mode, fully isolated from the other. Virtual
machines and exokernels are also known as vertically structured op-
erating systems. Each of the operating systems running next to each
other can either have a monolithic kernel or a microkernel structure.
This is illustrated in Figure 1.1(c). Examples of virtual machines and
exokernels respectively are VMware [5] and the MIT exokernel [6].

As virtual machines and exokernels are merely a means to provide an
interface to an operating system, they will not be discussed any further. The
distinction between monolithic kernels and microkernels is more interesting
for this master’s project.

1.1.3 Kernel properties

An overview of operating system properties is given in Figure 1.2. While
operating systems with a monolithic kernel often have a good performance,
microkernel operating systems tend to do better on all other properties.
Most differences directly stem from the difference in modularity.

Modularity is the key property that gives power to microkernels. In
contrast to monolithic systems, microkernel operating systems are usually
realized as a set of cooperating servers, each dedicated to its task. This gives
a clear separation of responsibilities with all related benefits.

Examples of properties that may be found in microkernel operating sys-
tems follow. Microkernels are flexible and can easily be extended because it

1.2. MICROKERNEL OPERATING SYSTEMS 5

Monolithic kernel Microkernel
Modularity -
Complexity -
Flexibility -
Maintainability -
Security -
Performance v
Compatibility -

RN NN RN

«\

Figure 1.2: Comparison of operating systems properties for monolithic kernels
and microkernels. The performance of a microkernel-based operating system is not
necessarily bad, as is discussed in Subsection 1.2.3.

is possible to replace servers or problem solving strategies. They are easier
to maintain because small components are less complex and more manage-
able. The separation of responsibilities also is beneficial for security and
robustness of the operating system because faults are isolated and malfunc-
tioning components may be replaced on the fly. More details on security
can be found in Subsection 1.2.2.

A property that has long been used against microkernels is performance.
Monolithic system often provide a good performance because all services are
part of the kernel and thus can directly access each other. A microkernel
operating system, in contrast, requires additional communication to let sys-
tem servers cooperate. For this reason, microkernels are often said to be
slow, while this is not necessarily the case. Subsection 1.2.3 discusses this
issue in more detail.

An interesting property of microkernels is that they make it possible to
preserve a UNIX environment while experimenting with novel applications.
They thus provide backwards compatibility while making a transition to a
new computing environment. This is further discussed in Subsection 1.2.1.

While the potential benefits are tremendous, examples of successful mi-
crokernel operating systems are hard to find. QNX perhaps fulfills most
promises, but, unfortunately, is a closed, commercial system. This mas-
ter’s project—and future work that will be based on it—may help MINIX to
occupy a niche for open source microkernel operating systems.

1.2 Microkernel operating systems

While the previous section introduces general operating system principles,
this section focuses on microkernel operating systems. Subsection 1.2.1
treats three different ways to structure applications that are built on top
of microkernels. Two important operating system properties—security and
performance— are discussed in Subsection 1.2.2 and 1.2.3, respectively.

6 CHAPTER 1. INTRODUCTION

User ‘ User User User ‘ User ‘ User
8
£ cl Server ‘ Server
g Monolithic Specialized
> (OF application
c2 Driver ‘ Driver | | Driver
E
s Kernel Kernel Kernel
X

@ (b) (©

Figure 1.3: A classification of microkernel applications based on the structure of
the programs that run in user mode. Different structures are (a) a single-server
operating system with specialized components, (b) a multiserver operating system,
and (c) a dedicated system.

1.2.1 Microkernel applications

In Subsection 1.1.2, it is outlined that hybrid kernels and microkernels pro-
vide a reduced set of abstractions compared to monolithic kernels. There-
fore, microkernels rely on user-space servers to provide additional function-
ality for the application programs that are to run on top of the operating
system. This functionality can be realized in several different ways.

Single-server operating system In a single-server OS, the microkernel
runs an entire monolithic OS as an ordinary user program. This is
illustrated in Figure 1.3(a). This setup does not change any of the
properties of the monolithic OS and thus means that there still is a
single point of failure. The main advantage of this setup is that is
allows to preserve a UNIX environment while experimenting with a
microkernel approach. Legacy applications that are targeted towards
the monolithic OS often can coexist with novel applications.! The
combination of legacy applications and real-time or secure components
allows for a smooth transition to a new computing environment.

Many examples of this approach exists. Mach was one of the first
microkernels around and allowed to run multiple ‘OS personalities’
next to each other, including BSD UNIX and OSF/1 [8]. Another
example is L4Linux [9], which runs on top of the L4 microkernel. The
PERSEUS project [10] is an effort to run specialized components that
enable secure digital signatures next to L4Linux.

!The usual approach to use legacy applications on top of a single-server OS is to
recompile the applications with a new system call stub library. In specific systems, such
as Mach, trap redirection [7] can be used to realize binary compatibility.

1.2. MICROKERNEL OPERATING SYSTEMS 7

Multiserver operating system In a multiserver OS, the operating sys-
tem environment is formed by a number of cooperating servers. This
is illustrated in Figure 1.3(b). The increased modularity brings many
benefits, as is discussed in Subsection 1.1.3, including improved ro-
bustness, maintainability, flexibility. Depending on the functionality
provided by the multiserver environment, legacy applications may still
be usable if they are linked with an emulation library. Novel applica-
tions can simply be realized by writing a new system server.

Several examples of multiserver operating systems exist. The GNU
Hurd, for example, is a multiserver environment that runs on top of
a modified Mach microkernel. SawMill Linux [11] is a multiserver
environment on top of the L4 microkernel. Subsection 1.3 discusses
yet another example, MINIX.

Dedicated system Another organization is to use a specialized application
that directly runs on top of the microkernel. This is illustrated in
Figure 1.3(c). Many variations of such a system can be thought of.
This is especially useful for mobile and embedded devices with reduced
computing power.

An example of a dedicated system is a Java virtual machine (JVM)
that runs directly on top of the microkernel. Compared to a traditional
approach where an operating system hosts the JVM, this realizes a
more secure environment for Java applications, because the host no
longer needs to be trusted.

1.2.2 Microkernel security

Microkernels have good security properties, as already mentioned in Sub-
section 1.1.3. This is especially true for a multiserver OS where all system
servers are encapsulated in address space. Servers then are physically pro-
tected from each other by the memory management unit (MMU) hardware.
If a process illegally tries to access another process’ memory, this is detected
by the MMU and an exception will be raised. The exception is caught by
the kernel, which can take any action deemed necessary.

While a server cannot directly corrupt other servers, dependent servers
may be indirectly affected. If server A relies on server B to perform a
task, server A may be affected by a malfunctioning in or malicious action by
server B. An important concept relating to this is the trusted computing base
(TCB), that is, the minimal set of components whose correct functionality
is a precondition for security [12]. For microkernels, the TCB can be very
small. In a dedicated system, for example, a specialized application’s TCB
would only be the microkernel and the underlying hardware.

An important security issue that cannot easily be solved is that com-
ponents with harware control have the ability to corrupt the entire system.

8 CHAPTER 1. INTRODUCTION

For example, device drivers that can use direct memory access (DMA) may
corrupt the memory of arbitrary processes be providing an invalid address
to the DMA controller. Some PCI chip sets have an I/O MMU that offer
protection by mapping a PCI address space onto a known area of physical
memory. A more general solution to this problem is not yet available.

1.2.3 Performance issues

Microkernel operating systems often are claimed to suffer from inherent
performance problems because multiple processes must cooperate to perform
a task. The reason for the alleged performance loss is that extra interprocess
communication (IPC) and thus extra context switches are needed between
user processes, system servers and the kernel. Furthermore, copying of data
between cooperating servers causes additional overhead.

The first microkernels around indeed had a substantial performance
penalty. BSD UNIX on top of Mach, for example, is well over 50% slower
than the normal version of BSD UNIX. Modern microkernels, however, have
proven that high performance actually can be realized. L*Linux on top of
L4, for example, only has a performance loss of 2 to 4%.

Performance turns out to be an implementation problem [13]. The ap-
proach that was taken in L4 is to define a portable microkernel interface, but
to make optimal use of hardware capabilities for the implementation.? Each
platform thus requires a different kernel implementation, but applications
that adhere to L4’s kernel API can simply be recompiled and reused.

Another important lesson is that microkernels should be small. A per-
formance breakdown of L4 revealed that cache misses are more important
than IPC itself [15]. A context switch from a user-space process to the kernel
requires only changing a few bits at the CPU to switch to kernel mode and
to restore the kernel’s state. The address space switch, however, may cause
costly cache misses. This penalty becomes more severe if virtual memory is
used because the entries of the translation look-aside buffer (TLB) are also
invalidated by an address space switch.

Finally, software should be explicitly (re)designed for microkernels. Mi-
crokernels are different from monolithic and thus may require a different
design to achieve a good performance. Research on SawMill Linux, for ex-
ample, was aimed at designing a multiserver protocol that reduces IPC and
prevents unnecessary data copies. The performance of microkernel-based
operating systems thus cannot be measured by IPC costs alone [16].

L4, for example, makes optimal use of CPU registers for IPC. Messages are defined
as a set of virtual registers that are mapped to real registers whenever possible. IPC
stub-generation supports the programmer in selecting the optimal implementation [14].

1.3. INTRODUCTION TO MINIX 9

° User User User
8

£

g

> MM FS NET
3 r C
2 ' Driver : Driver
g - -
Q

X Kernel

Figure 1.4: MINIX 2.0.4 can characterized as a multiserver operating system with
a hybrid microkernel. All device drivers are part of the kernel, while important
system functionality is realized by user-space servers, such as the file system (FS),
memory manager (MM), and network server (INET).

1.3 Introduction to MINIX

This master’s project focuses on microkernel operating systems in general
and MINIX [1] in particular. MINIX is a free microkernel-based operating
system that comes with complete the source code, mostly written in C. It
was written by Andrew S. Tanenbaum in 1987 as an educational operating
system that is easy to learn and maintain. MINIX is accompanied by a book
that explains its design in great detail.

The design of MINIX can be characterized as a multiserver operating
system with a hybrid microkernel. Its structure is illustrated in Figure 1.4.
Major components such as the file system (FS) and memory manager (MM)
are set up as separate servers that run in user mode. MINIX has a hybrid
microkernel because device drivers are compiled as part of the kernel.

Because the device drivers are part of the kernel, they run at the highest
privilege level. In effect, this means that MINIX’ device drivers are fully
trusted, while they should not be. Therefore, one of the goals of this master’s
project is to transform device drivers into independent, user-space servers so
that MINIX becomes a multiserver operating system with a true microkernel.
A more precise problem statement is given in Subsection 1.4.

Since the initial version of MINIX the source tree has gradually evolved,
but its kernel has been rather stable. Development on the second version of
MINIX, which is POSIX-conformant, has been done since 1996.

This project is based upon MINIX 2.0.4, which was released at November
2003 as a ‘mid development expert-only snapshot’ for the sake of this project.
The kernel of MINIX 2.0.4 roughly comprises 20,000 lines of code (LoC),
including comments. MINIX 2.0.4 and other versions of MINIX are publicly
available from http://www.cs.vu.nl/pub/miniz/.

10 CHAPTER 1. INTRODUCTION

Appendix A.1 provides an overview of all files that are part of the kernel
in MINIX 2.0.4. In total, the kernel has 77 files and is 878 KB in size with all
drivers included. The microkernel portion of the code only is 220 KB. The
listing shows that only a small fraction (25%) of the source code belongs to
MINIX’ microkernel, whereas the majority (75%) of the code is made up by
device drivers. Removing the device drivers from the kernel thus results in
a huge reduction of code that runs at the highest privilege level.

1.4 Problem statement

The goal of this master’s project is to revise MINIX 2.0.4 to get a more
reliable operating system. This is realized by enhancing MINIX’ kernel so
that it becomes smaller and better. The problem statement thus is twofold:

Kernel reductions: MINIX’ kernel can be reduced by transforming device
drivers that run as kernel tasks into independent, user-space programs.
Although MINIX’ device drivers are designed as separately scheduled
processes, called tasks, they are compiled into the kernel. This means
that they run at the highest privilege level—with all the related risks.
By removing the drivers from the kernel and having them to runs as
ordinary user-space processes, MINIX will become more secure, be-
cause the device drivers and the kernel will be physically protected
from each other.

Quality enhancements: This step concerns improving the quality of the
operating system, in general. MINIX’ kernel contains several functions
that are not strictly required within the kernel. Nevertheless, this code
has access to important kernel data structures and thus may endanger
the system. All such code also should be removed from the kernel, for
example, by setting up additional user-space servers. Furthermore,
some parts of the kernel’s code can be improved by redesigning the
code or adding new security features.

The anticipated outcome of the project can be characterized as a mul-
tiserver operating system with a true microkernel. MINIX’ new structure is
shown in Figure 1.5. Because of the gross restructuring the version number
will be raised from MINIX 2.0.4 to MINIX 3.0.0.

1.5 Approach followed

Getting familiar with MINIX. The project started with thoroughly
studying the book [1] that accompanies MINIX 2.0.0. The chapters on the
implementation of processes and device I/O were given the most attention.
After this, the source tree of MINIX 2.0.4 was studied and some initial ex-
periments with user-space I/O were undertaken.

1.5. APPROACH FOLLOWED 11

User User User
Q
3
E MM FS NET
3
-}
Driver| |Driver| |Driver
v
2
g Kernel

Figure 1.5: One of the goals of this project is to remove device drivers from the
kernel, so that MINIX 3.0.0 can characterized as a multiserver operating system
with a true microkernel.

Timing measurements. The restructuring of MINIX introduces some
communication overhead because user-space device drivers and the kernel
have to cooperate to perform the same tasks as before. Timing measure-
ments were conducted on two different machines to assess the performance
penalty. The test setup and the results can be found in Section 2.1.

Comparison of design options. The study of MINIX’ source code turned
out that user-space system services can be started in two ways. While most
servers are statically configured into the system image, a dynamic approach
also exists. A comparison of these possibilities and the approach that was
chosen for this project is discussed in Section 2.2.

Feasibility study. This step consisted of moving the Centronics printer
driver out of the kernel. The successful transformation of the kernel-space
PRINTER task into a user-space servers built confidence for the rest of the
project. The outcome of the feasibility study and the problem that were
encountered are provided in Section 5.1.

Analyzing dependencies. A dependencies matrix was created by com-
piling all kernel tasks in isolation and gathering all missing symbols. Differ-
ent ways to remove dependencies were analyzed and a functional classifica-
tion was created to find a general approach for related dependencies instead
of ad hoc solutions for individual device drivers.

Transformation of device drivers. The general idea that allows to have
user-space device drivers, is to support them with system calls that execute
privileged operations within the kernel. Many new system calls were added
to the kernel and some parts of MINIX were completely redesigned to cleanly

12 CHAPTER 1. INTRODUCTION

remove all dependencies. Once all dependencies were resolved, several device
drivers were removed from the kernel. The results are described in detail in
Chapter 3 to Chapter 5.

Improving the code quality. While removing the dependencies, much
of MINIX’ code was analyzed. This revealed certain shortcomings and room
for improvement. Therefore, general improvements were made to the code
whenever possible.

1.6 Outline of this thesis

This thesis is organized as follows. The next chapter provides a problem
analysis and briefly discusses different design options. The problem analysis
mainly focuses on the dependencies that play a role when device drivers are
moved out of the kernel.

Chapter 3 gives an overview of the improvements that were made to
MINIX’ kernel. The improvements include various new system calls to sup-
port user-space device drivers, changes to MINIX’ interprocess communica-
tion (IPC) facilities, and a full revision of MINIX’ shutdown sequence.

Chapter 4 treats various new applications and illustrates the usefulness
the various kernel improvements. New applications include a new server
for obtaining system information, a simpler and generic way to manage
watchdog timers, and new approaches to deal with unresponsive hardware.

Chapter 5 discusses how the kernel was strongly reduced in size. This
mainly concerns the transformation of entangled, kernel-space device drivers
into independent, user-space programs. The discussion covers the PRINTER,
MEMORY, AT_WINI, FLOPPY, and TTY device drivers.

Chapter 6 surveys related work in microkernel operating systems. Three
typical microkernels—Mach, QNX and L4—and some of their applications
are discussed. Mach is interesting from a historical perspective. QNX Neu-
trino is a successful commercial microkernel for embedded systems. L4 can
be characterized by is small size and high performance.

Finally, Chapter 7 concludes this thesis. It provides an overview of the
major contributions by summarizing the results, it briefly looks back to
what was accomplished and draws some conclusions, and then it describes
possible areas of future work.

In the end, several appendices cover the details that did not fit in the
main text. Appendix A provides an overview of the files that belong to
MINIX’ kernel and outlines the new source tree; Appendix B tells how to
make certain changes; and Appendix C lists all system calls of MINIX.

Chapter 2

Problem analysis

This chapter presents the problem analysis that was conducted before the
actual programming started. Section 2.1 presents timing measurements that
were done to get an impression of the overhead incurred by user-space device
drivers. This is followed by a discussion of the different design options
for loading system services in Section 2.2. Finally, Section 2.3 provides a
detailed analysis and classification of the dependencies that have to be dealt
with when kernel tasks are transformed into user-space device drivers.

As mentioned in Subsection 1.5, the transformation of the PRINTER task
into a user-space device driver served as a feasibility study for this project.
While this can be considered as a part of the problem analysis, the results
are discussed in Chapter 5, together with the other user-space drivers.

2.1 Timing measurements

The transformation of kernel tasks into independent user-space servers re-
quires additional communication because the servers have to cooperate with
the kernel (and possibly with other servers) to perform their work. Device
drivers, for example, no longer have privileges to directly perform device
I/O. Therefore, they must request the kernel to read or write a certain
device register on their behalf.

The restructuring of MINIX thus requires extra context switches and
will introduce some performance overhead. The time needed for a typical
request-response sequence was measured to get an impression of the perfor-
mance penalty. The test setup and the results are discussed below.

2.1.1 Test setup

The measurements are done within the kernel because microsecond precision
readings of the clock counter are required. During the test an illegal request
message is sent from the CLOCK task to the FS server, which immediately

13

14 CHAPTER 2. PROBLEM ANALYSIS

@

Request

®)

Response

Microsecond
counter

_____KERNEL

Figure 2.1: Test setup for measuring the incurred overhead of a typical request-
response sequence. The timing measurements includes two message copies, two
context switches, and the minimal logic to evaluate the request.

responds with an error message. The clock counter is read just before send-
ing the request message and just after receiving the response message. The
test setup is illustrated in Figure 2.1.

The measurement gives an impression of the incurred overhead when
processes must cooperate to perform a certain task. The test setup includes
two message copies, two context switches, and the minimal logic! to eval-
uate the request. Since an illegal request is made an error is immediately
returned, and the actual work at the server is excluded. This means that
the pure overhead of a typical request-response sequence is measured.

The implementation of this test required some small changes to the
CLOCK task. A new function was defined in src/kernel/clock.c to do mi-
crosecond precision reading of the 8253A timer. Furthermore, a temporary
system call was implemented at the CLOCK task to initiate the test sequence.
No changes were required to the FS server.

2.1.2 Test results and discussion

The tests were conducted on two Intel machines with different CPU speeds.
Thirty tests were run on each machine. The results are shown in Figure
2.2. They show that additional request-response sequences only cost a few
microseconds and that the overhead relates to the CPU speed. Since the test
machines are quite old, the overhead will much lower on modern computers.

"Most servers in MINIX are set up in a similar way. In general, there is a main loop
that blocks until a request message is received, evaluates the request and dispatches to
the handler function, and returns the result to the caller. For illegal requests no handler
function is called, but an error is directly returned.

2.2. DESIGN OPTIONS FOR SYSTEM SERVICES 15

Machine (CPU) Minimum | Maximum | Average
Pentium I, 166 MHz 28 us 30 us 29.4 us
Pentium III, 450 MHz 13 ps 16 ps 14.2 ps

Figure 2.2: Test results showing the request-response overhead in a configuration
as shown in Figure 2.1. Thirty tests were run on each machine. All results are in
microseconds.

Unfortunately, the timing measurements alone do not provide enough
information to assess the precise costs. The request-reponse frequency is
needed to calculate the actual overhead, but is hard to determine in advance.
Such measurements can only be accurately made when one or more device
drivers have been moved out of the kernel. Moreover, the results are likely
to depend on the type of driver.

To give a rough estimate of the performance penalty, suppose that a
typical request-response sequence takes 5 us on a modern CPU and that
1000 extra sequences per second are required by a user-space device driver.
This implies a performance penalty of 5 ms per second, which means that
the incurred overhead is only 0.5% of the CPU. The performance overhead
thus seems very reasonable compared to the benefits that are gained by
having user-space drivers.

While the time measurements presented here are fixed values, the num-
ber of request-response sequences may be subject to all kinds of optimiza-
tions. Furthermore, copying data from one process to another may be a
bigger problem for certain classes of device drivers. Therefore, future work
will focus on a more detailed analysis of the performance of user-space device
drivers. This is outside the scope of this master’s project.

2.2 Design options for system services

System services in MINIX can be loaded in two ways. The standard approach
is to statically included them in the system image, but a dynamic approach
also exists. These options are compared below and the approach taken for
this project is briefly discussed.

2.2.1 Inclusion in the system image

The standard approach to start system services in MINIX 2.0.4 is to include
them in the boot image that is produced by the program ‘installboot’.
All services in the boot image are automatically started during system ini-
tialization. Currently, the boot image includes the kernel, the MM and FS

16 CHAPTER 2. PROBLEM ANALYSIS

servers, and the INIT process. Because of the way the programs are loaded,?
there currently is space to include up to 12 other programs in the image.

Including extra programs in the system image requires updating the
kernel data structures that are used to initialize the process table. The
kernel, for example, must know about the number of programs included
in the system images and requires a name for each program. Appendix B
describes the precise steps that must be taken.

Since new system services affect the kernel’s source code, they cannot
be easily distributed and applied to working systems. To make changes the
user must obtain the updated source code, apply all patches, and recompile
the kernel. This requires some expertise and can only be done by the system
administrator. Such updates may not be needed by embedded or stand-alone
systems, but in a more dynamic environment this may become a problem.

2.2.2 Load system services on demand

Another possibility is to load system services after the operating system
had been loaded. Since system services are treated as special processes in
MINIX 2.0.4, this requires some extra steps compared to loading an ordinary
user program. The system call SYS_SVRCTL allows a process with superuser
privileges to transform itself into a system process during initialization. The
steps that are taken to load the INET server are described below.

Dynamic control over system services is beneficial for several reasons.
First, it simplifies development and debugging of system services because
it does not require kernel modifications nor recompilation or rebooting of
the entire system to install a new service. Another interesting benefit is
that it facilitates the distribution of new or update system services. System
services can easily be started by privileged users or by any user when the
setuid bit is enabled.

Another advantage is that there are no practical limits to the number
of servers that can be started. Simply increasing the NR_PROCS variable in
<miniz/config.h> would reserve extra resources, that is, space in the process
table, to run additional servers. In contrast, the approach that is described
above would require to modify the low-level startup code.

Unfortunately, the SYS_SVRCTL system call of MINIX 2.0.4 has several
shortcomings that makes it hard to take full advantage of dynamically load-
ing system services. The call, for example, it does not provide a clean way
to abort system services and release resource again.

2The boot monitor extracts the size of the code and data segment of each program
from the system image and stores these values in the _sizes array that used by MINIX
to set the memory map of each process. The _sizes array is defined as 64 bytes of space
at the beginning of the kernel’s data segment. Because each program requires 4 bytes, a
maximum of 16 programs can be included in the system image.

2.3. ANALYSIS OF DEPENDENCIES 17

INET is playing tricks

In contrast to the FS and MM servers, the network server, INET, is separately
distributed and not included in the system image. Thus the kernel does not
know that INET is a special process. INET is started like any other user
process, but it uses the SYS_SVRCTL system call during its initialization to
become a system service. There are three steps in this process:

1. Register with the memory manager. The MM simulates an exit by
releasing a waiting parent and disinheriting any child processes. When
this is done, the process’ ID and group are changed to become a server
as far as the MM concerns.

2. Register with the SYSTEM task in the kernel. The SYSTEM task
updates the process’ type and priority. When this is done, INET no
longer is a user process, but has become a real server.

3. The last step is to register itself with the FS in order to manage a
device. The FS keeps a table mapping between devices and processes
that handle them. The INET server requests to manage the /dev/ip
device. Once the new mapping is in place INET is addressed like any
other device driver.

2.2.3 Approach taken in this project

During this project all system services, such as user-space device drivers,
were included in the boot image. The reasons for choosing this static con-
figuration are simplicity and time constraints.

The preferred method, however, is to dynamically start and stop sys-
tem services. Therefore, the design of a proper interface for dynamically
controlling system services is part of future work.

2.3 Analysis of dependencies

To get an impression of what needed to be done to move device drivers out
of the kernel, their dependencies were analyzed. A dependency means that
a symbol, that is, a variable or function, can no longer be directly referenced
by a device driver that is compiled as a separate program. In most cases
this means that the device driver depends on kernel functionality to do its
work, but other kinds of dependencies exist as well. This is discussed in
Subsection 2.3.2.

The dependencies were determined by copying all files® of a given task to
a separate directory and trying to compile the task isolated from the kernel.

3The copying of files belonging to a given tasks excluded header files local to the kernel.
Depending on the results, such header files or individual definitions may be relocated at
a later time. Variables and functions, in contrast, usually cannot be relocated.

18 CHAPTER 2. PROBLEM ANALYSIS

z| = o
AEHHHBPEREEIR AR EHEH R A
23 |g(a(318 2|z 2|s|s|~|6]8
Zle|8|8|<|2| 2|8 8| E|E|&|B|G|E|a|c .
Symbol <|=|®@ Wi E "] Y] Prototype Implementation
_bad_assertion | F X X | x X assert.h misc.h
_cause_sig | F X x | proto.h system.c
_cons_stop | F X proto.h clock.c
_clock_stop | F X proto.h clock.c
_current |V X glo.h
_data_base 'V | x [x [x | x| x [X |x |x[x|[x|x]|X|[x|x]|x|X glo.h -
_disable_irq | F x prota.h klib.s
_dosfile_stop | F X proto.h dosfile.c
_dp8390_stop | F X proto.h clock.c
_ega |V x glo.h -
_enable_iop | F X proto.h protect.c
_enable_irg | F | x | x X | X X | x| x| x X [x [x | proto.h klib.s
_env_panic | F X proto.h misc.c
_env_parse F | x X | x prata.h misc.c
_env_prefix | F X | x proto.h misc.c
_floppy_stop | F X proto.h floppy.c
_get_uptime | F X X X | x X | x prota.h clock.c
_intd6 | F X X proto.h klib.s
_interrupt F | x [x X | X X | x| x| x X | x [x | proto.h proc.c
_intr_init | F x proto.h i8259.c
_levelo | F X X | x X prota.h klib.s
_mem |V X | x X glo.h -
_mem_rdw | F X proto.h klib.s
_mem_vid_copy | F X prata.h prata.h
_micro_delay F | x | x X X | x X prato.h clock.c
_micro_elapsed F | x | x X X prota.h clock.c
_micro_start | F | x | x X X prota.h clock.c
_mixer_set F X sh16.h mixer.c
_monitor F X proto.h klib.s
_mon_params |V x| x glo.h -
_mon_return |V X glo.h -
_humap F | x | x [x [x | x| x| x| x|[x[x|[x]|x]|x|[x]|x proto.h system.c
panic F [x| x| x|x|x|x|x|[x|x]|x|x X | x | x | proto.h main.c
_pc_at |V b X glo.h
_phys2seg | F X X proto.h protect.c
_physcopy F | x| x| x| x |[x|x|x|[x|x|x|[x|[x]|x]|x|[x]|x proto.h klib.s
_phys_insb | F X prata.h klib.s
_phys_insw | F X X proto.h klib.s
_phys_outsb | F X prota.h klib.s
_phys_outsw | F X X prota.h klib.s
_pproc_addr |V | x | x [x X | x X | x X X | x | x | proc.h -
_proc |V X X | x proc.h
_proc_ptr |V | x X [x | x [x| x|[x|x|x]|x x | glo.h
_protected_mode |V X X glo.h -
_pr_restart | F X | proto.h printer.c
_ps_mca |V x | glo.h -
_put_irq_handler F | x | x X | x X [x| x| x X | x | x | proto.h i8250.¢c
_putk | F X proto.h console.c
_regds |V X X ibm/int86.h
_reset | F X proto.h klib.s
_rtl3139_dump | F X proto.h 18130.c
_rtl8139_stop | F X proto.h 8139.c
_rtl_probe F X proto.h 18029.c
tasktab |V | x | x | x [x [x| x| x|x|x glo.h -
_tmr_exptimers F | x [x [x | x | x [X | x| x [X X proto.h clock.c
_tmr_settimer | F x X X x prota.h clock.c
_tty_table |V X tty.h -
_tty_timelist | V X tty.h
_tty_timeout | V x x | glo.h -
_tty_wakeup F x | proto.h tty.c
_vid_vid_copy | F X proto.h klib.s
_vircopy F | x X X | proto.h system.c
_wreboot | F X proto.h keyboard.c

Figure 2.3: Dependencies matrix based on missing symbols after isolated com-
pilation of kernel tasks. Symbols are either a function (F) or a variable (V). The
marked drivers were moved to user space; the last two tasks will stay in the kernel.

2.3. ANALYSIS OF DEPENDENCIES 19

The task’s dependencies then can be found by inspecting the compiler and
linker’s warnings relating to missing symbols. These steps were taken for all
kernel tasks to obtain a list of dependencies for each.

The results of this procedure are listed in the dependencies matrix that
is shown in Figure 2.3. The dependencies matrix was used to make a clas-
sification of dependencies. By making a classification of different kinds of
kernel dependencies, it becomes easier to find general solutions and to realize
the migration at a later time. This is discussed in Subsection 2.3.2.

Undetected dependencies

There is one important class of dependencies that was not found this way,
and which is not listed on the dependencies matrix. Dependencies relating to
device I/O were not found because the device I/O functions are part of the
standard system libraries and thus were automatically linked with the device
drivers. Device I/O, however, requires special privileges and thus cannot be
used by user-space drivers. Any attempt to read or write a register would
directly result in a CPU exception.

2.3.1 How to remove dependencies

Different kinds of dependencies require a slightly different approach in re-
moving them. The classification below describes what needs to be done to
remove a dependency. Five cases can be distinguished:

Driver-to-kernel. All device drivers depend on kernel functionality. Most
drivers, for example, use a kernel function to copy chunks of memory
between arbitrary, physical addresses. User-space processes, however,
are not permitted to do so. Such dependencies typically can be re-
placed with a system call that requests the kernel to perform some
task on behalf of a user-space process. The new system calls can be
implemented in the system library where MINIX’ existing system calls
also reside.

Driver-to-driver. Drivers can also depend on each other. All system ser-
vices, for example, rely on the TTY driver to output diagnostic mes-
sages. These dependencies can be replaced by defining new message
types that allow drivers to communicate with each other. Similar to
MINIX’ system calls, these interprocess calls can be implemented in a
separate library.

Kernel-to-driver. The kernel may also depend on the device drivers. All
device drivers, for example, are stopped with a function call from
the kernel when MINIX shuts down. Furthermore, interrupt handlers

20 CHAPTER 2. PROBLEM ANALYSIS

must be part of the kernel, but typically use device driver data struc-
tures. The approach for these dependencies similar to what is dis-
cussed above, that is, the kernel may send a message to notify the
driver of the event for further handling. The exact ordering of messages
may pose some problems, though, as is discussed in Subsection 2.3.3.

Bad design. There are several dependencies that are caused by bad design.
These are unnecessary dependencies that exist because symbols were
globally declared while they were only locally needed. This mainly
concerns variables that belong to the TTY task. The CLOCK task, for
example, directly sets an event flag at the TTY driver when a TTY
alarm goes off. The solution simply is to make such declarations local.

False positives. Finally, some symbols that show up in the dependency
matrix are not real dependencies. These symbols are on the list be-
cause the SYSTEM and CLOCK task were also separately compiled to
find kernel-to-driver dependencies. Of course, these tasks will remain
in the kernel to provide low-level services to the drivers, so these de-
pendencies can be ignored. False positives were excluded from the
dependencies matrix shown in Figure 2.3.

2.3.2 A functional classification

The dependencies matrix that is shown in Figure 2.3 was analyzed to find
functionally related dependencies. Several functional classes could be formed
by grouping symbols. The functional classification was useful to find general
approaches for entire classes of dependencies, instead of ad hoc solutions for
individual dependencies.

A rough functional classification of dependencies, together with the ap-
proach to remove the dependencies, is given below. Unfortunately, some
dependencies could not easily be grouped and still required an individual
approach. Furthermore, it turned out that the different functional classes
could not always be dealt with independent from each other.

Handling assertions and panics. These will be handled locally. If a
server panics only the server should be aborted. In many cases the rest of
the system is not directly affected and can continue to work.

Copying of data. Most copying in MINIX 2.0.4 is done using physical
addressing. Copying should be done by the SYSTEM task on behalf of the
requesting process. A new, generic copy function that uses virtual addressing
will be defined for this.

2.3. ANALYSIS OF DEPENDENCIES 21

Process table information. While the process table at first sight seems
to cause many dependencies, this in fact is not a real problem. Most ref-
erences are made to calculate physical addresses for copying data and will
no longer be needed when virtual copying is in place. Other fields may be
obtained in a way that is discussed next.

Getting system information. Since drivers can no longer directly access
important system information, such as kernel environment variables, they
should be able to request a copy of this information. A new system call will
be created for this.

Use of clock functionality. Instead of directly calling on CLOCK task
functionality, such as alarm timers and delays, this should be done by send-
ing a request message. A number of clock library functions will be created,
similar to the system library.

Debug dumps. A separate information server will be set up to handle
debug dumps that are done from within the kernel in MINIX 2.0.4. The
new system call to request system information will be used to retrieve the
kernel’s data structures.

Interrupt handling. Interrupt handling requires many privileges and
thus should be left to generic interrupt handler at the kernel. A new sys-
tem call to enable or disable interrupts will be added. Furthermore, drivers
should be able to set an interrupt policy to be executed by the generic
interrupt handler.

Shutting down MINIX. Shut down is a global event that somehow was
handled from within the TTY task. Therefore, the code should be moved to
a central location, for example, to the file that also contains MINIX’ main
program. Instead of directly calling other drivers to stop, this will be done
with a notification message.

Variables declarations. Many TTY variables are globally allocated de-
clared in MINIX 2.0.4 while this actually is not necessary. This design prob-
lem will be corrected by moving the variables to a different header file and
changing the way storage is allocated for them.

Device I/0O. As mentioned above, device I/O forms a class of depen-
dencies that is not listed on the dependencies matrix. Because device I/O
requires special privileges, several system calls will be added to have the
kernel perform the I/O on behalf of a user-space device driver.

22 CHAPTER 2. PROBLEM ANALYSIS

KERNEL

Figure 2.4: The partial message ordering of MINIX 2.0.4. All request messages
are top-down to prevent deadlocks. Bottom-up responses are allowed, but are not
shown in this figure.

2.3.3 Message ordering problems

Subsection 2.3.1 discusses different kinds of dependencies. If all dependen-
cies were in a top-down direction, that is, driver-to-kernel, a generally ap-
plicable approach to remove them would be to add extra system calls.

Unfortunately, bottom-up, that is, kernel-to-driver dependencies also ex-
ist. A serious problem is that cyclic dependencies exist. A device driver may
not only depend on the kernel, but the kernel may also depend on that same
device driver, which may cause a deadlock if both are sending to each other.

The original setup of MINIX has a partial message ordering for the ex-
change of regular messages. This ordering is top-down. User processes may
send to the MM and FS server, the MM may send to the FS server, the
servers may send to the kernel tasks, and the kernel device drivers may send
to the CLOCK task. This is illustrated in Figure 2.4. To prevent deadlocks
bottom-up messages may not be sent in a regular way, unless the message
concerns a response to a top-down request. Therefore, asynchronous events
such as interrupts and timers are handled in a special manner.

Analysis of the source code of MINIX 2.0.4 turned out that the approach
that for dealing with asynchronous events has certain shortcomings and is
not suitable for removing all dependencies that require bottom-up commu-
nication. Therefore, a more general solution to notify user-space processes
of system events was thought of. In short, a new notification construct
carefully checks if a process is ready to receive a bottom-up message be-
fore sending it. If the receiving process is not waiting for a message, the
notification is postponed. The treatment of various asynchronous events is
discussed in detail in Section 3.3.

Chapter 3

Kernel improvements

This chapter introduces various improvements to the MINIX kernel. Sec-
tion 3.1 presents the most important system calls that were added to sup-
port user-space device drivers. Section 3.2 discusses improvements to MINIX’
interprocess communication (IPC) facilities, including a rewrite of MINIX’
system call handler. Section 3.3 treats a mechanism that is built around
MINIX’ TPC facilities to notify user processes about kernel events without
risking a deadlock. Finally, Section 3.4 treats MINIX’ new shutdown se-
quence that was created with the new notification construct.

Note that the following chapters also introduce several kernel improve-
ments. For example, Chapter 4 discusses changes relating to MINIX’ timer
management and Chapter 5 includes kernel modifications that were initiated
by the transformation of specific kernel tasks into user-space drivers.

3.1 Supporting user-space device drivers

When kernel-space device drivers are transformed into independent, user-
space programs they lose many of the privileges that they previously had.
Although it turned out that various functions could be managed by the
device drivers themselves, not all functionality could be relocated to user
space. User-space device drivers, for example, can no longer perform device
I/O. Another problem is that kernel data structures, such as the process
table and environment variables, can no longer be directly accessed.

Therefore, numerous new system calls were added to MINIX to support
user-space device drivers in doing their work as before. The drivers simlply
request the kernel to do the things that they can no longer do themselves.

This section discusses the most important calls that were added. Ap-
pendix C provides a detailed overview of all new and existing system calls.
It also provides a short introduction to system call implementation, so this
is not discussed below.

23

24 CHAPTER 3. KERNEL IMPROVEMENTS

Listing 3.1: Handler function for the SYS_DEVIO system call. This system call
simply reads or writes a single I/O port on behalf of a user-space device driver.

1 PUBLIC int do_devio(m_ptr)

2 register message xm_ptr; /* request message */
3 4
4 /x Perform actual device |1/0 for byte, word, and long values. */
5 if (m_ptr—>DIO_REQUEST == DIO_INPUT) { /* read /O port */
6 switch (m_ptr—>DIO_TYPE) { /% port granularity */
7 case DIO_BYTE: m_ptr—>DIO_VALUE = inb(m_ptr—>DIO_PORT); break;
8 case DIO.WORD: m_ptr—>DIO_VALUE = inw(m_ptr—>DIO_PORT); break;
9 case DIO_.LONG: m_ptr—>DIO_VALUE = inl(m_ptr—>DIO_PORT); break;
10 default : return(EINVAL);
11 }
12 } else if (m_ptr—>DIO_REQUEST == DIO_OUTPUT) { /* write /O port */
13 switch (m_ptr—>DIO_TYPE) { /% port granularity */
14 case DIO_BYTE: outb(m_ptr—>DIO_PORT, m_ptr—>DIO_VALUE); break;
15 case DIO_.WORD: outw(m_ptr—>DIO_PORT, m_ptr—>DIO_VALUE); break;
16 case DIO_LONG: outl(m_ptr—>DIO_PORT, m_ptr—>DIO_VALUE); break;
17 default : return(EINVAL);
18 }
19 } else { return(EINVAL); } /% illegal request */
20 return (OK);
21 }

3.1.1 System calls for device I/0O

User-space programs cannot directly read from or write to the registers of
a device’s controller. On some computers I/0 is done using special instruc-
tions that can be executed only in kernel mode. On the Pentium, I/0O is
done using I/0O registers that, in theory, can be made accessible by user-
space programs. However, this mechanism is not used for security reasons.

Three new system calls were created to have the kernel perform the
device I/O on behalf of a user-space driver. The simplest call, SYS_DEVIO,
allows to read or write a single I/O port at a time. Listing 3.1 shows
the kernel’s handler function for this system call. A variant of this call,
SYS_.VDEVIO, allows to read or write a series of I/O ports by passing a
vector with (port, value)-pairs. Finally, SYS_SDEVIO, allows to read or write
a buffer from or to a given port.

When multiple, consecutive device operations are required a single call
to SYS_VDEVIO or SYS_SDEVIO should be used to minimize the system call
overhead. Although repeatedly calling SYS_DEVIO is also possible, this re-
quires more context switches and thus should be avoided.

The interface for the device I/O system calls was designed to resemble
the device I/O functions that are contained in the system libraries as much
as possible. For example, the statement outb(port,value); can be replaced by
s=sys_outb(port,value); where s is the return value of the system call.

3.1. SUPPORTING USER-SPACE DEVICE DRIVERS 25

3.1.2 Generic virtual copying

Many kernel dependencies are caused by device drivers that copy data
around. In MINIX 2.0.4 this is mostly done using physical addressing. While
this may be tolerated for kernel tasks, user-space device drivers should not
be trusted as much and thus should be not be allowed to copy from or
to arbitrary memory addresses. Instead, only virtual addressing should be
allowed because this provides more control.

MINIX 2.0.4 already has a virtual copy function, but this can only be
used to copy between processes’ text, data and stack segments. Analysis
of MINIX 2.0.4, however, learned that phys_copy() was used to copy from or
to user processes, to do BIOS I/0, and to perform RAM disk operations.
Therefore, a new generic virtual copy function, virtual_copy(), was created
to support all three types of virtual addresses. This function is shown in
Listing 3.2. The associated system call, SYS_VIRCOPY, was fully revised.

Several macros were defined in the system library header, <miniz/sys-
lib.h>, to provide a convenient system call interface. Instead of explicitly
providing the segment of the virtual addresses, the programmer can use a
macro. To read from the BIOS or to copy data between two processes, for
example, sys_biosin() and sys_datacopy() were defined, respectively.

3.1.3 Interrupt handling

When a hardware interrupt occurs the processor automatically traps to the
kernel and calls the interrupt service routine. This call is done at the highest
CPU privilege level so that the service routine can take all necessary actions
to handle the interrupt. In MINIX 2.0.4, device driver tasks are part of the
kernel so that their interrupt handlers can directly be called by the interrupt
service routine. This process is explained in more detail in Subsection 3.3.1.

Because interrupts cannot be handled directly by a user-space driver, a
generic interrupt handler and a new system call, SYS_IRQCTL, were added
to the kernel. The call’s precise parameters and options are given in Ap-
pendix C. User-space device drivers typically use the SYS_IRQCTL call to
install an appropriate interrupt handling policy in their initialization phase
and then enable interrupts. Whenever an interrupt occurs it is serviced by
the generic handler on behalf of the device driver.

To determine what interrupt policies should be supported, the actions
taken by the interrupt handlers of the device driver tasks in MINIX 2.0.4
were analysed. Most drivers, including the PRINTER and AT_WINI drivers,
only read a status register. Other drivers, including the TTY driver, read a
port value and strobe it back to acknowledge the interrupt. Finally, some
drivers, including the FLOPPY driver, do not perform any device I/O at all,
but leave all interrupt handling to the device driver. Although some drivers
do not directly fit in the above scheme, they can be rewritten to do so.

26

CHAPTER 3. KERNEL IMPROVEMENTS

Listing 3.2: The generic virtual copying function that handles the SYS_VIRCOPY
system call. Virtual addresses can be in LOCAL.SEG, REMOTE_SEG, or BIOS_SEG.
The function copies bytes from src_addr to dst.addr using virtual addressing.

© 0~ O O Wi

R R R R R W0 W0 W W LW W W WRNDNDNDNDNDDNDDNDNDNDDL e e e e e
G W NP O OO Uk WN O OO Uk WN O WOWOOOo Utk W —=O

46

PUBLIC int virtual_copy(src_addr, dst_addr, bytes)

struct vir_addr xsrc_addr; /x source address x*/
struct vir_addr *xdst_addr; /* destination address */
vir_bytes bytes; I+ # of bytes to copy */
{
struct vir_addr *vir_addr [2]; /[virtual addresses */
phys_bytes phys_addr[2]; /x absolute addresses x*/
int seg-index; /* memory segment x*/
int i; /* _SRC_ or _DST_ %/

/x Copy count should be greater than zero. */
if (bytes <= 0) return(EDOM);

/* Convert virtual addresses to physical addresses. */

vir_addr [_.SRC_] = src_addr; /* source virtual */
vir_addr[_DST_] = dst_addr; /% destination virtual */
for (i=_SRC_; i<=.DST_ i++) { /% convert to physical */

}

/% Apply different mapping for different segment types. */
switch ((vir_addr [i]—>segment & SEGMENT_TYPE)) {
case LOCAL_SEG: /x text, stack or data */
seg-index = vir_addr[i]—>segment & SEGMENT_INDEX;
phys_addr[i] = umap_local(proc_addr(vir_addr[i]—>proc_nr),
seg-index, vir_addr[i]—>offset, bytes);
break;
case REMOTE_SEG: /% far memory areas */
seg-index = vir_addr[i]—>segment & SEGMENT_INDEX;
phys_addr[i] = umap_remote(proc_addr(vir_addr[i]—>proc.nr),
seg-index, vir_addr[i]—>offset, bytes);
break;
case BIOS_SEG: /x BIOS memory area */
phys_addr[i] = umap_bios(proc_addr(vir_addr[i]—>proc_nr),
vir_addr [i]— > offset, bytes);
break;
default : /x illegal segment */
return(EINVAL);
}

/* Check if mapping succeeded. */
if (phys_addr[i] <= 0) return(EFAULT);

/x Now copy bytes between physical addresseses. */
phys_copy(phys_addr[_-SRC_], phys_addr[DST], (phys_bytes) bytes);
return (OK);

3.1.

SUPPORTING USER-SPACE DEVICE DRIVERS 27

Listing 3.3: The generic interrupt handler at the kernel. When a hardware
interrupt occurs it is handled according to the interrupt policy set by a user-space
device driver with the SYS_IRQCTL system call.

© 00 O U W

R R R R R R W W W W W0 W W W W WNRNDNDNDNDNDDNDNDNDN = e e e
DO WINRFR O OO WNRF OO UUERE WO OO Ot W~ O

PUBLIC int generic_handler(hook)

irg_-hook_t *hook;

{
/x Get interrupt policy shorthands for convenience. */
irg_policy_t policy = irgtab [hook—>irg].policy; /* IRQ policy flags */
int proc_nr = irqgtab [hook—>irg].proc_nr; * process to notify */
long port = irgtab [hook— >irq].port; register for 1/0 %/
phys_bytes addr = irgtab [hook— >irg].addr; * address at driver */
long mask_val = irgtab[hook— >irg].mask_val; bit mask or value */

~ ~ -
* *

/* Read a value from the given port. Possibly echo or strobe it back. */
if (policy & (IRQ_-READ_PORT|IRQ_STROBE|IRQ_ECHO_VAL)) {
switch(policy & (IRQ_BYTE|IRQ_WORD|IRQ_LONG)) { /x port granularity */
case IRQBYTE: { /% byte values /
u8_t byteval = inb(port);
if (policy & IRQ_STROBE) outb(port, byteval | mask_val);
if (policy & IRQ_.ECHO_VAL) outb(port, byteval);
if (policy & IRQ_READ_PORT)
phys_copy(vir2phys(&byteval), addr, sizeof(u8.-t));

break;

} case IRQ.WORD: { I word values */
/% like above */
break;

} case IRQ_LONG: { I long values */
/% like above */
break;

} default : /x do nothing */; /* wrong type flags */

}
}

/x Write a value to some port. Cannot both read and write. */

else if (policy & (IRQ_WRITE_PORT)) {
switch(policy & (IRQ-BYTE|IRQ_-WORD|IRQ_LONG)) { /* port granularity */
case IRQ_BYTE: outb(port, (u8_-t) mask.val); break;
case IRQ_WORD: outw(port, (ul6_t) mask.val); break;
case IRQ_LONG: outl(port, (u32_t) mask.val); break;
default : /x do nothing */; /x wrong type flags */
}

}

/*» Send a HARDL.INT notification to allow further processing. */
notify (proc_nr, HARD_INT);

/x Possibly reenable interrupts depending on the policy given. */
return(policy & IRQ_REENABLE);

28 CHAPTER 3. KERNEL IMPROVEMENTS

The generic interrupt handler is shown in Listing 3.3. When an interrupt
occurs it first looks up the policy from the global irgtab and then executes it.
The supported interrupt policies are (1) do nothing, (2) read a port value,
(3) optionally echo the value or strobe back with a supplied bit mask, or (4)
write a value to some port. In all cases a HARD_INT notification is sent to
the device driver for further handling. Finally, the policy may or may not
reenable interrupts.

3.1.4 Getting system information

Some device drivers need to know about information that is only available
within the kernel. Examples include process table information, boot mon-
itor parameters, and the list of free memory chunks. A new system call,
SYS_GETINFO, was created so that user processes can retrieve a copy of such
information. By copying entire data structures user processes can safely
perform operations on the data.

To get a copy of a data structure a process must supply a key for the
data structure and a pointer to the location where the copy must be placed.
No size is needed because all data structures have a fixed size. The kernel’s
handler function for the SYS_GETINFO call is shown in Listing 3.4. Figure 3.1
provides an overview of kernel information that can be obtained.

Convenient shorthands for the SYS_GETINFO system call were defined
in <miniz/syslib.h>. A copy of the process table (GET_.PROCTAB) or the
monitor parameters (GET_.MONPARAMS), for example, can be requested with
sys-getproctab() and sys_getmonparams(), respectively.

The SYS_GETINFO system call was not only used to remove kernel de-
pendencies, but also allowed several new applications. Subsection 4.1, for
example, discusses a new information servers that uses this call for debug-
ging dumps. Subsection 5.4.3 discusses how kernel diagnostics are stored in
local buffer and can be obtained with SYS_GETINFO.

Key Data structure
GET_PROCTAB kernel process table
GET_MONPARAMS monitor parameters
GET_.KMESSAGES kernel messages

GET_IRQTAB interrupt policies
GET_KENVIRON kernel environment
GET-PROC single process slot
GET_IMAGE system image table

GET_MEMCHUNKS free memory chunks

Figure 3.1: The most important data structures that are supported by the
SYS_GETINFO system call. A convenient shorthand function is defined for each
key in <miniz/syslib.h>.

3.1. SUPPORTING USER-SPACE DEVICE DRIVERS 29

Listing 3.4: Handler function for the SYS_GETINFO system call. This system
call request a kernel data structure to be copied to a given address in the caller’s
address space.

1 PUBLIC int do_getinfo(m_ptr)

2 register message xm_ptr; /* request message */

3 4

4 phys_bytes src_phys, dst_phys; /* abs. copy addresses */
5 size_t length; I* # bytes to size */

6 int proc_nr; /% process to copy to */
7

8 /x First get the process number and verify it . */

9 proc_nr = (m_ptr—>|_PROC_NR == SELF) ? m_ptr—>m_source : m_ptr—>|_ PROC_NR;
10 if (! isokprocn(proc.nr)) return(EINVAL);
11
12 /* Set source address and length based on request type. */
13 switch (m_ptr—>1_REQUEST) {

14 case GET_PROCTAB: { /* process table */

15 src_phys = vir2phys(proc); /% convert to physical */
16 length = sizeof(struct proc) * (NR_PROCS + NR_TASKS);

17 break;

18 } case GET_.MONPARAMS: { /% monitor parameters */
19 src_phys = mon_params; /*x already is physical */
20 length = mon_parmsize;

21 break;

22} case GET_.KMESSAGES: { I kernel messages */
23 src_phys = vir2phys(&kmess); /% convert to physical */
24 length = sizeof(struct kmessages);

25 break;

26 } case ...: /x and soon ... x/

27 .

28 default : /% illegal request x/

29 return(EINVAL);

30 }

31

32 /% Try to make the actual copy for the requested data. */

33 if (m_ptr—>I_VAL_LEN > 0 && length > m_ptr—>1_VAL_LEN) return (E2BIG);
34 dst_phys = numap_local(proc.nr, (vir_bytes) m_ptr—>1_VAL_PTR, length);

35 if (srcphys ==0 || dst_phys == 0) return(EFAULT);

36 phys_copy(src_phys, dst_phys, length);

37 return (OK);

38 }

3.1.5 Other support functions

Although this section covers the most important system calls to support
user-space device drivers, several other system calls were needed as well.
These are briefly discussed below. The reader is referred to Appendix C for
a complete overview of MINIX’ system calls.

The SYS_EXIT system call was added to cleanly shut down a user-space
system service. This call is mainly used for the new shutdown sequence,

30 CHAPTER 3. KERNEL IMPROVEMENTS

which is discussed in Section 3.4. Furthermore, it may be used in case of
errors and panics that should be handled locally.

The MEMORY device driver uses the new SYS_KMALLOC system call to
allocate a chunk of memory for a RAM disk when MINIX is boot. This
concerns a one-time, static allocation. The call returns a REMOTE_SEG
selector that can be used with the SYS_VIRCOPY system call. The user-
space MEMORY driver is discussed in Section 5.2.

The SYS_PHYS2SEG call is used by the TTY device driver to use the
video RAM. The call adds a segment descriptor for the video memory to
the TTY driver’s local descriptor table (LDT) to grant direct access from
user space. This is explained in Section 5.4.

Finally, several existing system calls were also updated to provide better
support for user-space device drivers. For example, the CLOCK’s alarm
functionality was fully revised and provides a new type of alarm, which is
discussed in Section 4.3.

3.2 Interprocess communication

Interprocess communication (or IPC for short) allows system servers to co-
operate with each other and the kernel. TPC in MINIX is characterized by
a client-server approach based on message passing. It is done by copying
a request message from one process to another and awaiting the response.
This section discusses MINIX’ low-level IPC facilities and presents various
improvements that were made.

3.2.1 Rendezvous message passing

The exchange of messages in MINIX is characterized by rendezvous message
passing. Rendezvous is a two-way interaction without intermediate buffer-
ing. The interaction is fully synchronous, which means that the first process
that is ready to interact, blocks and waits for the other [17]. When both
processes are ready the message is copied from the sender to the receiver,
and both can resume execution.

Although rendezvous message passing is easier to implement than a
buffered message passing scheme, it is less flexible and sometimes even inad-
equate because the sender has to wait for the receiver to accept a message.
While it is OK to block a user-space process when system services are re-
quested, it is unsatisfactory to block a kernel task when it wants to send a
message and the receiver is not ready. MINIX 2.0.4 takes special measures
to prevent the latter, as is discussed in Subsection 3.3.

A nuisance related to this is that the exact ordering of messages be-
tween processes is important to prevent deadlocks. Although the kernel
checks for deadlocks by scanning the send queue of the destination pro-
cess in minisend(), this does not solve the nature of the problem, that is,

3.2. INTERPROCESS COMMUNICATION 31

dealing with cyclic dependencies. The error ELOCKED is returned if a dead-
lock is found, but it would be better to structurally prevent deadlocks from
occurring. MINIX does this by using a partial message ordering in which
communication is mostly driven from the top.

In general, messages are sent in one direction, so that if process X calls
Y, then Y may never call X. User processes, for example, may only send
to the MM and FS; servers, including the MM and FS, can send to device
drivers and tasks; device drivers, in turn, may call on the tasks, such as
the CLOCK or SYS task. This is shown in Figure 2.4 in Subsection 2.3.
Exceptions to this rule are allowed and exist, but cyclic dependencies are
carefully prevented.!

3.2.2 Implementation of rendezvous IPC

Rendezvous message passing is implemented by means of a SEND, RECEIVE
or BOTH system call. The calls are done with a software interrupt, that
is, by trapping to the kernel with an INT instruction. This is conveniently
hidden by the library functions send(), receive() and sendrec() of the run-time
system (RTS). The RTS library can be found in src/lib/i*86/rts/. The trap
is caught and handled in the kernel by the assembly routine s_call() defined
in src/kernel/mpzx.s.

The assembly code saves the machine state and calls the C function
syscall() in src/kernel/proc.c for further handling. This function verifies
the system call parameters and calls mini_send(), mini_rec() or both to do the
actual message passing. This may affect the scheduling queues in several
ways. In minirec(), the caller is queued and blocked when no message from
the desired source is available. In mini_send(), the same happens when a
message cannot be delivered; if it can be delivered, the destination process
is unblocked. When the system call is finished the assembly routine s_call()
restarts the process that is scheduled next.

Problems with MINIX’ original system call implementation

Analysis of the system call implementation in MINIX 2.0.4 revealed several
shortcomings and room for improvement. First of all, a serious security
flaw was found in the function sys_call(). Although it makes sure that user
processes can only do a sendrec() system call so that they stall waiting for
a reply from the MM or FS, all other processes can also use the send() and
receive() functions. While it is not a bad thing to protect the MM and FS from
malicious user processes, it is much more important to protect the kernel

!The FS, for example, normally only receives from the MM, but one message is ex-
changed in the opposite direction to synchronize the MM and FS when MINIX boots.
Because this message is expected it does not interfere with MINIX’ partial message order-
ing and cannot cause a deadlock.

32 CHAPTER 3. KERNEL IMPROVEMENTS

from being blocked. The setup of MINIX 2.0.4, however, allows a server to
block a kernel task by calling send() and not doing the corresponding receive()
because servers are trusted. As more servers gets written this policy needs
to be changed.

Furthermore, it is not possible to restrict interprocess communication
in MINIX 2.0.4. Apart from a hard-coded restriction that ensures that user
processes can only send to the MM and FS, all communication is allowed.
System services thus should be able to deal with unexpected requests from
arbitrary processes.

Another issue with sys_call() is that the function does not check for illegal
system call numbers. Because of the current setup, an illegal call number
is interpreted a RECEIVE system call. This merely blocks the caller if no
message is available, but more serious scenarios can be thought of. If a
request message is received while the caller was not expecting it, the request
may be dropped without sending a response, effectively blocking the process
that sent the request.

The fact that rendezvous message passing is synchronous makes it hard
to use and sometimes even inadequate if processes must be sure that a
message is delivered instantly. This is an issue of asynchronous trust [18].
Subsection 3.3 discusses how the kernel circumvents this issue with ad hoc
implementations to deal with asynchronous events. Processes that are not
part of the kernel cannot apply the same tricks, though, and thus can only
hope that their system call succeeds.

3.2.3 A revision of MINIX’ system call handler

The sys_call() function was fully rewritten to fix the shortcomings described
above, to realize nonblocking system calls, to restrict communication be-
tween processes in a generic way, and to return proper error codes. The new
sys_call() function is shown in Listing 3.5.

A small but important check now makes sure that kernel tasks can no
longer be blocked. It is now required to use sendrec() for all calls to the
kernel, so that kernel tasks can always reply. This is similar to the check
whether the caller is a user process. Using send() or receive() is no longer
allowed and results in an ECALLDENIED error. The check to see if src.dst
is a valid process number was retained, but now returns EBADSRCDST if a
problem is detected.

The next step is to see if the system call is known and to try to perform
the request. This is done in a switch statement that makes the code more
readable and easily allows for new system calls—should this be necessary.
As in MINIX 2.0.4, the only system calls that exist are sending and receiving
messages. However, the nonblocking variants NB_SEND and NB_RECEIVE are
now supported. This is discussed below. Furthermore, illegal system calls
are now detected and result in the error EBADCALL.

3.2. INTERPROCESS COMMUNICATION 33

Listing 3.5: The sys_call() function was rewritten to fix several shortcomings
and to support nonblocking system calls. It now now returns proper error codes,
prevents kernel tasks from being blocked, and restricts communication between
arbitrary processes. Nonblocking system calls have a NON_BLOCKING flag.

1 PUBLIC int sys_call(call_nr , src_dst, m_ptr)

2 int callnr; /x SEND, RECEIVE, BOTH */

3 int srcdst; /* source or destination */

4 message *m_ptr; /* message in caller’s space */

5 A

6 register struct proc * caller_ptr = proc_ptr;

7 int reg-function = call_-nr & SYSCALL_-FUNC,;

8 int may_block =! (call_nr & NON_BLOCKING);

9 int mask_entry; /% bit in send mask x/
10 int result; /x system call result */
11
12 /* Protect the system by requiring caller to await the result . x/

13 if ((iskernel(src_dst)||isuserp(caller_ptr)) && req-function != BOTH) {

14 result = ECALLDENIED; /% BOTH was required */
15}

16 /% Verify that source/ destination process is valid . */

17 else if (! isoksrcdst(srcdst)) {

18 result = EBADSRCDST; /% nonexistent process */
19 3}

20 /% Check if the request is known and try to perform it . x/

21 else{

22 switch(req_function) {

23 case SEND: /% send a message */

24 /* Fall through, SEND is done in BOTH. */

25 case BOTH: /% send and receive x/
26 if (! isalive (src.dst)) {

27 result = EDEADDST; /% cannot send if dead */
28 break;

29 }

30 mask_entry = isuser(src_dst) ? USER_PROC_NR:src dst;

31 if (! isallowed(caller_ptr —>p_sendmask, mask_entry)) {

32 result = ECALLDENIED; /% denied by send mask */
33 break;

34 }

35 result = mini_send(caller_ptr , src_dst, m_ptr, may_block);

36 if (reg-function == SEND || result != OK) {

37 break; /% done, or SEND failed */
38 } /% BOTH falls through =/
39 case RECEIVE: /% receive a message */
40 result = mini_rec(caller_ptr , src_dst, m_ptr, may_block);

41 break;

42 default :

43 result = EBADCALL; /% illegal system call */
44 }

45 }

46 return(result); /% system call status x/
a7}

34 CHAPTER 3. KERNEL IMPROVEMENTS

A new feature of sys_call() are send masks that provide fine-grained con-
trol over which processes may communicate. Send masks are per-process
bit masks that indicate to which processes a given process may send. They
are defined in src/kernel/sendmask.h. 1f a SEND or BOTH system call is
done, it is checked whether the bit for src_dst is enabled in the caller’s send
mask. The error ECALLDENIED is returned otherwise. Below this protection
mechanism is discussed in more detail.

Non-blocking system calls

While MINIX does not provide asynchronous message passing to prevent
all troubles of buffering messages, it turned out that nonblocking message
passing was relatively easy to implement. The implementation is based
on a flag, NON_LBLOCKING, that can be applied to the system call number.
This flag as well as two bit masks for taking the system call number apart,
SYSCALL_FLAGS and SYSCALL_FUNC, are defined in <miniz/com.h>.

The nonblocking variants of send() and receive() are called nb_send() and
nb_receive(), respectively. Function prototypes for these functions were de-
fined in <miniz/syslib.h>, and the RTS library, src/lib/i*86/rts/_sendrec.s,
was updated to include the implementation.

In sys_call(), the requested message passing function is determined by
masking the system call number with SYSCALL_FUNC. A Boolean indicat-
ing whether the flag is set, is passed to mini_send() or minirec(). If the
NON_BLOCKING flag is set and the source or destination process is not ready,
mini_send() and mini_rec() return ENOTREADY instead of blocking the caller.

The nonblocking system call variants can be used in specific cases where
blocking is no option. This is especially useful for user-space device drivers
and servers that cannot check another process’ state in the process table.
The alternate approach that they can now use is polling. Examples of how
the nb_send() and nb_receive() calls are used for MINIX’ new shutdown se-
quence can be found in Section 3.4 and 4.1.

System call protection

Instead of restricting only user processes in whom they can send to, a more
generic protection mechanism was realized. All processes now have a new
process table entry to store a send mask that determines to which processes
they are allowed to send. If a processes wants to send to some other process,
it is first verified that the corresponding bit in the process’ send mask is set.

Note that there is no separate receive mask to indicate from which pro-
cesses a given process may receive messages. This is implied by the send
mask. On the one hand, if process A may send to process B, it is assumed
that B is allowed to receive A’s messages. On the other hand, if process B is
not allowed to receive from process A, the bit for B in A’s send mask simply

3.2. INTERPROCESS COMMUNICATION 35

can be unset so that A cannot send to B.

The send mask has distinct bits for all system processes, that is, kernel
tasks, device drivers, servers and INIT, as well as one bit for user processes.
Because all system services are statically included in the system image and
have a known process number, the send mask definitions are fixed.

The actual send mask definitions for all system services are kept in a
separate file, src/kernel/sendmask.h. The send masks are defined with help
of two default masks, ALLOW_ALL_MASK and DENY_ALL_MASK, and two bit
operations to allow or deny sending to individual processes.

In src/kernel/table.c, the newly defined send masks are placed into the
image table, which is used to build the initial process table in main() when
MINIX starts up. This way all system services automatically have their
send mask installed.

The send mask for user processes is set in a different way. User processes
are always created via a SYS_FORK system call. The send mask for them
is set to USER_PROC_SENDMASK in the function do_fork() in the SYS task.
Similarly, if a user process exits, the process table slot is cleared in do_xit()
and the send mask is set to DENY_ALL_-MASK.

One temporary exception was created to make the network server, INET,
work. This server starts as an ordinary user process, but upgrades itself to
a server by means of a SYS_SVRCTL system call. Because the send mask
for user processes is too strict for the INET server, more rights were given
in the system call’s handler function. As this exception is temporary, the
ALLOW _ALL_MASK was set.

The definition of a better interface for dynamic control of system services
is part of future research. The SYS_SVRCTL function, for example, must be
updated with a mechanism to dynamically set send masks.

Changes to the message passing functions

The functions mini_send() and mini_rec() also were updated in several ways.
First of all, the functions accept another parameter from sys_call() that tells
whether the system call may block. If the source or destination is not ready
and blocking is not allowed, ENOTREADY is returned.

In MINIX 2.0.4, mini_send() contains a hard-coded check to ensure that
user processes only send to FS and MM. This has been replaced by the
generic check in sys_call(), as discussed above.

The function minirec() was modified in two ways. It contained some
code that was only executed if the MM blocks, to check whether there are
pending kernel signals that should be delivered to the MM at that point.
The check is no longer necessary because of a new way to notify the MM
about pending signals. This is discussed below. Furthermore, a check for
blocked ‘interrupts’ was generalized to check for blocked notifications of any
kind. Both modifications are discussed in more detail in the next section.

36 CHAPTER 3. KERNEL IMPROVEMENTS

3.3 Dealing with asynchronous events

While most communication in MINIX is driven from the top, the kernel has
to deal with events such as expired timers and hardware interrupts that
must be communicated to processes at a higher level. Because these sys-
tem events are inherently asynchronous—in contrast to MINIX’ rendezvous
message passing—special measures are taken to prevent problems. In the
previous section it is already discussed that MINIX uses a partial message
ordering to prevent deadlocks. In addition, a special construct is used in the
kernel to make sure that a bottom-up message cannot block the kernel.

The asynchronous events that require message passing to a higher level
process include hardware interrupts,? exceptions, kernel signals, alarms, and
MINIX shutdown. The old and new implementation of each of these events
is discussed below.

3.3.1 Original implementation

Hardware interrupts originate in I/O devices when they must be serviced.
Once the processor receives an interrupt request (IRQ) it finishes its current
instruction, and calls the interrupt service routine that corresponds to the
request vector. These routines are located in src/kernel/mpz.s and loaded
into the interrupt vector table during startup. The service routine saves the
entire state on the stack, and executes the interrupt handler that is regis-
tered by the device driver that handles the IRQ line. Interrupt handlers
generally do little work and notify the device driver for further processing.
Because of the asynchronous nature of hardware interrupts race conditions
may exist when passing messages within the interrupt handler. Hardware
interrupts, for example, can be nested and may interfere with other process
switching functions, such as sys_call() and sched(). Therefore, a special func-
tion, interrupt(), is used to notify the device driver of the interrupt by means
of a HARD_INT message. If a race condition is found in interrupt() the call is
put on the ‘held’ queue to be flushed by unhold() at the next noncompeting
restart. If the driver is ready to receive the HARD_INT message it is directly
delivered, and the driver is scheduled to run next. Otherwise, the message
is marked ‘blocked’ and delivered as soon as when the driver does a receive()
call with source HARDWARE or ANY. Once the interrupt handler has finished,
the service routine returns by restarting the process that is scheduled next.

Exceptions are handled similarly to hardware interrupts. When an ex-
ception is encountered, the processor switches context and executes one of
the exception handlers in src/kernel/mpx.s. The handler, in turn, calls the
function exception() in src/kernel/exception.c with the exception number as
an argument. Exceptions in user processes are converted to signals, while

2Software interrupts are synchronous events in that the system call that causes the INT
instruction to trap to the kernel is explicitly executed by the caller.

3.3. DEALING WITH ASYNCHRONOUS EVENTS 37

exceptions in system processes cause a panic() and shutdown MINIX. Both
signal handling and MINIX’ shutdown are discussed below.

Signals can originate in various places,® but are always forwarded to
the kernel where they are handled by sending a message to MM. Regular
rendezvous message passing is used for this, but only once it has been verified
that the MM is ready to receive the message. Most of the work is done by
two functions in src/kernel/system.c. If a process is signaled, the function
cause_sig() updates the process’ signal mask and sets the PENDING flag. Then
it carefully checks whether the MM can be informed about the pending
signals. The function inform() is called directly from cause_sig() if the MM
is idle and waiting for a message. Otherwise, this is done from mini_rec() as
soon as the MM blocks waiting for a message and signals are pending. The
function inform() pushes all pending signals to the MM by sending a message
for each process with the flag PENDING.

Alarms originate in the CLOCK task when an alarm timer expires. MINIX
2.0.4 has two types of alarms, namely user alarms and synchronous alarms.
The functions to set and expire alarms are contained in src/kernel/clock.c.
The CLOCK causes a SIGALRM signal when a user alarm expires. This is
handled like all other kernel signals. When a synchronous alarm expires the
CLOCK delegates the work to the synchronous alarm task, SYN_AL, that
sends a CLOCK_INT message to the process that requested the alarm. The
CLOCK task notifies the SYN_AL task with help of the interrupt() function
so that it cannot block. Unfortunately, the SYN_AL task cannot use this
function to notify the requesting process of the alarm and uses an ordinary
blocking send() call instead.*

Finally, a shutdown or reboot also is an asynchronous event that, in
principle, should be communicated to all processes to allow them to cleanly
exit. MINIX 2.0.4 does not do so, however. The shutdown code is contained
in the function wreboot() in src/kernel/keyboard.c. It stops a handful of tasks
that are part of the kernel by calling their stop_task() functions, and then
directly brings down MINIX. User-space system services are simply ignored.

Problems with the original approach

Unfortunately, MINIX 2.0.4 handles each of the asynchronous events de-
scribed above in a different way. The events that are described are solved
with ad hoc implementations while a uniform approach is possible. More-
over, there are several shortcomings that pose serious problems.

3Examples of signals and their origin: A segmentation violation by a user process
results in a SIGSEGV, the FS causes a SIGPIPE on a broken pipe, the TTY driver causes a
SIGINT upon getting a ‘delete’, the CLOCK task sends SIGALRM when a user alarm expires,
and user processes can use Kill() to send signals to other processes.

4The interrupt() function of MINIX 2.0.4 can only deliver a single message type, HARD_INT
and only works kernel tasks, because it directly assigns values to the message buffer of the
receiver, which is not possible for processes in a different address space.

38 CHAPTER 3. KERNEL IMPROVEMENTS

Because the SYN_AL task uses ordinary send() calls, it will be blocked
until a receive() is called by the process that requested the alarm. This situ-
ation can easily delay synchronous alarms requested by other processes, or,
even worse, could block the SYN_AL task forever when the corresponding re-
ceive() is not done at all. This is a problem of asynchronous trust [18], which
becomes more severe with the amount of processes that rely on synchronous
alarm. The setup works for MINIX 2.0.4 where only the INET server uses
synchronous alarms, but is not suitable when numerous device drivers also
rely on the synchronous alarm functionality—the latter is explained in detail
Section 4.2.

The shutdown code in MINIX 2.0.4 does not notify user-space device
drivers and servers, because direct function calls are not possible across
address spaces, and MINIX 2.0.4 does not have a message passing construct
to safely to do. This is problematic because important system processes are
not informed about MINIX’ shutdown, and thus cannot run their cleanup
code. The FS, for example, cannot synchronize when MINIX is brought down
due to a panic() and thus is likely to loose data.

The next subsection describes a uniform approach for handling asyn-
chronous events that solves all of these problems.

3.3.2 A new notification construct

A new message passing construct, notify(), was designed to inform all types
of processes about asynchronous system events in a unified way. Initially,
the notify() function existed next to the interrupt() function, but these were
merged into a single function that can be used for all system notifications.
The resulting function was named notify() because that name better covers
its purpose. It is shown in Listing 3.6.

The new notify() function has a similar semantics as the interrupt() function
that is discussed in Subsection 3.3.1. It provides kernel tasks with a mecha-
nism that realizes nonblocking message passing without buffering messages.”
The new notify() function offers important extended functionality compared
to the interrupt() function of MINIX 2.0.4, however. First, it can be used to
notify any type of process and not just kernel tasks. Second, in addition to
hardware interrupts, it supports notifications for any kind of system event,
including the ones that are discussed above.

To prevent any confusion it has to be noted that the notify() construct is
not a system call like send() or receive(). Instead notify() is built around send()
and makes sure it does not block by inspecting the status of the receiving
process. Therefore, it can only used within the kernel.

5This is possible because similar notifications that are sent to the same process in a
short period of time may be united. If a notification message cannot be delivered this is
recorded in a bit mask, which has only a single bit for each notification type.

3.3. DEALING WITH ASYNCHRONOUS EVENTS

Listing 3.6: The notify() function that allows kernel tasks to safely inform all types
of processes about any kind of system event without the risk of being blocked. Race
conditions are handled by putting the call on a held queue. If a process is not ready

to receive the notification the blockage is recorded.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

PUBLIC void notify(proc_nr, notify_type)

int proc_nr; /% process to notify x*/
int notify_type ; /x type of notification */
{

register struct proc *rp;
message m;
unsigned int notify_bit ;

/% pointer to process */
/* notification message */
/x bit in bit mask */

/x See if notification type is known. %/

notify_bit = (unsigned int) (notify_type — NOTIFICATION);

if (notify_bit >= NR_NOTIFICATIONS) { /* check validity */
panic("Incorrect notification type”, notify_bit);
return;

}

rp = proc_addr(proc_nr);

/x Check for races with other process switching functions . */
if (kreenter !=0 || switching) {
lock (); /x disable interrupts */
if (! rp—>p-notify_held) { /x add to held queue? */
if (held_head != NIL_.PROC) held_tail—>p_nextheld = rp;

else held_head = rp;

held_tail = rp;

rp—>p-nextheld = NIL_PROC;
}
set_bit (rp—>p-notify_held, notify_bit); /% update held mask */
unlock (); /* reenable interrupts */
return; /% retry later */

}
switching = TRUE; /x protect rest of call */
/= If processis not ready to receive HARDWARE message, record the blockage. */
if (! isreceiving (rp—>p-flags) || ! isrxhardware(rp—>p_getfrom)) {
set_bit (rp—>p-ntf_blocked, notify_bit); /* update blocked mask */
switching = FALSE; /* end protection */
return ; /* handle in mini_rec */
}

/x Destination is awaiting message. Send notification and announce process ready. */

m.m_source = HARDWARE;
m.m_type = notify_type;

/x construct message */
/% set notification */

CopyMess(HARDWARE, proc_addr(HARDWARE),&m,rp,rp— >p_-messbuf);

rp—>p-flags &= "RECEIVING;

clear_bit (rp—>p-ntf_blocked, notify_bit);

ready(rp);
pick_proc ();
switching = FALSE;

/x message delivered */

/* update blocked mask */
/* receiver now can run */
/x schedule new process */
/* end protection */

40 CHAPTER 3. KERNEL IMPROVEMENTS

Implementation details

The implementation required several small changes to MINIX source code.
The process structure in src/kernel/proc.h was updated to include bit masks
for ‘held’ and ‘blocked’ notifications. All notification types are defined as in-
crementing numbers in <miniz/com.h>. They are relative to NOTIFICATION
to prevent interference with existing message types. The implementation
is found the functions notify(), unhold(), and minirecv() in src/kernel/proc.c.
The most important differences compared to MINIX 2.0.4 are that different
types of notifications are distinguished and that CopyMess() is used to copy
the notification message to any type of process.

The notify() function circumvents potential race conditions so that it can
be used safely from both interrupt handlers and the task level. If a notifica-
tion competes with other process-switching functions, such as system calls
and hardware interrupts, a bit is set in the ‘held’ bit mask of the destination
process, and the call is put on the ‘held’ queue. The unhold() function flushes
the held notifications at the next noncompeting restart. It was generalized
to support different kinds of notifications.

Furthermore, the notify() function is nonblocking. If the receiver is not
ready to receive a notification message, a bit is set in the ‘blocked’ bit mask of
the destination process. This bit mask is checked later when the destination
process calls receive(). If a blocked notification is found a notification message
is locally constructed and copied to the receiver.

Although the ‘held’ and ‘blocked’ bit masks obviate the need for a
buffered message passing scheme, there is a minor trade-off. With only one
bit per type of notification it is not possible to store additional information
such as the sender of the notification message or parameters. Therefore, the
only information that can safely be passed is the notification type and all
notification messages have HARDWARE as their message source. This prop-
erty turns out to be very useful for exception handling within user-space
device drivers as is discussed in Section 4.3.

3.3.3 Handling of asynchronous events

Hardware interrupts basically are handled as before. The HARD_INT message
type was redefined to become a valid notification type. Instead of calling
interrupt(proc_nr), the interrupt handlers now call notify(proc_nr, HARD_INT) to
alert a device driver about the hardware interrupt. As a positive side-effect
the code has become more readable.

MINIX’ signal handling was greatly simplified by removing several excep-
tional cases. A new notification type KSIG_.PENDING was defined to replace
the KSIG message type. The code that checks whether the MM is ready to
receive a message could be removed from both cause_sig() and minirecv(). A
single notify(MM_PROC_NR, KSIG_PENDING) call in cause sig() now does the job.

3.4. A NEW SHUTDOWN SEQUENCE 41

The function inform() that pushes pending signals to the MM once it is ready
to receive them was also removed. In the new approach the MM repeatedly
polls the kernel for a pending signal when it receives a KSIG_.PENDING notifi-
cation. This places the responsibility for handling signals at the MM—where
it belongs.

The problem with the synchronous alarm task was solved by removing
the SYN_AL task altogether. The CLOCK task no longer calls on the SYN_AL
task to make a potentially blocking call to send() when an alarm expires. In-
stead, because the new notify() function cannot block, the CLOCK now dares
to alert the process that requested the alarm itself by sending a SYN_ALARM
notification.

Finally, MINIX shutdown sequence was fully revised. A HARD_STOP no-
tification type was defined for this. Instead of making direct function calls,
the process table is now scanned for system services that are still active.
Each active process is notified about the upcoming shutdown, and is al-
lowed some time to clean up. The notifications are ordered according to
the dependencies that exist between different types of processes, so that
higher level processes can still be serviced by the lower level ones. The new
shutdown sequence is described in detail in Section 3.4.

3.4 A new shutdown sequence

MINIX’ shutdown sequence is briefly discussed in the previous section as an
example of an asynchronous event that requires bottom-up communication.
Here, the details are further studied and a new shutdown sequence that
cleanly brings down MINIX and all system services is explained.

3.4.1 Original implementation

The shutdown sequence of MINIX 2.0.4 is straightforward. It can be trig-
gered by several events. The user, for example, can issue a ‘Ctrl-Alt-Del’
or type ‘shutdown’ or ‘reboot’ to bring MINIX down. A kernel panic also
causes MINIX to shutdown. If the event that triggers the shutdown is de-
tected outside the kernel, the SYS_ABORT system call is used to notify the
kernel. The MM, for example, uses this call to process a ‘shutdown’.

In all cases, the kernel gets to run the shutdown code in wreboot() in
src/kernel/keyboard.c. The function first masks all IRQ vectors so that
device drivers can no longer be interrupted. Then it allows several device
drivers to run their cleanup code by calling their stop_task() functions. For
example, floppy_stop() stops the motor of the floppy disk drive and cons_stop()
selects the primary console to be visible.

If the reason to shut down was a panic, the user is allowed to make debug
dumps before rebooting MINIX. The debug dumps are easily handled in the
wreboot() function, because all needed functions and data structures are in

42 CHAPTER 3. KERNEL IMPROVEMENTS

the kernel address space. The functions that make the actual debug dumps
are contained in src/kernel/dmp.c.

Finally, wreboot() brings down MINIX. The action that is taken depends
on the system’s environment and the reason to shutdown that contained
in the argument that is passed to wreboot(). Known values are contained
in <unistd.h>. RBT_MONITOR, RBT_PANIC, RBT_REBOOT, and RBT_HALT all
try to return to the boot monitor with levelO(monitor) and possibly run some
code at the boot monitor. If it is not possible to return to the boot monitor
because the environment variable mon_return is 0 or if how is RBT_RESET, a
hard reset is issued with levelO(reset).

Problems with the original design

The most important issue with the original setup has already been discussed
in Section 3.3. The shutdown code in MINIX 2.0.4 does not notify user-
space device drivers and servers. This is problematic because important
system services are not informed about MINIX’ shutdown and cannot run
their cleanup code. The FS, for example, cannot synchronize when MINIX
is brought down due to a kernel panic and thus is likely to loose data.

Another problem is that the shutdown code in MINIX 2.0.4 is responsible
for quite some dependencies when device drivers are moved out of the kernel.
The stop_task() functions can no longer be called for user-space drivers, be-
cause function calls across address spaces are not possible without bypassing
the MMU’s normal protection mechanisms.

Finally, the location of the shutdown code is not logical at all. Although
shutting down is an important, system-wide event, the shutdown code in
MINIX 2.0.4 is part of the TTY driver. The historic reason for this may be
that the the ‘Ctrl-Alt-Del’ command is issued via the keyboard, but this
does not reflect the other ways to shutdown MINIX. In most cases, the MM
initiates a shutdown via a sys_abort() system call.

3.4.2 New setup to cleanly bring down MINIX

MINIX’ shutdown was completely redesigned to solve all problems that are
listed above. The new shutdown sequence heavily relies on the new notify()
message passing construct that was discussed in Section 3.3. This solves the
problem relating to the dependencies and allows to inform all system services
about MINIX’ shutdown, instead of kernel tasks only. The new shutdown
sequence is illustrated in Figure 3.2.

The shutdown sequence based on three functions that are executed in
turn: prepare_shutdown(), stop_sequence() and finally shutdown(). These func-
tions are discussed below. Because shutting down is the opposite of starting
MINIX the new code was placed in src/kernel/main.c.

3.4. A NEW SHUTDOWN SEQUENCE 43

o |
.9 !
, S -
' 3 @ @ @ @ |
Depends on ¢\

Dependson ~---Tm--------o-------oomooooooooo-oooo
v\ T T T T T T T T T TS T T T T T T T T ST T T T s s s e e m T T T \
\ e / I
A @«
S |
’ n H ,
Depends on ts---ommm oo ’
' T z D)
W el "% HARD_STOP (3
2 | ' SYS | ! CLK | - @
1N . y)
e @ 7

Figure 3.2: MINIX’ new shutdown sequences notifies all user-space system services
in order of possible dependencies. The TTY is notified last so that it can output
diagnostic messages during the shutdown sequence.

Preparing MINIX’ shutdown

The function prepare_shutdown() that initiates MINIX’ shutdown sequence is
shown in Listing 3.7. The function first checks a global flag, shutting_down,
to prevent recursive shutdowns. This could, for example, happen when the
MM or FS panics during their cleanup. It then disables most interrupts,
like wreboot() does in MINIX 2.0.4. The CLOCK.IRQ is excluded, however,
because the hardware clock is needed by the CLOCK task to keep track of
the watchdog timers that are used for the stop sequence.

The next step is to check whether MINIX is brought down due to a panic.
If this is the case and if the TTY driver is ready the user is allowed to make
debug dumps before shutting down. Debug dumps are discussed in Sec-
tion 4.1. The kernel carefully verifies that the TTY driver is still alive and
ready by using the new, nonblocking nb_send() function.® The function pre-
pare_shutdown() returns after sending a PANIC_DUMPS request message so that
the TTY can run. Control is only given up if the message is successfully sent.
The TTY is responsible to restart the shutdown sequence with a SYS_ABORT
system call when the user is done. More information on debugging dumps
on a panic can be found in Subsection 4.1.4.

Finally, prepare_shutdown() sets the flag shutting_down to inform other ker-
nel part about the upcoming shutdown. Then it decides if stop_sequence()
should be run. Naturally, the stop sequence should be run whenever pos-
sible. However, it is skipped to prevent doing more harm once a CPU

5The new notify() function is not useful here, because it does not provide status infor-
mation on the receiver while it must be verified that the TTY driver is still alive and ready
to handle the request.

44 CHAPTER 3. KERNEL IMPROVEMENTS

Listing 3.7: The new function prepare_shutdown() disables most interrupts, checks
if a panic occurred and whether debugging dumps should be allowed, and starts
the stop sequence unless a CPU exception was raised.

1 PUBLIC void prepare_shutdown(how)
2 int how; /* reason to shut down */
3 4
4 if (shutting_-down) return; /* shutdown yet active */
5
6 /x Mask interrupts, but keep clock ticking for timers. x/
7 outb(INT_CTLMASK, “(1< <CLOCK_IRQ));
8
9 /% See if a panic occured and debug dumps are possible. */
10 if (how == RBT_PANIC) { /* a panic occurred */
11 message m; /% assemble a message */
12 m.m_type = PANIC_DUMPS;
13 if (nb_send(TTY, &m) == OK) /% try, but don’t block */
14 return ; /% await abort from TTY x*/
15}
16
17 /% Now start MINIX' shutdown. Try to stop system services. */
18 notify (TTY, HARD_STOP); /% to primary console */
19 shutting_down = TRUE; /% set shutdown active */
20 tmr_arg(&shutdown_timer)—>ta_int = how; /x pass shutdown reason */
21
22 if (skip_stop_sequence) { /% set in exception () */
23 kprintf (" Fatal exception; skipping stop sequence.\n”, NO_ARG);
24 shutdown(&shutdown_timer); /% directly shut down */
25 } else {
26 kprintf (" Notifying services about MINIX’ shutdown.\n”, NO_ARG);
27 stop_sequence(&shutdown_timer); /* run stop sequence */
28}
29 }

exception was raised for a kernel process. Segmentation faults, for example,
tend to persist when the stop sequence gets to run because kernel tasks are
nonpreemptable and are scheduled with the highest priority.

Stopping all system services

The function stop_sequence() that tries to cleanly stop all system services
before shutting down is shown in Listing 3.8. All system services are notified
with a HARD_STOP message and given some time to clean up and exit. The
notifications are sent in the order of possible dependencies, starting at the
highest level and ending at the lowest. This means that the FS server, for
example, can still use the AT_WINI driver to cleanly shutdown. This is
illustrated in Figure 3.2. Unfortunately, dependencies between similar types
of processes are not resolved this way. Therefore, the TTY driver was placed
at a lower level than other other device drivers.

3.4. A NEW SHUTDOWN SEQUENCE 45

Listing 3.8: The new function stop_sequence() tries to cleanly stop all system
services before shutting down. Only when all processes have been exited—either
gracefully or forcibly—MINIX is really shut down.

1 PUBLIC void stop_sequence(tp)

2 timer_t xtp;

3 A

4 static int level = PPRI_SERVER,; /* highest level first */
5 static struct proc *p = NIL_.PROC; /* next process to stop */
6 static char *types|[] = /% all process types */
7 {"task ", system”,"driver ", server”," user"};

8

9 /x See if previous process exited. Else force it to exit . x/
10 if (p!= NIL.PROC){ Ix skip first time x/
11 kprintf ("[%s]\n", isalivep (p) ? " FAILED” : "OK”");
12 if (isalivep (p)) /% check if exited */
13 clear_proc(p—>p-nr); /x force process exit */
14 }
15

16 /* Lookup next process to exit. Shutdown when all done. */
17 if (p==NIL_.PROC) p = BEG_.PROC_ADDR,;

18 while (TRUE) { /% stop all processes */
19 if (isalivep (p) && p—>p_type == level) { /* next process found */
20 kprintf ("— Stopping %s ”, p—>p_-name);

21 kprintf ("%s ...", types[p—>p-type]);

22 shutdown_process = p; /% used in sys_exit () */
23 notify (proc_number(p), HARD_STOP); /% alert the process */
24 set_timer (tp,get_uptime()+STOP_TICKS,stop_sequence);

25 return ; /% allow it to stop */
26 }

27 p++; /% check next process */
28 if (p >=END_PROC_ADDR) { /% this level done? */
29 level = level — 1, /% goto next level */
30 p = BEG.PROC_ADDR; /% restart at begin */
31 if (level == PPRI_TASK) { /* tasks remain alive */
32 set_timer(tp, get_uptime()+HZ, shutdown);

33 return ; /% display output */

34 }

35 }

36 }

37}

When stop_sequence() is run for the first time, it starts at the beginning of
the process table to find the next process that must be stopped. If a process
is found its name and type are printed for the user’s interest. A global vari-
able, shutdown_process, is set to indicate which process is being stopped. This
makes it possible to immediately continue the stop sequence once the process
has exited. A watchdog timer with stop_sequence() as a watchdog function is
set to make sure that the stop sequence continues within STOP_TICKS ticks
if the process does not exit voluntarily. Then stop_sequence() returns so that

46 CHAPTER 3. KERNEL IMPROVEMENTS

the process to be stopped can be scheduled and can run its cleanup code.

Now two things can happen. If the process that is being stopped notices
the HARD_STOP message it can clean up and stop with a SYS_EXIT system
call. The function do_exit() that handles this system call continues the stop
sequence if the shutting_down flag is set and the process that exited indeed is
the shutdown_process. If the process does not exit within the timeout interval,
the watchdog timer expires and will run its watchdog function.

In both cases, the stop_sequence() function is run again. If the process to
be stopped exited gracefully this is reported to the user. If a disobedience is
detected, the failure is reported and the process is forcibly exited. Then the
stop sequence looks up the next process to stop. It continues where the last
search ended and proceeds to next level if there are no more active process
at the current level.

Finally, if the last level has been processed, that is, if all processes have
exited, MINIX is brought down with a call to shutdown(). This is done by
setting a watchdog timer to give the user some time to inspect the status
of the entire shutdown sequence. The watchdog timer’s argument is used to
pass the shutdown status as before.

It has to be noted that the TTY driver must be the last process in this
sequence so that it can display the stop status of each process at the primary
console. The TTY thus resides at the end of the lowest level of user processes.
When the TTY driver finally receive a HARD_STOP notification it directly
displays its own stop status before exiting.

Shutting down MINIX

The last function, shutdown(), deals with returning to the boot monitor or
doing a hard system reset. It contains the majority of the code that was
part of wreboot() in MINIX 2.0.4. This code was not changed compared to
the discussion in Subsection 3.4.1. Therefore, it is not treated here.

3.4.3 Future modifications

The new shutdown sequence is part of the kernel because system services
have a special status in MINIX and cannot be managed in the same way as
ordinary user processes. System services, for example, cannot do an ordinary
exit() call, which is handled by the MM. Instead, they use the SYS_EXIT system
call to directly tell the kernel that they want to exit.

As discussed in Section 7.3, there is no obvious reason for this special
treatment. Therefore, the transformation of system services into ordinary
user processes is part of future work. Omnce this has been done, a large
part of the shutdown code can be removed from the kernel, for example, by
setting up a new server that controls the shutdown sequence. The design
that is presented in this section need not to be changed, though.

Chapter 4

New applications

This chapter discusses several new user-space applications. Section 4.1 de-
scribes a new server, IS, that allows the user to make debug dumps of various
kernel data structures. Section 4.2 introduces a new library that allows user-
space device drivers to use watchdog timers. Finally, Section 4.3 shows two
new approaches for dealing with unresponsive hardware.

4.1 A new information server

MINIX allows the user to make to types of debug dumps of the kernel’s
process table fields. This can be done at any time by pressing a function
key and when MINIX is aborted due to a kernel panic. ‘F1’ shows the
process table including program counter and stack pointer, user and system
times, flags, messages being sent or received and process names. ‘F2’ shows
memory usage for text, data and stack segments of each process.

In MINIX 2.0.4 the debug dumps are entirely handled within the kernel.
The code to make the actual debug dumps as well as the logic to determine
that the user requested a debug dump are part of the TTY driver. Since
this driver is transformed into a user-space device driver the kernel data
structures can no longer be directly accessed.

4.1.1 Debug dumps in MINIX 2.0.4

In MINIX 2.0.4 debug dumps are a hard-coded feature of the TTY task that
resides in the kernel. For each key that is struck, the function func_key() in
sre/kernel/keyboard.c is called to check whether is has a special purpose.
A switch-statement based on the key’s scan code checks for known function
keys and dispatches the associated handler function if it detects one.

The handler functions for the debug dumps of the kernel’s data structures
are contained in src/kernel/dmp.c. Debug dumps of the process table and
memory maps can be requested with ‘F1’ and ‘F2’, which are mapped onto

47

48 CHAPTER 4. NEW APPLICATIONS

p_dmp() and map_dmp(), respectively. Debug dumps of other data structures
are provided by the owner of the data structure. ‘F5°, for example, triggers
a debug dump of the network statistics at the RTL8139 or DP8390 device
drivers. If the RTL8139 driver is enabled ‘F5° is mapped onto rtl8139_dump()
which is contained in src/kernel/rtl8139.c.

The TTY driver thus touches kernel data structures and makes direct
function calls to other drivers. This is possible in MINIX 2.0.4 because all
drivers are part of the kernel and thus share the same address space.

Shortcomings of the original approach

The implementation of debug dumps in MINIX 2.0.4 has several shortcom-
ings. First of all, the debug dumps are an integral part of the TTY device
driver, while its primary task is to manage terminals. The TTY driver thus
should not know about kernel data structures and functions of completely
unrelated device drivers.

Another problem is that the current approach directly accesses crucial
kernel data structures for noncrucial system services. A reasonable amount
of code is in place to format and output the actual debug dumps with all risk
of bugs. As a general rule, kernel data structures should only be accesses
by trusted kernel task.

A final problem is that the TTY driver can no longer directly access
kernel data structures and debug functions of other device drivers when it
is moved to user space.

message types

, |
|
‘ |
' [ooooo | 1:HARD_INT
T oooog !
Z! I 2: FKEY_PRESSED
o, |
W Keyboard ' 3:SYS_GETINFO
} interrupt !
. |

5: DIAGNOSTICS

Figure 4.1: A distributed approach for making debug dumps. If a user presses a
function key (1) an interrupt notification is sent to the TTY driver, (2) a function
key notification is sent to the IS server, (3/4) a system call to the SYS task is done
to get a copy of some kernel data structure, and (5/6) the TTY driver is asked to
output the diagnostics. The precise message types are shown in the figure.

4.1. A NEW INFORMATION SERVER 49

4.1.2 A distributed approach

The new, distributed approach for making debug dumps is illustrated in
Figure 4.1. It can best be explained by tracing what happens if the user
presses a function key to request a debug dump. As soon as key is pressed
a hardware interrupt occurs which is caught by the kernel. The kernel’s
generic interrupt handler informs the TTY driver about the interrupt with
a HARDLINT notification message in step 1.

The TTY driver notices that a function key has been pressed, so it calls
the function func_key() in src/drivers/tty/keyboard.c to see if any process is
interested. Subsection 4.1.3 discusses how processes can register for notifica-
tions of function key events. If a key in the ‘F1’-‘F12’ range is depressed,
the IS server is alerted with a FKEY_PRESSED message in step 2.

When the IS server receive a function key notification, it dispatches to the
function that handles the requested debug dump based on the function key’s
scan code. Since kernel data structures can no longer be directly accessed,
the IS server makes a SYS_GETINFO system call to get a copy of the required
kernel data. This is shown in steps 3 and 4. If the call was successful, the
actual debug dump is made with help of the local copy.

Finally, the IS server uses the TTY driver to output the debug dump to
the primary console. Redirecting output to the TTY driver is transparently
done by the printf() function that is linked with all system servers. This uses
a DIAGNOSTICS message as discussed in Subsection 5.4.3. The final steps, 5
and 6, are repeated until the entire dump has been printed.

Debug dumps available

This distributed approach made it relatively easy to create debug dumps and
therefore was applied to several kernel data structures during the course of
this master’s project. Figure 4.2 provides an overview of the most important
dumps that are currently supported by the IS server. Futhermore, the FS
and MM provide debug dumps of their own data structures.

Key Debug dump Information shown

F1 Process table including PC, SP, times, IPC flags, and names

F2 Memory usage text, data and stack segments and total size
F3 System image initial values for processes in the boot image
F4 Send masks bits maps used to restrict SEND system calls
F5 Environment (key,value)-pairs that are set at boot monitor
F6 IRQ policies hardware interrupt policies per IRQ vector
F7 Kernel messages diagnostic messages outputted by the kernel

Figure 4.2: Overview of the most important debug dumps supported by the new
IS server. The function keys ‘F1’ to ‘F12’ have been registered by the IS server.

50 CHAPTER 4. NEW APPLICATIONS

One advantage of this new scheme is that by moving the debugging
dumps out of the kernel, there is less pressure to keep the code small. Con-
sequently, additional dumps can easily be added and the dumps can be
formatted better now to make them more useful.

4.1.3 Observing function keys

In MINIX 2.0.4, function key depresses are detected and directly handled
within the TTY task. Since the TTY task can directly access all data struc-
tures and functions that are part of the kernel, the event handlers for known
function keys can be called directly. This approach is not possible for the
user-space TTY driver, because it cannot make function calls and access
data structures across address spaces. Therefore, all processes are made re-
sponsible for making their own debug dumps, and the IS server was created
to handle the debug dumps of kernel data structures.

Since debug dumps are initiated by the user, other processes must be
notified about this event. The observer design pattern was used for this.
Arbitrary processes can register with the TTY driver to receive notifications
for a given function key. A new message type, FKEY_CONTROL, was defined
for this. Observers are stored in a global array at the TTY driver that allows
one observer per function key.

Currently, it is possible to sign up for ‘F1-F12’ and ‘Shift+F1-F12’ no-
tifications. The RTL8139 driver, for example, has registered the ‘Shift+F9’
event. The modifiers ‘Ctrl’ and ‘Alt’ are reserved by the TTY driver as
shown in Figure 4.3. Other combinations of modifiers and function keys are
still available, though. The combination ‘Alt+Shift+F1-F12’, for example,
is already defined in <miniz/keymap.h>.

When a function key is pressed, the function func_key() at the TTY driver
is called. This function is shown in Listing 4.1. It is first verified that the
function key can be observed. Then it is checked whether there is a process
that is interested in the event. If an observer is found a FKEY_PRESSED
notification is sent. This is done with the nonblocking variant of SEND to
prevent the TTY driver from being blocked by a busy observer.

Using a nonblocking variant of SEND implies that some notifications may
be lost when the IS server is not ready. This is not a big problem, though,

Function key Meaning at the TTY
‘F1-F12’ reserved for debug dumps by the IS server
‘Shift + F1-F12’ free for others processes, like MM and FS
‘Alt + F1-F12’ reserved for switching between consoles
‘Ctrl + F1-F12’ reserved for special TTY driver functions

Figure 4.3: Function key assignments at the TTY driver. Other combinations of
modifiers and function key are still available for future use.

4.1. A NEW INFORMATION SERVER 51

Listing 4.1: The TTY driver function that checks whether there are observers
for function key event. If an observer is found a nonblocking notification is sent.

1 PRIVATE int func_key(scode)
2 int scode; /* key scan code */
3 A
4 message m; /x notification message */
5 int index; /% function key number x/
6 int observer; /* index of observer */
7 unsigned fkey; /% key including modifiers */
8 int s;
9
10 if (scode & KEY_RELEASE) return(FALSE); /% ignore key releases */
11 fkey = map_key(scode); /* include modifiers */
12
13 /% Only F1—F12 and Shift+F1—F12 can be observed. */
14 if (F1 <=fkey && fkey <=F12) { /% F1—F12 x/
15 index = fkey — F1;
16 observer = fkey_obs[index];
17 } else if (SF1 <=fkey && fkey <= SF12) { /% Shift+F1—F12 %/
18 index = fkey — SF1,
19 observer = sfkey_obs[index];
20 }else{ /% not observable */
21 return (FALSE);
22 }
23
24 /x Send notification if an observer is registered . */
25 if (observer 1= NONE) { [+ observer registered ? */
26 m.m_type = FKEY_PRESSED; /% assemble notification /
27 m.FKEY_NUM = index+1;
28 m.FKEY_CODE = fkey;
29 if (OK != (s=nb_send(observer, &m))) /% try to send, don’t block */
30 printf ("F%d key notification to %d failed: %d.\n”, index+1, observer, s);
31 }
32 return (TRUE);
33 }

because the user will be alerted by the TTY driver and can simply retry. If
a reliable notification mechanism is needed the code would have been much
more complex. This would require a queuing mechanism and the use of
timers to periodically retry to deliver the failed notification.

4.1.4 Debug dumps after a panic

A panic is a rare event that is usually caused by a kernel exception. The
debug dumps of the process table and other kernel data structures may be
helpful to find the problem that caused the panic. As discussed in Sub-
section 4.1.1, MINIX 2.0.4 handles all debug dumps from within the kernel,
which makes the process straightforward.

52 CHAPTER 4. NEW APPLICATIONS

Listing 4.2: Making debug dumps after a panic must be done with care in order
not to be blocked and hang the system. This function waits for keystrokes for
printing debugging information and then aborts MINIX.

1 PUBLIC void do_panic_.dumps(m)

2 message xm; /x TTY request message */
3 4
4 int quiet, code;
5 (void) scan_keyboard(); /* ack any old input */
6 quiet = scan_keyboard(); /% quiescent value */
7
8 printf (" Hit ESC to reboot, DEL to shutdown, F—keys for debug dumps.\n");
9 for (;){ /% stop on ESC or DEL x/
10
11 /% Check for new diagnostics or kernel messages. */
12 clk_tickdel (10); /% prevent fast looping */
13 while (nb_receive(ANY, m) == OK) {
14 switch(m—>m_type) { /% expect output requestsx/
15 case NEW_KMESS: do_new_kmess(m); break;
16 case DIAGNOSTICS: do_diagnostics(m); break;
17 }
18 clk_tickdel (1); /% wait for more */
19 }
20
21 /% Check for user actions on the keyboard. */
22 code = scan_keyboard(); /* get last key scan code x*/
23 if (code != quiet) { /% a key has been pressed. */
24 switch (code) { /% possibly abort MINIX x/
25 case ESC_SCAN: sys_abort(RBT_REBOOT); return;
26 case DEL_.SCAN: sys_abort(RBT_HALT); return;
27 }
28 func_key(code); /% check for function key */
29 quiet = scan_keyboard();
30 }
31 }
32 }

In the distributed approach that is described in Subsection 4.1.2, how-
ever, several user-space processes must cooperate. This makes debug dumps
during a panic more complicated because the kernel must give up control to
the user-space TTY driver.

When the kernel aborts due to a panic the function prepare_shutdown()
detects this and checks whether the TTY driver is ready to handle debug
dumps. This function is discussed in Section 3.4 and is shown in List-
ing 3.7. If debug dumps are possible control will be passed to the TTY
driver by means of PANIC_.DUMPS message. When the TTY driver receives
the PANIC_DUMPS request it dispatches to the handler function.

The handler function, do_panic_dumps(), is shown in Listing 4.2. It ignores
the last keyboard input and then starts its main loop. At the beginning of

4.2. GENERIC MANAGEMENT OF WATCHDOG TIMERS 53

the loop the nonblocking variant of RECEIVE is used to poll for pending
output requests. Because the debug dumps can span multiple printf() calls
this is repeatedly done until all messages have been processed. Only ker-
nel messages and diagnostic output are handled; other request are simply
ignored. The small delay in the inner loop is meant to give up control so
that, for example, the IS server can continue outputting diagnostics.

The next step is to check whether the user gave new keyboard input.
The keys ‘ESC’ and ‘DEL’ cause the TTY driver to abort MINIX. Experi-
ence learned that rebooting on a panic is not always helpful —MINIX may
directly panic again—so the user can now choose whether MINIX should re-
boot or halt. The function func_key() is used as before to check if an observer
should be notified about for the event. The function keys ‘F1°’ to ‘F12°’, for
example, will send a notification and trigger a debug dump at the IS server.

4.2 Generic management of watchdog timers

Timers are important to keep the operating system responsive. Not surpris-
ingly, they are used throughout MINIX’ kernel. All timers in MINIX are so
called watchdog timers that cause delayed execution of a procedure specified
by the caller. If a timer expires its associated watchdog function is executed.
Because the watchdog function is provided by the caller it can do whatever
is necessary when the timeout interval expires.

Watchdog timers are used, for example, to schedule wakeup calls, to
handle exceptions and to set alarms. User alarm calls are handled in the
CLOCK task by setting a timer to run a watchdog function that causes
a SIGALRM signal after the specified interval. Synchronous alarms work
similarly, but send a SYN_ALARM notification instead of a signal. Many
device drivers rely on timers to handle exceptions when the hardware is
not responding within a predefined period. If a command times out, the
watchdog function sets a flag and wakes the device driver. Finally, timers are
also used within the microkernel. For example, the new shutdown sequence
that is discussed in Subsection 3.4 uses a timer to forcibly exit processes
that fail to shutdown within the given time.

4.2.1 Original implementation

All code relating to watchdog timers is contained in src/kernel/clock.c. In
MINIX 2.0.0, execution of the watchdog functions is automatically done by
the CLOCK task. In MINIX 2.0.4, the process that sets a timer can tell who
should be alerted to run the watchdog function if the timer expires. At
first sight, the latter setup seems cleaner because the CLOCK task no longer
needs to dispatch other processes’ watchdog functions, but the approach
is not consequently used and thus only obfuscates the code. In fact, only
the TTY driver executes its own watchdog functions; the FLOPPY driver

54 CHAPTER 4. NEW APPLICATIONS

uses a mixed approach where some timers are under its own control and
some are under the CLOCK’s control; the watchdog functions of all other
device drivers are dispatched by the CLOCK task. Apart from the process
that executes the watchdog function, most dependencies relating to timer
management are very similar in both versions of MINIX.

Processes that want to set a timer are required to maintain a timer vari-
able that is passed to one of the timer management functions of the CLOCK
task. Timers can be enabled with tmr_settimer() or disabled with tmr_clrtimer().
The CLOCK task is responsible for maintaining lists of active and expired
timers. If a timer expires the CLOCK either dispatches the watchdog func-
tion itself or alerts the owner of the timer to do so. Watchdog functions of
expired timers are dispatched by calling the tmr_exptimer() function. Thus, all
processes that use timers strongly depend on the timer management func-
tions in the CLOCK task.

In fact, all device drivers that use the device independent driver code
contained in src/kernel/driver.c depend on the CLOCK’s timer manage-
ment functions—regardless of whether they actually use timers or not. The
reason for this is that the CLOCK’s function to dispatch expired timers is
automatically called from the main loop of those drivers.

Problems with the original approach

The current design has several shortcomings. First, the dependencies pose
a serious problem when the device drivers that use timers are moved out of
the kernel. Because user-space device drivers do not share an address space
with the CLOCK task, they can no longer directly call the CLOCK’s timer
management functions and thus cannot set timers as before.

Second, there is the issue who is responsible for dispatching watchdog
functions of expired timers. The current mixed approach where the CLOCK
task executes the watchdog functions of arbitrary processes clearly obfus-
cates the code. It would be better if the owner of a timer is responsible for
running the associated watchdog function if it expires.

Third, the timer management functions are written towards the CLOCK
task and use the CLOCK’s private variables, while they, in principle, per-
form generic operations. Naturally, the CLOCK will always be important to
provide a stimulus, namely the current time, for expiring active timers, but
this can easily be passed as an argument.

4.2.2 Generic timer management

Because the low-level timer management functions are not accessible from
user-space device drivers, they were replaced by a more generic approach.
All watchdog timers are now managed in user space—with help of the
CLOCK task—Dby the process that uses them.

4.2. GENERIC MANAGEMENT OF WATCHDOG TIMERS 55

Eﬂﬂ»@]ﬂw

Watchdog
..... . timers

Device
driver

Device
driver

())

Hardware
clock

KERNEL

ymmmmm -~

clock

Figure 4.4: User-space watchdog timer management. The figure shows the steps
that are taken by a device driver to (a) set a new watchdog timer and (b) expire a
watchdog timer. The precise steps are explained in Subsection 4.2.2.

The timer management functionality works roughly as follows. Fig-
ure 4.4(a) illustrates the steps to set a new timer. In step 1, the device
driver requests the time from the CLOCK task with a CLK.GETUPTM system
call. It uses the uptime to calculate the expiration time and then adds the
new watchdog time to its local queue of watchdog timers in step 2. Fi-
nally, the driver schedules a synchronous alarm for the new timer with a
CLK_SYNALRM system call in steps 3 and 4.

Figure 4.4(b) shows what happens if a watchdog timer expires. When
the synchronous alarm goes off, the CLOCK task notifies the device driver
with a SYN_ALARM message in step 1. The notification is directly delivered
when the driver is blocked waiting for a message. If the driver is busy, the
notification is delivered as soon as it does a receive() call. In steps 2 and 3,
the driver calls back with a CLK.GETUPTM system call to retrieve the current
time. The time is required to determine which watchdog timers have expired
and is passed as an argument to library call that checks the local queue in
step 4. The watchdog function of expired watchdog timers are automatically
run. The latter is not shown in the figure.

Problems encountered

Several problems were encountered during implementation of the user-space
timer management functionality. The synchronous alarm functionality in
MINIX 2.0.4 has several shortcomings that affect its reliability when used
by multiple processes at a time. Because the SYN_AL task uses the send()
function to notify processes about an expired alarm, it may be blocked for an
indefinite period of time. Section 3.3 discusses a solution for this problem.

56 CHAPTER 4. NEW APPLICATIONS

Listing 4.3: Function prototypes of the timer management library. There are two
functions to add or remove a watchdog timer to or from the queue of timers and
one to check for expired timers and run their watchdog functions. Furthermore,
two macros exist to initialize a timer and to set an optional argument.

#define tmr_inittimer (tp) (void)((tp)—>tmr_exp_time=TMR_NEVER)
#define tmr_arg(tp) (&(tp)—>tmr_arg)

_PROTOTYPE(void tmrs_settimer, (timer_t sxtmrs, timer_t *tp,
clock_t exp-time, tmr_func_t watchdog));

_PROTOTYPE(void tmrs_clrtimer, (timer_t xxtmrs, timer_t *tp));

_PROTOTYPE(void tmrs_exptimers, (timer_t xxtmrs, clockt now));

N OOt W N

Another problem is that execution of a watchdog function by the CLOCK
task is similar to running a signal handler in that the process’ thread of
execution is interrupted but not altered. The watchdog function causes
some side-effects, such as setting a timeout flag, that allow the process to
notice the timeout, but the process resumes execution where it left off when
the timer expired. In contrast, receiving a SYN_ALARM message requires
an explicit receive() call and inspection of the incoming message, which is
directly reflected in the code because the flow of control changes.

Yet another issue that complicated replacing the watchdog timers is that
some device drivers require multiple timers that can be simultaneously ac-
tive. The reason for this is that some drivers manage more than one device.
The FLOPPY driver, for example, uses two timers for each disk drive it han-
dles: one for error handling and one to stop the motor a few seconds after the
last access. The TTY uses one timer per terminal, as well as one to control
beeping. This behavior cannot be directly simulated by synchronous alarms,
because each process can only have a single outstanding synchronous alarm.

Implementation of a new timers library

The problems were solved by extracting the timer functionality of MINIX
2.0.4, and transforming it into generic code that does not depend on the
CLOCK task. Instead of using the CLOCK’s private variables to manage the
timer lists, the current time as well as a pointer to the queue of timers to
be managed must now be provided by the caller. The new, generic timer
management functions are available in a new system library.

The library comprises three functions for maintaining queues of watch-
dog timers and two macros that operate on a timer structure. The function
prototypes and macro definitions are shown in Listing 4.3. The function
prototypes and (type) definitions can be found in <timers.h>. The imple-
mentation is contained in src/lib/timers/.

The macros tmr_inittimer() and tmr_arg() can be used to initialize a timer
structure or to set an optional argument that is passed to the watchdog

4.2. GENERIC MANAGEMENT OF WATCHDOG TIMERS 57

Listing 4.4: Generic timer management in the FLOPPY driver. Two helper func-
tions were defined to set a new watchdog timer and to check the queue for expired
timers if a synchronous alarm message arrives.

1 PRIVATE timer_t f_timers; /* queue of timers */

2 PRIVATE clock.t f_next_timeout; /* next sync alarm x/

3

4 PRIVATE void f_set_timer(tp, delta, watchdog) /* set new watchdog */
5 timerzt xtp; /% pointer to timer */
6 clockt delta; /% in how many ticks */
7 tmr_func_t watchdog; /* watchdog function */
8 A

9 clockt now; /% current time x/
10 int s;

12 /x Get the current time to calculate the expiration time. %/
13 if ((s=clk_getuptm(&now)) != OK)
14 server_panic("FLOPPY""Couldn’t get uptime.”, s);

16 /* Add the timer to the local queue of timers. *x/
17 tmrs_settimer(&f_timers, tp, now + delta, watchdog);

18

19 /* Reschedule an alarm call, if the front of the active

20 * timers list has changed, i.e ., updated or renewed.

21 */

22 if (f_timers.tmrs_active—>tmr_exp_time != f_next_timeout) {

23 f_next_timeout = f_timers .tmrs_active —>tmr_exp_time;

24 if ((s=clk_syncalrm(SELF, f_next_timeout, 1)) = OK)

25 server_panic("FLOPPY”,"Couldn’t set alarm.”, s);

26}

27}

28

29 PRIVATE void f_tmrs_expire(struct driver xdp) /% expire watchdog */
30 {

31 clock-t now; /% current time */
32 timer_t xtp; /% timer pointer x/
33 int s;

34

35 /x Get the current time to compare the watchdog timers against. */
36 if ((s=clk_getuptm(&now)) != OK)

37 server_panic("FLOPPY""Couldn’t get uptime.”, s);

38

39 /* Run watchdog functions of expired timers. Possibly reschedule an alarm. */
40 (void) tmrs_exptimers(&f_timers, now); /x expire timers */
41 if (f_timers.tmrs_active == NULL) { /% no more timers x/
42 f_next_timeout = TMR_NEVER,;

43 }else { /% reschedule alarm s/
44 f_next_timeout = f_timers .tmrs_active —>tmr_exp_time;

45 if ((s=clk_syncalrm(SELF, f_next_timeout, 1)) != OK)

46 server_panic("FLOPPY”"Couldn’t set alarm.”, s);

a7}

58 CHAPTER 4. NEW APPLICATIONS

function. The first argument to all functions is a pointer to a locally de-
clared queue of timers. The functions tmrs_settimer() and tmrs_clrtimer() can be
used to add a new timer to and to remove a timer from the timers queue,
respectively. The function tmrs_exptimers() takes the current time to check
the timers queue for expired timers, and runs their watchdog functions.

User-space device drivers can use multiple watchdog timers by keeping
a local queue, and requesting a single synchronous alarm for the first timer
to expire. This approach is illustrated in Figure 4.4. When a SYN_ALARM
message is received the current system time is looked up to check and expire
the local timers with the function tmrs_exptimers(). Unless all timers are
expired, a new alarm must be scheduled for the next active timer.

The user-space FLOPPY driver, for example, uses the new timer man-
agement library. Two functions, f_set_timer() and f_tmrs_expire(), were locally
declared to conveniently set new timers and to handle synchronous alarms.
These are shown in Listing 4.4. The functions operate on the global vari-
ables f_timers and f_next_timeout that keep track of the timers queue and the
next timer to expire, respectively. Both functions have a similar structure.
They first retrieve the current time from the CLOCK task. Then the queue
of timers is updated by adding a new timer or running the watchdog func-
tion of expired timers, respectively. Finally, a new synchronous alarm for
the next timer to expire is scheduled. Subsection 4.3.2 describes how this is
used to detect different kinds of timeouts.

Using the new timer management functions in the CLOCK task is par-
ticularly convenient because the current time is directly accessible. Instead
of requesting synchronous alarms, the current time can be used directly to
check for expired timers at each clock tick. A substantial part of the CLOCK
task was refurbished by using the new timer management functionality. All
old timer management functions were removed, the alarm functionality was
rewritten to use separate timer variables for different types of alarms, and
new functions were added to set or reset watchdog timers from within the
microkernel. The latter means that the CLOCK task now is responsible for
all watchdog functions used in the microkernel.

4.3 Dealing with unresponsive hardware

Device drivers have to deal with all kinds of peculiarities of hardware devices.
An important issue is how to deal with timeouts. A timeout occurs when
a device fails complete a requested operation within a predefined period of
time. Timeouts can, for example, be caused by a hardware failure. The
exact underlying reason is not of interest for this discussion, though.
Timeouts must be detected to prevent being blocked by unresponsive
hardware. When a timeout is detected a driver can take various actions. It
may, for example, give up or reset the hardware and retry the operation.

4.3. DEALING WITH UNRESPONSIVE HARDWARE 59

4.3.1 Exception handling in MINIX 2.0.4

This subsection discusses two different approaches to detect timeouts that
are used by the device drivers in MINIX 2.0.4, and outlines the shortcomings.

Using the 8253A timer The first approach is to use the microseconds
counter of the 8253A timer to keep track of the time elapsed since the op-
eration started. This functionality is contained in src/kernel/clock.c. The
counter can be initialized with a call to micro_start(). The number of mi-
croseconds that have passed can be obtained with micro_elapsed(). The latter
function must be polled rapidly to get accurate timer values, because the
clock counter counts down and resets when it reaches zero.

Device drivers can use this functionality to detect a timeout by doing
the requested operation within a loop that breaks when either the request
succeeds or the number of microseconds elapsed exceeds the timeout interval.
The code within the loop can set a timeout flag or can use different return
values to inform the driver about the result.

Using watchdog timers The second approach is to use watchdog timers
to cause delayed execution of a function provided by the caller. Running a
watchdog timer in MINIX 2.0.4 is similar to running a signal handler in that
the process’ thread of execution is interrupted but not altered. Section 4.2
discusses watchdog timers and timer management in more detail. The focus
here is how they are used to deal with unresponsive hardware.

Device drivers such as the FLOPPY and AT_WINT frequently issue a com-
mand to the controller and then expect a hardware interrupt to occur. The
driver awaits the interrupt with a blocking call to receive() to get a message
with source HARDWARE. The interrupt handler provides such a message if
the expected interrupt occurs by calling interrupt(). This function sends a
HARD_INT message with source HARDWARE to the device driver.

Before issuing the command, however, the device driver sets a watchdog
timer to prevent being blocked by unresponsive hardware. Because the
driver is blocked by the receive() call, the CLOCK task is made responsible
for running the associated watchdog function when the timer expires. If a
timeout occurs the watchdog function sets a timeout flag and then fakes a
hardware interrupt by calling interrupt() to wake up the device driver.

The device driver thus will always receive a HARD_INT message that un-
blocks it. Once it is awake, it uses the timeout flag to tell a successfully
performed operation and a timeout apart, and takes further action.

Problems with the original implementation

When device drivers are moved out of the kernel they can no longer detect
timeouts as is done in MINIX 2.0.4, since the microseconds counter of the

60 CHAPTER 4. NEW APPLICATIONS

8253A timer cannot be rapidly polled by user-space process without priv-
ileges to perform device I/O. A possible solution is to make a SYS_DEVIO
system call and have the kernel read the counter, but this requires two extra
context switches per loop iteration and thus gives very inaccurate readings.

Watchdog timers are still available for user-space processes, but require
a different approach than the watchdog timers of MINIX 2.0.4. It is, for
example, no longer possible to have the CLOCK task run the associated
watchdog function if the timer expires, because function calls across address
spaces are not possible. The new approach places the responsibility for
managing a queue of watchdog timers and running the watchdog function
of expired timers at the process that needs them. The precise details are
described in Section 4.2.

As an aside, the use of watchdog timers in MINIX 2.0.4 is not very elegant
from a conceptual point of view. Because the watchdog function forges a
hardware interrupt, the information that is conveyed becomes meaningless.
The HARD_INT message is merely used to wake up the device driver, and the
status flag must always be inspected to see what happened. It would be
better to send a proper timeout notification so that the driver can decide
what to on basis of the information is was given.

4.3.2 New approaches to detect timeouts

This subsection presents two new approaches to detect timeouts that can be
applied by user-space device drivers, and gives an example of an advanced
timer management scheme that is used by the FLOPPY driver.

Using the new timeout flag alarm To overcome the problem that mi-
crosecond counter cannot easily be used by user-space processes, a new type
of alarm, CLK_FLAGALRM, was ‘invented’ to set a timeout flag in the caller’s
address space. The alarm can be activeted with library function clk_flagalrm()
by providing the timeout interval and pointer to a timeout flag. The flag is
set to 1 if the alarm goes off.!

This approach alarm is convenient to use and the resulting code is easy
to understand. Listing 4.5, for example, shows how the new type of alarm
is used in the AT_WINT driver.

Using the synchronous alarm Because the CLOCK task cannot run
the watchdog functions of user-space device drivers, the driver now requests
a synchronous alarm before calling receive() to prevent being blocked by
unresponsive hardware. This is discussed in Section 4.2. If no hardware

LA similar result could be obtained by requesting an ordinary alarm() call and setting
a timeout flag to 1 in the alarm signal handler, but unfortunately MINIX does not allow
system services to be signaled. This is part of future work.

4.3. DEALING WITH UNRESPONSIVE HARDWARE 61

Listing 4.5: Detecting a timeout with the new CLK_FLAGALRM alarm. This code
is used in the AT_WINI device driver to wait until the controller is in the required
state. The timeout alarm is not reset upon success because a static flag is used so
that leftover timeout cannot do any harm.

1 PRIVATE int w_waitfor(mask, value)

2 int mask; /* status field mask */

3 int value; /* the required status */
4 {

5 static int timeout = 0; /x timeout flag alarm x*/
6 clk_flagalrm ((TIMEOUT_TICKS, &timeout);

7

8 do{

9 w_status = inb(w_wn—>base + REG_STATUS); /x check controller status */
10 if ((w-status & mask) == value)
11 return (OK); /% stop if status is ok x/
12 } while (! timeout); /% or if alarm expired */
13
14 w_need_reset(); /% controller gone deaf */
15 return(E-TIMEOUT);
16}

interrupt occurs within the timeout interval, that is, if no HARD_INT notifi-
cation arrives, the synchronous alarm goes off and a SYN_ALARM notification
is received instead. In both cases, the device driver is unblocked and can
resume execution.

This allows user-space device drivers to detect timeouts and results in
cleaner code compared to MINIX 2.0.4, because it is no longer needed to fake
hardware interrupts and decide what happened on basis of some status flag.
The notification message now simply tells what has happened. Listing 4.6
shows how this is applied in the FLOPPY driver.

This approach was made possible by the new notify() construct that is
used to handle asynchronous events such as interrupts and alarms. It works
because all notification messages have the same source, namely HARDWARE.
The notify() construct is discussed in Section 3.3.

Combining different alarms The two approaches for detecting timeouts
can safely be combined, because the kernel now uses separate timers for
each type of alarm.? This, for example, is required by the RTL8139 device
driver that simultaneously uses a synchronous alarm to periodically check
for missed interrupts and a flag alarm to read port values within a short
timeout interval.

2MINIX 2.0.4 uses a single timer per process so that only one alarm can be active at a
time. Setting a new alarm always cancels a previously set alarm, regardless of its type.

62 CHAPTER 4. NEW APPLICATIONS

Listing 4.6: Handling timeouts with a synchronous alarm. This code is used
in the FLOPPY device driver to wait for a task completion interrupt that sets the
status to ‘not busy’. The variable f_busy is set to BSY_WAKEN if a timeout occurs.

1 PRIVATE int f.intr_wait ()

{

message m; /x storage for message */

2
3
4
5 do{
6
7
8

receive(HARDWARE, &m); /* receive a message */
switch (m.m_type) {
case SYN_ALARM: /% synchronous alarm x*/
9 f_expire_tmrs (); /% check for timeout */
10 break;
11 default : /% expect a interrupt x/
12 f_check_status (); /% get f_busy status */
13 }
14 } while (f_busy == BSY.I0O);
15
16 if (f_busy == BSY_-WAKEN) { /% set on a timeout */
17 need_reset = TRUE; I/ reset the floppy */
18 return(E_-TIMEOUT);
19 1}
20 return(OK);
21 }

Advanced timer management

With the basic approach that allows user-space device drivers to detect
timeouts in place, a more advanced scheme that is discussed in Section 4.2
can be illustrated. In this scheme, a user-space device driver locally manages
multiple watchdog timers that can be active at the same time. This may be
required if the driver services multiple devices.

The device driver no longer relies on the CLOCK task to keep track of
watchdog timers, but maintains a local queue of timers. When a time critical
operation must be performed, the driver adds a watchdog timer to the local
queue and sets a synchronous alarm. Then it awaits a message with source
HARDWARE as before. When the alarm went off it checks the local queue to
see if one or more watchdog timers expired.

This approach is used in the function f.intr.wait() that is shown in List-
ing 4.6. The function ftmrs_expire() is called on a timeout to check the
queue of watchdog timers. The code is rather subtle, because the arrival
of a SYN_ALARM notification does not necessarily mean that a timeout for
flintr_wait() occurred. The notification may as well expire other timers that
happen to have a shorter timeout interval. The function f_tmrs_expire() care-
fully checks if there are remaining watchdog timers and reinstalls a syn-
chronous alarm if needed. Its code is shown in Listing 4.4 in Section 4.2.

Chapter 5

Kernel reductions

This chapter describes how the PRINTER, MEMORY, AT_WINI, FLOPPY
and TTY tasks were transformed into independent, user-space device drivers.
This reduction of the kernel can be regarded as the most important result
of this master’s project. The transformation was made possible by general
kernel improvements and new applications that are described in the previous
two chapters.

The general approach that was followed when removing a kernel task
was to remove all dependencies while the task still was part of the kernel.
This allowed to replace all kernel dependencies with similar alternatives one
by one. Most dependencies were replaced by a system call to let the kernel
perform some task on behalf of the user-space driver.

Once all kernel dependencies were removed the driver was copied to
a separately directory in src/drivers/ to make it function as an indepen-
dent, user-space device driver. The kernel modifications that were needed
to include the new driver program in MINIX’ system image are described in
Appendix B.

The following sections describe how each driver was transformed into a
user-space driver and what problems were encountered. Furthermore, some
general improvements and modifications to MINIX that were initiated by the
transformation of specific device drivers are discussed.

5.1 A user-space PRINTER driver

The PRINTER driver in MINIX supports a single Centronics compatible
printer. Its transformation into an user-space device driver served as a
test case during the problem analysis. Although the PRINTER driver was
successfully removed from the kernel, several modifications to the original
PRINTER task were needed before the actual work could start. Furthermore,
an unexpected problem with MINIX’ low-level process scheduling code was
encountered.

63

64 CHAPTER 5. KERNEL REDUCTIONS

Symbol Purpose

_data_base V Base of kernel’s data segment to get physical addresses
_disable_irq F Disable interrupts on restart when printer is hung
_enable_irq F Enable interrupts during initialization or after restart
_inb F Input a byte from the printer’s status register
-interrupt F Interrupt handler notifies the driver about interrupt
_micro_delay F Delay to meet Cetronics interface timing demands
_numap F Map a virtual address to physical address for copying
—outb F Output a byte to the printer’s data or control register
_phys_copy F Copy data to be printed using physical addressing
_pproc_addr V Pointers for fast access into the process table

_put_irg_-handler F Driver sets interrupt handler during initialization

Figure 5.1: Dependencies of the PRINTER task in MINIX 2.0.4. Symbols are either
a function (F) or variable (V). See Figure 2.3 for the full dependencies matrix.

5.1.1 Modification of the original PRINTER task

The setup of the PRINTER task in MINIX 2.0.4 is to a large extent dependent
on its interrupt handler, pr_handler(). Basically all accounting and printing,
that is, the actual device I/O, is done in a loop within the interrupt handler.
Because interrupt handlers are to stay within the kernel, it was impossible to
directly move the driver to user-space. Hence, the PRINTER task was first
remodelled to only send an interrupt notification in the interrupt handler
and to do the actual work in a separate function.

A second problem with the original PRINTER task is that it is badly
designed and depends on the CLOCK task to properly function. On each
clock tick, the PRINTER driver requires a restart by the CLOCK task, with
prrestart(), to prevent it from being idle when there is work to do. The
redesigned setup of the interrupt handler obviated the need for this.

A third problem is that the original PRINTER task immediately returns
an error after issueing a print request for the first time. Reissueing the
request usually works. The reason is that the printer hardware needs some
time to come ‘online’, that is, to move the print head to the starting position,
while the PRINTER task does not wait for this. This problem was fixed by
waiting for this event before actually trying to write to the printer.

5.1.2 Setup of a user-space PRINTER driver

Once the interrupt handler of the original PRINTER task was modified and
the driver behaved correctly on startup, it was moved from kernel-space to
user-space. The approach followed was to remove all kernel dependencies
while the PRINTER task was still part of the kernel. All dependencies are
shown in shown in Figure 5.1.

The dependencies were replaced by system calls that let the kernel
perform some task on behalf of the user-space driver. This process was

5.1. A USER-SPACE PRINTER DRIVER 65

Listing 5.1: MINIX’ low-level scheduling code was completely rewritten to sup-
port generic multilevel scheduling. The ready() function updates the scheduling
queues and implicitly picks a new process when it has a higher priority to the
currently active process.

1 PRIVATE void ready(rp)

2 register struct proc *rp; /% process is now runnable */

3 4

4 int q = rp—>p_priority; /* scheduling queue to use */

5

6 /* User processes may be I/O—bound and are added in front. */

7 if (isuserp(rp)) { /* user processes */

8 if (rdy_head[q] == NIL_.PROC) /% empty queue */

9 rdy_tail [q] = rp; /* update rear of queue */
10 rp—>p-nextready = rdy_head[q]; /* rp goes before others */
11 rdy_head[g] = rp; /* update front of queue */
12
13 /x All other processes are added to the end of the queue. */

14 else { I+ system services */

15 if (rdy-head[q]!= NIL_.PROC) /* nonempty queue */

16 rdy_tail [g]—>p-nextready = rp; /* rp goes after others x*/
17 else /% empty queue */

18 rdy_head[q] = rp; /x update front of queue */
19 rdy_tail [q] = rp; /* update rear of queue */
20 rp—>p_nextready = NIL_.PROC; /x rp is last entry x/
21}

22

23 /% Run’rp’ next if it has a higher priority than ’proc_ptr . x/
24 if (rp—>p-priority < proc_ptr—>p_priority) proc_ptr = rp;
25 }

straightforward. Copying of data to the printer task is now done with the
SYS_VIRCOPY system call. Interrupts are handled by setting a policy for
the kernel’s generic interrupt handler with the SYS_IRQCTRL system call.
Finally, device I/O is handled with the SYS_DEVIO and SYS_VDEVIO calls.
These calls are explained in Section 3.1. An overview of the precise system
call paramaters is given in Appendix C.

5.1.3 Generic multilevel scheduling

A time-consuming problem was encountered once the printer task was moved
out of the kernel and ran as a server program. The printing functionality
itself worked, but long periods of inactivity were experienced. Although the
different process scheduling priorities for servers and tasks were immediately
under suspicion, the solution was not quickly found.

A bug in sre/kernel/proc.c turned out to be responsible. In MINIX 2.0.4,
a side-effect of ready() is that kernel tasks are directly scheduled because
they run at the highest priority. User-space processes, however, are merely

66 CHAPTER 5. KERNEL REDUCTIONS

Listing 5.2: The function pick_proc() is no longer repeatedly checks the queues of
different process types, but simply checks all scheduling queues from high to low
priority. The IDLE process resides in the queue with the lowest priority.

1 PRIVATE void pick_proc()

2 {

3 register struct proc *rp; /* process to run */

4 int q; /* iterate over queues */

5

6 /x Select the highest priority , runnable process by setting ' proc_ptr ’. */

7 for (g=0; q < NR_.SCHED-QUEUES; q++) { /x check all queues */

8 if ((rp=rdy_head[q]) = NIL.LPROC) { /% find ready process */

9 proc_ptr = rp; /% run process 'rp’ next x/
10 if (isuserp(rp) || isidlep (rp)) bil_ptr =rp; /% possible bill 'rp’*/
11 return;

12 }
13}
14 }

added to the ready queue and not directly scheduled. The interrupt() function
of MINIX 2.0.4 relies on the mentioned side-effect and does not call pick_proc()
to schedule a new process. Therefore, the user-space PRINTER driver was
not scheduled when it became ready due to an hardware interrupt. Instead,
it would remain inactive until another event caused pick_proc() to be called.
Calling pick_proc() after announcing a process ready solved the problem. This
way user-space device drivers also get a fair chance to be scheduled.

While the low-level scheduling code of MINIX 2.0.4 was thoroughly stud-
ied, several other shortcomings were found. The most serious problems are
that it directly couples process priorities to a process types and verbosely
repeats the same checks for different types of processes. The scheduling code
was completely rewritten to fix these problems. In the new setup process
types and priorities are fully decoupled and MINIX’ scheduling now can be
characterized as generic multilevel scheduling. Furthermore, the IDLE pro-
cess is no longer treated as an exception, but simply resides in the queue
with the lowest priority. The new ready() and pick_proc() functions are shown
in Listing 5.1 and 5.2, respectively.

The new ready() function immediately schedules a process when it is
ready and has a higher priority than the currently running process. Several
low-level process management functions, including mini_send() and mini_rec()
rely on this side-effect. Although it may be cleaner to call pick_proc() in all
cases, saving a function call is beneficial for MINIX’ IPC performance.

All process types and priorities are defined in src/kernel/proc.h. The
number of scheduling queues, for example, can be changed by updating
NR_SCHED_QUEUES. Process types and priorities of individual system ser-
vices can be set in the image table in src/kernel/table.c. This allows fine-
grained control over which process has precedence over another.

5.2. A USER-SPACE MEMORY DRIVER 67

5.2 A user-space MEMORY driver

The MEMORY driver is the second driver that was transformed in a user-
space device driver. This driver is responsible for handling the null device
(/dev/null), physical memory (/dev/mem), kernel memory (/dev/kmem),
and the RAM disk (/dev/ram). The null device acts as a data sink and
simply discards all data written to it. Physical memory and kernel virtual
memory allow operations on the entire memory and kernel memory, respec-
tively. Two uses of the latter are discussed below. The RAM disk that
is required by the FS probably is the most important functionality of the
MEMORY driver.

5.2.1 Setup of a user-space MEMORY driver

The kernel dependencies of the MEMORY task are given in Figure 5.2. Most
dependencies directly relate to concern the driver’s core functionality, that
is, copying memory from one place to another. Like all other tasks in
MINIX 2.0.4 the MEMORY task uses physical addressing. This was changed
into virtual addressing so that all copying could be done with help of the
SYS_VIRCOPY system call that is discussed in Section 3.1.2.

MINIX’ memory management is done by the MM server, which requests
the array of free memory areas when MINIX boots. The MEMORY driver,
however, needs to allocate a RAM disk before the MM grabs all free memory.
In MINIX 2.0.4 this is done by directly updating the array with free memory
areas. The user-space MEMORY driver temporary uses the SYS_.KMALLOC
system call to do the same. The definition of a better resource management
framework is part of future work.

Since the MEMORY driver uses the device independent device driver
interface it automatically inherits the dependencies contained in the device

Symbol Purpose

_data_base V Base of kernel’s data segment to get physical addresses
-enable_iop F Enable CPU’s IOPL bits to allow user-space device I/0O
-mem V Array with free memory areas to get RAM disk memory
_numap F Map a virtual address to physical address for copying
_panic F Panic if there is not enough memory for the RAM disk
_phys_copy F Copy from/ to RAM disk using physical addressing
_pproc_addr V Pointers for fast access into the process table

_proc V Process table has memory ranges to get physical address
_proc_ptr V Use pointer to active process to get process number
_tasktab V Used by the device independent code to get name
tmr_exptimers F Automatically called by device independent code
_vir_copy F Use virtual copy for psinfo structure of ‘ps’ utility

Figure 5.2: Dependencies of the MEMORY task in MINIX 2.0.4. Symbols are either
a function (F) or variable (V). See Figure 2.3 for the full dependencies matrix.

68 CHAPTER 5. KERNEL REDUCTIONS

independent code. Since the device independent code is shared with other
device drivers, such as FLOPPY and AT_WINI, a revised version without
kernel dependencies was placed in a separate directory, src/drivers/libdriver.
Because the timer functionality is not needed by the MEMORY driver it was
made optional. This is further discussed in Subsection 5.3.2.

All in all, the transformation MEMORY task into a user-space driver was
relatively easy because the MEMORY driver does not require any interrupt
handling. The _enable_iop dependency that enables the CPU’s IOPL bits to
allow user-space device I/O caused most problems and is discussed below.

Limitations of the user-space MEMORY driver

The MEMORY task of MINIX 2.0.4 has some features that are only used by
the MINIX VMD distribution. It can execute BIOS calls on behalf of user
processes and allows them to access far memory by installing a descriptor
for it in their local descriptor table (LDT). These features are realized by
the I/O control requests MIOCINT86 and MIOCSLDT86, respectively.

The user-space MEMORY no longer supports the above I/O controls
because they are not strictly needed and would give the MEMORY driver
to much power. Moreover, they actually cannot be implemented in user-
space because the features require access to privileged functions and data
structures in the kernel.

5.2.2 Reading the real time clock

When MINIX boots, it dynamically sets the system date and time with the
‘readclock’ utility that is defined in src/command/ibm/readclock.c. This
program retrieves current real time clock (RTC) stored in the CMOS RAM
by reading from the BIOS and makes a stime() system call to set the system
time. This call is handled by the FS, which forwards the system time to
kernel’s CLOCK task.

User programs normally cannot perform device I/O, but ‘readclock’
uses a feature! of MINIX 2.0.4 to get additional privileges. When a process
opens the /dev/mem device its CPU’s I/O protection level (IOPL) bits are
enabled by the MEMORY driver. This side-effect allows user programs that
run as superuser to perform device I/O. The ‘readclock’ program thus
can directly access the RTC registers to get the system time.

The user-space MEMORY driver no longer enables the CPU’s IOPL bits
which makes that the ‘readclock’ program does no longer work. The
MMU’s protection mechanisms turned out to work fine and ‘readclock’
produced a ‘memory fault’ as soon as MINIX was booted. The SYS_DEVIO

LAll processes that open /dev/mem and /dev/kmem get 1/O privileges as a side-effect.
This feature is intended for systems with memory-mapped I/O, but can be considered bad
design because it gives too much privileges to user processes.

5.3. USER-SPACE AT_WINI AND FLOPPY DRIVERS 69

system also cannot be used because user program are not allowed make
kernel calls. Therefore, a new FS call CMOSTIME was created to let the FS
perform the work. This call is found in src/servers/fs/cmostime.c.

Another change is that the FS no longer forwards the system time to the
kernel, but stores the boot time in an internal variable, boottime. The kernel
does not need to know about the real time clock, but only keeps track of the
number of ticks since boot time. When a user program retrieves the current
time with a time() system call the FS requests the number of clock ticks from
the kernel and adds this to its local boot time.

5.2.3 Problems with the ‘ps’ utility

The transformation of the MEMORY driver into a user-space program also
affected the ‘ps’ utility that prints process table information. Since MINIX’
process model is distributed over the kernel, MM and FS the ‘ps’ utility
must gather process information from several places in main memory. It
does so by opening /dev/mem and reading from the process table addresses
provided by the psinfo structure of the MEMORY driver.

A minor change was required to make this work for the user-space MEM-
ORY driver. When MINIX boots, the MM and FS report their process table
addresses as in MINIX 2.0.4. The SYS_GETINFO system call is used, however,
to obtain the address of the kernel’s process table.

As an aside, the process table structures of the MM and FS and kernel
were subject to frequent changes that affected the offset of process table
fields used by the ‘ps’ utility. This sometimes resulted in unexpected and
garbled output. Fortunately, the problem could easily be solved with a
simple recompilation of the ‘ps’ utility.

5.3 User-space AT_-WINI and FLOPPY drivers

The third and fourth task that were removed from MINIX’ kernel are the
AT_WINI and the FLOPPY device driver, respectively. They are discussed
together in this section because their design is very similar. The AT_WINI
driver is the default disk driver in MINIX. It can handle two AT Winchester
hard disks and provides ATAPI CD-ROM support. The FLOPPY driver
supports up to two floppy disk drives.

The approach to transform the AT_WINI and FLOPPY tasks into user-
space drivers was very similar to what was done for the PRINTER and
MEMORY driver. As before, most dependencies were removed while the
tasks were still part of the kernel. Therefore, this will not not be discussed
again. A complete overview of the dependencies is given in Figure 5.3. The
following subsections explain some other issues that were encountered.

70 CHAPTER 5. KERNEL REDUCTIONS

Symbol Purpose

_data_base V Base of kernel’s data segment to get physical addresses
_enable._irq F Enable interrupts during initialization or after restart
_inb F Input a byte from the controller’s data or status register
_interrupt F Interrupt handler notifies the driver about interrupt
_micro_delay (*) F Delay a few microseconds before retrying an operation
_micro_elapsed F Check the microseconds counter of the 8253A timer
_micro_start F Initialize the microseconds counter to zero

_numap F Map a virtual address to physical address for copying
_outb F Output a byte to the controller’s data or control register
_panic F Panic when controller (re)initialization fails

_phys_copy F Copy from or to the BIOS or user process

_phys.insw (*) F Input an array of words into a buffer from the controller
_phys_outsw (*) F Output an array of words into a buffer to the controller
_pproc_addr V Pointers for fast access into the process table
_putirg_handler ~F Driver sets interrupt handler during initialization
_tasktab V Used by the device independent code to get name
_tmr_exptimers F Automatically called by device independent code
_vir_copy F Use virtual copy for psinfo structure of ‘ps’ utility

Figure 5.3: Dependencies of the AT_WINI and FLOPPY tasks in MINIX 2.0.4. An
asterix (*) indicates that a dependency only exist for AT_-WINI. Symbols are either
a function (F) or variable (V). See Figure 2.3 for the full dependencies matrix.

5.3.1 Detecting controller timeouts

The AT_WINI and FLOPPY tasks have several dependencies that are used
to detect controller timeouts. The approach that is used in MINIX 2.0.4 to
deal with unresponsive hardware, however, cannot be applied by user-space
drivers. Therefore two new mechanisms were thought of before the AT_WINI
and FLOPPY tasks could be moved to user space.

The new timeout mechanisms for the user-space AT_WINI and FLOPPY
drivers are discussed in detail in Section 4.2 and 4.3. Key examples are
given in Subsection 4.3.2. Listing 4.5, for example, illustrates how the
AT_WINT driver uses the new timeout flag alarm and Listing 4.6 shows how
the FLOPPY driver detects timeouts with help of a synchronous alarm.

Especially the FLOPPY driver is demanding in this respect because it
supports multiple devices and maintains multiple watchdog timers per de-
vice; one to stop the motor and one for error handling. Subsection 4.2.2
discusses how multiple watchdog timers can be maintained in user-space
and Listing 4.4 shows how this is done by the FLOPPY driver.

5.3.2 Changes to the device independent code

The use of device independent device driver code brings several benefits.
It, for example, improves the structure of device drivers and makes sure
that they all adhere to the same interface—as expected by the FS. Another

5.3. USER-SPACE AT_WINI AND FLOPPY DRIVERS 71

Listing 5.3: The driver structure of the device independent code must be initialized
by device driver specific handler functions.

1 struct driver {

2 _PROTOTYPE(char *(xdr_name), (void));
3 _PROTOTYPE(int (xdr_open), (struct driver xdp, message *m_ptr));
4 _PROTOTYPE(int (*dr_close), (struct driver xdp, message *m_ptr));
5 _PROTOTYPE(int (xdr_ioctl), (struct driver xdp, message *xm_ptr));
6 _PROTOTYPE(struct device *(xdr_prepare), (int device));
7 _PROTOTYPE(int (xdr_transfer), (int proc.nr, int opcode,
8 off.t position, iovec_t xiov, unsigned nr_req));
9 _PROTOTYPE(void (xdr_cleanup), (void));

10 _PROTOTYPE(void (+dr_geometry), (struct partition xentry));

11 _PROTOTYPE(void (*dr_stop), (struct driver xdp));

12 _PROTOTYPE(void (xdr_alarm), (struct driver xdp));

13}

advantage in MINIX 2.0.4 is that the code is not linked separately with
each task. The kernel images contains a single copy of the executable code,
which is shared by multiple drivers. Unfortunately, this property is lost
when device drivers are moved to user space.

MINIX uses device-independent code for many device drivers, including
the MEMORY, AT_WINI and FLOPPY drivers. The drivers must first ini-
tialize a driver structure with pointers to specialized handler functions and
then pass this structure to the function driver_task(). This function starts
the driver’s main loop that repeatedly waits for a requests. When a known
request is received it automatically dispatches one of the specialized handler
functions provided by the driver. Otherwise an error is returned.

To make the device independent code work for user-space drivers all
kernel dependencies had to be removed, but some other changes were needed
as well. These are discussed below. The new code is contained in the files
driver.h and driver.c in src/drivers/libdriver/.

The driver structure had to be updated with two new request types. A
hook for HARD_STOP notifications was added to the driver structure to sup-
port the shutdown sequence that is discussed in Section 3.4. Furthermore,
the new approach for detecting timeouts required a hook for SYN_ALARM
notifications. As discussed in Section 4.2 user-space drivers can still use
watchdog timers, but this requires scheduling a synchronous alarm call. The
new driver structure is shown in Listing 5.3.

In addition two new functions, nop_stop() and nop_alarm(), were defined
to provide a default implementation for device drivers that do not require
specific actions for HARD_STOP and SYN_ALARM notifications. The function
nop-alarm() simply ignores leftover alarm notifications and directly returns.
This, for example, is used in the MEMORY driver. The function nop_stop()
does not run any cleanup code, but directly exits the driver.

72 CHAPTER 5. KERNEL REDUCTIONS

Listing 5.4: The FS function map_driver() installs a new device driver mapping in
the dmap table. Provided that correct arguments are given, this only works if the
entry is mutable and the currently installed driver is not busy.

1 PUBLIC int map_driver(major, proc.nr, dev._style)

2 int major; /% major device number */
3 int proc.nr; /% driver’s process nr */
4 int dev_style; /x style of the device */
5 {

6 struct dmap *dp; /% pointer into table */
7

8 /x Get pointer to device entry in the dmap table. */

9 if (major >= max_major) return(ENODEV);
10 dp = &dmap[major]; /% set table entry */

11

12 /x See if updating the entry is allowed. Immutable entries can never be updated. */
13 if (! (dp—>dmap-flags & DMAP_MUTABLE)) return(EPERM);
14 if (dp—>dmap_flags & DMAP_BUSY) return(EBUSY); /x driver is busy */

16 /* Check if process number of new driver is valid . */
17 if (! isokprocnr(proc_nr)) return(EINVAL);

19 /* Almost done. Try to update the entry. */
20 switch (dev_style) {

21 case STYLE_DEV: dp—>dmap_opcl = gen_opcl; break;
22 case STYLE_TTY: dp—>dmap_opcl = tty_opcl; break;
23 case STYLE_.CLONE: dp—>dmap_opcl = clone_opcl; break;
24 default : return(EINVAL);

25}

26 dp—>dmap.io = gen_io;
27 dp—>dmap_driver = proc_nr;
28 return(OK);

5.3.3 Dynamic controller-driver mappings

An important change to MINIX’ kernel was required for the AT_WINTI driver.
In MINIX 2.0.4 up to four process table slots are reserved for the hard disk
controllers CTRLR(N), where N indicates the controller number. The actual
controller types are dynamically determined by the function mapdrivers() in
src/kernel/table.c. This function maps the appropriate device drivers to the
controller slots by inspecting the boot monitor variables ‘cN’. If the user,
for example, sets the boot monitor variable ‘cO=at’ the AT_WINI device
driver will be loaded for CTRLR(0).

With this approach several disk drivers are compiled into a single kernel
image, and the ones that are needed are selected at boot time. This allows
using the same distribution of MINIX for different platforms. Once the user
has determined which device drivers are needed MINIX can be recompiled
without the unwanted drivers.

5.4. A USER-SPACE TTY DRIVER 73

In the original design the FS does not know about different types of
disk drivers, but merely distinguishes the different controller numbers and
relies on the kernel to map the controller numbers to actual disk drivers.
Unfortunately, this approach does no longer work for user-space disk drivers.
Moreover, the mapping is implemented in the kernel while this typically is
under the responsibility of the FS. Therefore, this mechanism was moved to
the FS. A welcome side-effect is that the removal further reduced the size of
MINIX kernel.

The new code relating to device driver mappings is contained in the file
sre/servers/fs/dmap.c. The mappings are stored in the FS table dmap. The
function map_driver() that allows to dynamically update a mapping is shown
in Listing 5.4. It returns normal error codes so that it can be used from a
system call that tries to dynamically install a new driver. The function is
not further discussed here, though.?

The function map_controllers() replaces the kernel code that maps disk
drivers to controllers on startup. The function maintains a local table,
drivertab, which associates controller types to device driver identifiers. For
each controller, the boot monitor parameter ‘cN’ is analyzed to determine
the type of disk is attached. If a known controller type is found the iden-
tifier of the device driver that handles it is fetched from the local drivertab,
and used to lookup the process number of the driver. Finally, the function
map_driver() is called to update the dmap table to the user’s selection.

5.4 A user-space TTY driver

The TTY task is the last device driver that was removed from the kernel in
this project. MINIX’ memory-mappped terminal driver actually consists of
multiple drivers in one. Its primary responsibilities are handling keyboard
input and screen display, but the TTY driver also provides optional support
for RS-232 lines and pseudo-terminals. The optional components are not
available in the user-space TTY driver due to time constraints. Therefore,
support for RS-232 lines and pseudo-terminals is part of future work.

The TTY driver had by far most dependencies. This is partly caused
by some design problems, but the number of dependencies also relates to
the terminal driver’s complexity. An overview of all dependencies is given
in Figure 5.4. The dependencies that were previously encountered will not
be treated again. Specific problems that complicated the transformation of
the TTY task into a user-space driver are discussed below.

2Currently this feature is only used by the FS for the disk driver mappings and to
dynamically load the INET server. Dynamic control over other system services such as
device drivers is part of future work. All device drivers, for example, are still part of the
boot image.

74

CHAPTER 5. KERNEL REDUCTIONS

Symbol Purpose

_cause_sig F Signal a process when the user types ‘DEL’ to alike
_cons_stop F Switch to primary console when MINIX shuts downs
_clock_stop F Reset the clock to the BIOS rate during shutdown
_current V Currently active console (visible to the user)

_data_base V Base of kernel’s data segment to get physical addresses
_....stop F Stop various device drivers when MINIX shuts downs
_enable._irq F Enable interrupts during initialization or after restart
_get_uptime F Get current time to set a new watchdog timer

_inb F Input a byte from the controller’s data/ status register
_interrupt F Interrupt handler notifies the driver about interrupt
_intr_init F Reinitialize the interrupt controller to BIOS defaults
_level0 F Make function call at the highest CPU privilege level
-mem_vid_copy F Copy characters from TTY to video memory
_micro_delay F Delay a few microseconds before retrying an operation
_monitor V Return to the boot monitor when MINIX shuts down
_mon_params V Boot monitor parameters that are run upon returning
_mon_return V Kernel variable indicating whether return is possible
_numap F Map a virtual address to physical address for copying
_outb F Output a byte to the controller’s data/ control register
_panic F Panic if something very bad happens

_pc_at V Inspect if bus is AT to determine size of video RAM
_phys2seg F Install LDT descriptor to allow access to video RAM
_phys_copy F Copy from or to the BIOS or user process

_pproc_addr V Pointers for fast access into the process table

_proc V Get process details and make debug dumps
protected-mode V Determine if MINIX runs ‘real’ or ‘protected’-mode
_putirg-handler =~ F Driver sets interrupt handler during initialization
_reset F Do a hard reset when MINIX shuts down

_tmr_exptimers F Check for and run expired watchdog timers
_tmr_settimers F Set a new watchdog timer for the TTY driver

_tty_table V The main data structure of the TTY driver

_tty_timeout V Set by the CLOCK if a TTY timeout is detected
_tty_timelist V List if watchdog timers maintained by the TTY driver
-vid_vid_copy F Copy video memory around to scroll or clear the screen

Figure 5.4: Dependencies of the TTY task in MINIX 2.0.4. Symbols are either a
function (F) or variable (V). See Figure 2.3 for the full dependencies matrix.

5.4.1 Redesign of MINIX’ shutdown code

A substantial number of dependencies are caused by the shutdown code of
MINIX 2.0.4. The dependencies relating to MINIX shutdown, for example,
include _level0, _monitor, reset and - ..._stop. The latter are the cleanup
functions of various other device drivers that are part of the kernel.

Since MINIX’ shutdown is an important, system-wide event the choice
to put this code in the TTY driver can be considered bad design. Most
dependencies were automatically solved when the shutdown code was moved

5.4. A USER-SPACE TTY DRIVER 75

to a more central location in the kernel. The _... _stop dependencies, however,
posed several problems when other device drivers were tranformed into user-
space programs. Therefore, a new design for MINIX shutdown sequence was
required. This is discussed in detail in Section 3.4.

5.4.2 Making debug dumps

The TTY task in MINIX 2.0.4 can make debug dumps of the process ta-
ble. This feature is useful for debugging the system, especially when an
unexpected kernel panics occur. Originally, the debug dumps were directly
processed by the TTY driver, but the transformation of the TTY task into
a user-space program required a radically different design. This is discussed
in detail in Section 4.1.

5.4.3 Outputting diagnostics

The TTY driver in MINIX 2.0.4 is a memory-mapped terminal driver. It
directly operates on the video memory to display characters with help of the
assembly support routines mem_vid_copy() and vid_vid_copy() that are defined
in src/kernel/klib.s. In protected-mode the MMU normally only permits
processes to access their own data segment. The TTY task, however, can
also access the video memory because it installs a segment descriptor for it
in the global description table (GDT) during its initialization.® This is done
with a call to phys2seg(), which returns a segment selector that is used by
the assembly support routines.

Diagnostic output is handled in a three different ways. User programs use
the function printf() from the standard C library that sends all output to the
FS, which, in turn, forwards the request to the TTY driver. System services
use two different approaches. User-space system services use a simplified
version of printf() that directly sends all output to the TTY task with a
SYS_PUTS system call. Kernel tasks have their own version of printf(), which
directly calls the TTY task’s output routines.

The transformation into a user-space TTY driver caused three problems
relating to diagnostic output. First of all, the user-space TTY driver no
longer has the required privileges to directly write to the video memory.
Second, user-space system services no longer can use the SYS_PUTS system
call. Third, kernel-space services also cannot output diagnostics as before.*
The solution to each problem is discussed below.

3Because the video segment descriptor is put in the GDT all kernel tasks can access
the video memory. It would be better to install the video segment descriptor in the local
descriptor table (LDT) of the TTY task so that only the terminal driver has access.

4Note that nothing changes for user processes. Their output still works because this
still is done via the FS, which directly forwards the request to the TTY driver—regardless
of whether it is in kernel-space or in user-space.

76 CHAPTER 5. KERNEL REDUCTIONS

User—space output
ul: DIAGNOSTICS
u2: SYS_VIRCOPY

[

System
service

(u2)

JR—

] \
| |
I el ness !
iy age. ### | Kernel-space output
L This is
51 a kern | kl: NEW_KMESS
| |
2 Circular ! k2: SYS_GETINFO
! buffer |

Figure 5.5: All diagnostic output by system services ends up at the user-space TTY
driver. User-space system services make a direct DIAGNOSTICS request, whereas
kernel tasks buffer their messages locally and send a NEW_KMESS the TTY driver.
The TTY driver copies the data to printed in different ways as well.

Using the video memory

The user-space TTY driver can no longer directly update the protected-
mode descriptor tables that are used by the MMU to validate all memory
accesses. Therefore, a new system call, SYS.PHYS2SEG, was implemented
to do this.> The user-space TTY driver can request the kernel to update its
local descriptor table (LDT), which contains the memory segments that are
specific to the TTY process. It is used instead of the GDT to restrict access
by other user-space processes. The system call returns a segment selector
so that the assembly support routines could be used by the user-space TTY
driver without modifications.

Output from system services

Output from system services no longer goes through the SYSTEM task, but
is directly sent to the user-space TTY driver. The implementation required
a small modification to the printf() function in the system library. Instead
of sending SYS_PUTS request to the SYSTEM task, a newly defined request,
DIAGNOSTICS, is sent to the user-space TTY driver. The request includes the
virtual address and the length of the string to be printed. When the TTY
driver receives a DIAGNOSTICS message it copies the data to its own address
space with a SYS_VIRCOPY system call and directly outputs the string to
the video memory. This is shown in Figure 5.5.

5Although the functionality offered by the SYS_PHYS2SEG system call is required by
the TTY driver, its interface may be subject to change because the design of a proper
interface for resource management is part of future work.

5.4. A USER-SPACE TTY DRIVER

77

Listing 5.5: The kernel uses a simplified version of printf() to output diagnostics.

[* string to be printed */
/x argument for format */

/* next char in fmt x/

/x holder for number */
/* base of number arg */
[print minus sign */
/* nr conversion table */
/% for ascii number x/
/x string to print */

/x expect format '%?’ */
/% switch on key '?’ */
/* output decimal */

/

*

output unsigned long */
output hexadecimal */
output string */

/
/

* *

/* output percent */

[+ echo back '%7?" */

/

*

set unknown key */

/* Convert number to ascii and do actual ouput for '%?". */

/* work backwards */

/% print sign if negative */
/

*

print string / number */

/
/

*

ordinary character */
print and continue */

*

/% terminate output */

1 PUBLIC void kprintf(fmt, arg)
2 const char xfmt;
3 kargt arg;
4 {
5 int c;
6 unsigned long u;
7 int base;
8 int negative = 0;
9 static char x2c[] = "0123456789ABCDEF”;
10 char ascii [8 * sizeof(long) /3 + 2];
11 char *s = NULL;
12
13 /x Process a single character at a time, until at the end. %/
14 while((c=+fmt++) 1= 0) {
15 if (c=="%){
16 switch(c = xfmt++) {
17 case'd”
18 u=arg <0? —arg: arg;
19 if (arg < 0) negative = 1;
20 base = 10;
21 break;
22 case'u: ..; break;
23 case 'x": ..; break;
24 case’s”
25 if ((s=(char %)arg) == NULL) s ="(null)";
26 break;
27 case '%’"
28 s ="%";
29 break;
30 default :
31 S ="%?";
32 s[1] = c;
33 }
34
35
36 if (s==NULL){
37 s = ascii + sizeof(ascii)—1;
38 *s = 0;
39 do { *——s=x2c[(u % base)]; }
40 while ((u /= base) > 0);
41 }
42 if (negative) kputc (—);
43 while(xs 1= 0) { kputc(xs++); }
44 }
45 else {
46 kputc(c);
47 }
48 }
49 kputc(END_OF KMESS);
50 }

78 CHAPTER 5. KERNEL REDUCTIONS

Listing 5.6: The function kputc() is used by kprintf() to accumulate characters of
a kernel message in a circular buffer. When the TTY receives a NEW_KMESS noti-
fication it requests a copy of the buffer with SYS_GETINFO to display the message.

1 PRIVATE void kputc(c)

2 int c; /% char to append x*/
3 4
4 /% Accumulate a single character for a kernel message. */
5 if (c!= END_-OFKMESS) { /% normal character */
6 kmess.km_buflkmess.km_next] = c; /% put char in buffer =/
7 if (kmess.km_size < KMESS_BUF_SIZE) /* increment until full */
8 kmess.km_size += 1;
9 kmess.km_next = (kmess.km_next + 1) % KMESS _BUF _SIZE;
10 }else { /% end of message */
11 notify (TTY, NEW_KMESS); /% notify the TTY x*/
12 }
13}

Kernel messages

Diagnostics messages from within the kernel pose a more serious problem.
Replacing the direct TTY function calls with request messages like above is
not an option, because this would block the kernel if the user-space TTY
driver is not ready. The request may even cause a deadlock when the TTY
did a system call that triggered the output. In this case there is a cyclic
dependency between the TTY driver and the SYSTEM task.

The solution that was chosen is to let the kernel buffer its diagnostic
messages until the TTY driver is ready to display them. To prevent buffer
overflows in the kernel a simple circular buffer is used. The buffering scheme
is implemented by the functions kprintf() and kputc() that are shown in List-
ing 5.5 and 5.6, respectively.

The function kprintf() proceses a kernel message and accumulates the out-
put in a buffer by calling kputc(). It terminates all kernel message with a
END_OF_KMESS character to trigger kputc() to send a NEW_KMESS notifica-
tion to the TTY driver. When the TTY receives the notification it requests
a copy of the buffer with the SYS_GETINFO and displays the message. This
is shown in Figure 5.5

Chapter 6

Related work

This chapter surveys related work in microkernel operating systems. The
study includes Mach, QNX and L4 because these systems covers a whole
range of time and both open and commercial systems. Mach was one of
the first microkernels around and is interesing from a historical perspec-
tive. Although its design is far from perfect, it has influenced many other
systems. QNX is a commercial system that is targeted towards embedded
systems. The QNX platform provides a full-featured environment on top
of the Neutrino microkernel. Finally, 1.4 is a recent effort that has proven
that microkernels do not necessarily have a bad performance. L4 actually
is a kernel API with implementations for different hardware architectures.
For each system a general introduction is given, the design is explained, and
possible applications are highlighted.

6.1 CMU Mach

Mach is a microkernel operating system that was developed from 1985 to
1994 at Carnegie-Mellon University (CMU). It was one of the first micro-
kernels around and introduced several new concepts that influenced many
other projects. Most notable is the concept of a user-space pager. Mach
was originally developed as a part of BSD UNIX, but became a microkernel
when BSD UNIX-specific code was moved to user-space servers [3, 19].

Although the official Mach project was discontinued in 1994, develop-
ment work on Mach continued at the Open Software foundation, University
of Utah’s Flexmach project, Helsinki University of Technology’s LITES sys-
tem and the Free Software Foundation’s GNU/Hurd system. One of the
most prominent and recent traces of Mach, for example, can be discovered
in Apple’s Mac OSX.!

Max OSX is based on a version of BSD UNIX known as Darwin. According to
Apple’s web site (hitp://developer.apple.com/darwin/), “Darwin integrates a number of
technologies, most importantly Mach 3.0, ...”

79

80 CHAPTER 6. RELATED WORK

° User User User
8

£

2

= | |BSD UNIX MKLinux
g F r |

g Driver Paging

TE, [(N |

= Kernel

Figure 6.1: Mach 3.0 has a hybrid microkernel and is typically used to host
multiple OS personalities. Devices drivers and the paging policy are part of the
kernel. The single-server OS functions as user-space pager for all user processes.

6.1.1 Kernel properties

The discussion that follows focuses on Mach 3.0 that was released in 1986.
Mach’s kernel can be characterized as a hybrid microkernel because impor-
tant system services, such as device drivers, are part of it. Later work on
Mach [20] also provided a framework for user-space device drivers, though.
The kernel is written in C and assembly and comprises about 75,000 lines of
code (LoC).2 Mach has been implemented on several architectures, including
i386/486, Alpha and MIPS.

Mach’s kernel provides the notion of tasks that group system resources.
System resources in Mach are abstracted by means of ports, which can be
thought of as one-way communication channels. Associated with each task
are a set of port rights and one or more threads that run in the context of
a task and share all its resources. UNIX’ extended process model must be
provided by user-space servers. Mach thus uses a distributed process model.

Mach introduced the concept of a user-level pager [21]. Page faults are
detected by the kernel and forwarded to a user-space pager that is respon-
sible for providing the requested data. Unfortunately, the Mach’s pageout
policy still is an integral part of the kernel. This fixed paging policy could
not provide the flexibility required by specific types of applications.

6.1.2 Applications of Mach

Mach was typically used to host one or more single-server operating systems
known as ‘OS personalities,” including BSD UNIX and MkLinux. In this
setup, the operating system server functions as a user-space pager for the

2This was measured with the ‘sloccount’ utility, which was also used to estimate the
size of MINIX’ kernel. For MINIX 2.0.4 this number is about 20,000 LoC and the kernel of
MINIX 3.0.0 has about and 7,500 LoC.

6.2. QNX NEUTRINO RTOS 81

° User NET MQ
kS

£

2

> FM HA Driver
R 1
e | Process manager !
g - |
Q

X Kernel

Figure 6.2: QNX is a multiserver operating system with a hybrid microkernel,
Neutrino 6.3. All system services behave like ordinary user processes, except for
the mandatory process manager that shares its address space with the kernel.

entire memory. Examples of OS personalities that have been hosted on top
of Mach include MkLinux, BSD UNIX, OSF/1, HP-UX and OS/2 [8]. This
is illustrated in Figure 6.1.

Mach provides binary compatibility with legacy applications that run on
the hosted operating systems. This works by means of trap redirection [7].
Mach injects an emulation library in the address space of user processes,
which causes system calls to trap to Mach’s kernel. The kernel catches the
trap and redirects the request to the operating system server.

Later work on Mach provided several advances. For example, Mach 4.0,
which was developed at the University of Utah, supports user-space device
drivers and thus has a smaller kernel. Furthermore, several multiserver
operating systems, such Mach-US and GNU/Hurd, were also developed for
variants of Mach.

6.2 QNX Neutrino RTOS

QNX is a commercial, real-time operating system (RTOS) with a microker-
nel architecture [4]. Because of its real-time properties it is widely used in
embedded devices, including medical appliances and multimedia systems.
QNX was originally created at the University of Waterloo, but has been
commercialized and produced by QNX Software Systems since 1981.

Because QNX is a commercial system, no source code is available and
only a few scientific publications on QNX exist. This makes it hard to
compare QNX to other systems. The QNX web site, however, provides a
‘system architecture guide’ [22] that gives insights in the design goals, IPC
facilities, system services, and so on. This guide was used for the discussion
that follows.

82 CHAPTER 6. RELATED WORK

6.2.1 System architecture

The core of the QNX platform is the Neutrino 6.3 microkernel, which has
been developed since 2001. All operating system services, except for the
mandatory process manager (PM), are standard processes. Because the
process manager and the microkernel share the same address space, QNX
can be characterized as a multiserver operating system on top of a hybrid
microkernel. QNX has been implemented on various platforms, including
Intel x86, MIPS, PowerPC and StrongARM, and is primarily written in the
C programming language.

The PM’s primary responsibilities are process management, memory
management and pathname management. The latter is used to bind resource
managers to the system’s ‘message passing bus.” QNX’s IPC is driven by
ordinary POSIX system calls that operate on the pathname space. When a
process opens a file, the open() library routine first contacts the PM to look
up the server that manages the pathname, and then transparently sends
an OPEN message to the server. QNX provides mechanisms to dynamically
control system services and the pathname space.

The structure of QNX is illustrated in Figure 6.2. Apart from the pro-
vided functionality, there is no distinction between user processes and sys-
tem services. The figure show a selection of the system services provided by
QNX. It includes a network server (NET), message queue manager (MQ),
file manager (FM), a high availability manager (HA), and device drivers.

Although the size of QNX’s microkernel could not be measured because
it is a closed source system, it probably is much larger than the kernel of
L4 or MINIX. QNX’ kernel provides a limited set of kernel abstractions, but
is full-featured at the same time. Process scheduling, for example, comes in
many flavors such as FIFO priority, round-robin and sporadic scheduling.
Furthermore, the process manager is also part of the kernel’s address space
and thus should be taken into account.

6.3 L4 microkernel API

L4 is a portable microkernel API that has been developed by Jochen Liedtke.
The original L4 kernel for Intel x86 platforms has been developed at Ger-
man National Center for Computer Science (GMD) and IBM TJ Watson
Research Center since 1995 [2]. Later, L4 development continued at Univer-
sity of Karlsruhe as part of the L4Ka research project.

L4 has that demonstrated that microkernels are not necessarily slow. It
has proven that high performance can be realized by implementing only a
minimal set of abstractions and tuning each implementation to a particular
platform [13, 15]. The performance of L*Linux, for example, only shows a
2 to 4% slowdown on an industry benchmark compared to vanilla Linux.

While the microkernel API is portable, its implementation is not. The

6.3. L4 MICROKERNEL API 83

original L4 kernel, L4/x86, was implemented in assembly language to ob-
tain a maximum performance. Unfortunately, this made the kernel hard to
maintain and port to other platforms. Therefore, later L4 implementations
were realized in a higher-level programming language [2].

There exist numerous applications of the L4 microkernel in various ap-
plication domains. Single-server operating systems on top of L4 include
LALinux—which is modeled after Mach’s MkLinux—and DROPS [23] with
a ‘tamed’ version of L4*Linux [24]. Multiserver environments also exist,
for example, IBM’s SawMill Linux and L*MINIX. There also exist special-
ized applications on top of L4, such as Perseus that provides secure digital
signatures. The last two applications are discussed below.

6.3.1 L4 implementations

Currently, there exist three versions of the L4 microkernel API as well as
several implementations for different hardware architectures. The different
API versions are called V.2, X.0 and X.2. The most recent version is the
experimental X.2 API that is designed for portability among 32-bit and
64-bit hardware architectures. The APIs were used for the following L4
implementations:

L4/x86. This is the original version of L4 by Jochen Liedtke, which was
developed at GMD, IBM Watson and University of Karlsruhe since 1995.
L4/x86 implements the V.2 and X.0 API in assembly language. While
L4/x86 is targeted towards the Intel 1468 and IA32, variants for other archi-
tectures include L4/MIPS, L4/Alpha, L4/PowerPC. Development has been
discontinued.

L4Ka::Hazelnut. This is a reexamination of L4/x86 at University of
Karlsruhe since 2000. L4Ka::Hazelnut basically is Liedtke’s original L4/x86
kernel in a higher-level language for portability. It implements the X.0 API
in C++ on the IA32 and ARM architectures. Development was discontinued
late 2001.

L4/Fiasco. This is a L4 branch at the Technical University Dresden.
L4 /Fiasco is meant as a base for the Dresden Realtime OS (DROPS). The
kernel has a binary L4 interface, but was enhanced with real-time properties
for DROPS. It implements the V.2 and X.0 API in C+4. Development on
L4 /Fiasco has been done since 2003.

L4Ka::Pistachio. This is the most recent version of L4. L4Ka::Pistachio
is a pure L4 kernel that has been developed at University of Karlsruhe and
University of New South Wales (UNSW) since 2003. It implements the X.2

84 CHAPTER 6. RELATED WORK

API in C4++ on a variety of architectures, including 1A32, TA64, ARM,
Alpha, AMDG64, MIPS, and PowerPC. The latest version, L4Ka::Pistachio
0.4, was released in June 2004.

6.3.2 L4Ka::Pistachio

This subsection focuses on most recent implementation of the L4 microkernel
API. L4Ka::Pistachio [25] is a minimal microkernel that provides only the
most requires features. L4 provides basic task management. A task in L4 is
composes of an address space and one or more threads of execution. It is up
to the user-space applications to provide extended process models. The ker-
nel implements POSIX threads with priority-based, preemptive scheduling.
Interprocess communication is based on rendezvous message passing.

L4’s resource manager (RMGR) is the first user-space task that is started
at boot time when the microkernel has been initialized. It has control over all
system resources, including main memory, IRQ lines and L4 task numbers,
and has privileges to distribute resources to other processes. The resource
manager loads the rest of system based on a configuration file.

In contrast to Mach, paging is completely done in user space. The L4
microkernel does not implement a paging policy within the kernel, but only
provides mechanisms. Three simple memory management primitives, grant,
map and unmap, allow to recursively construct address spaces. A process
can, for example, grant a subspace to another process or map it into another
process’ address space.

6.3.3 Examples of L4 applications

L*Linux and Perseus Perseus is an application that provides secure dig-
ital signatures ‘in the real world’ [10]. The architecture of this application
is shown in Figure 6.3(a). Perseus is uses L*Linux as a single-server oper-
ating system—to run legacy Linux applications—next to this a protected
digital signature application (SA). Legacy software and viruses cannot in-
terface with the SA module because it is physically protected by the MMU.
The operating system effectively resides in a sandbox and cannot access the
secrets at the SA.

A system-wide security policy is realized by the resource manager (RM),
trusted user-interface (TUI) and application manager (AM)—as well as some
other components that are not treated. The TUI and AM tell the user which
process is currently running by means of a reserved ‘secure line’ on top of
the screen. This way the user can check which application is in control, and
can securely sign documents when the SA runs.

SawMill Linux Another interesting research project is SawMill Linux,
which is a multiserver Linux operating system [11]. Its architecture is shown

6.4. COMPARISON WITH MINIX 85

User ‘User User User User User
[}
K] 45 .
g L Linux SA Net FS Driver
2
=)

RM TUI AM Task Mem Name

v
E
5 Kernel Kernel
X
(@) (b)

Figure 6.3: Two application structures on top of the L4 microkernel: (a) Perseus
has as a single-server operating system with specialized component for secure digital
signatures next to it, whereas (b) SawMill Linux is a multiserver operating system.

in Figure 6.3(b). As with Perseus, the lowest layer is responsible for resource
management. It includes process and task management (TASK), memory
management (MEM) and a name server (NAME). Other components that
are found in SawMill Linux include a network server (NET), file system (FS)
and device drivers.

The development of an efficient multiserver protocol was one of the re-
search goals. The protocol tries to reduce IPC by directly calling a process-
ing server whenever possible and by securely sharing data among servers
to prevent copying. Measurements with an industrial benchmark indicated
that L4Linux and SawMill Linux can obtain a similar performance.

6.4 Comparison with MINIX

In this section, MINIX is compared to the microkernels that are discussed in
the previous sections. The comparison will be based on MINIX 2.0.4 as well
as on the new version, MINIX 3.0.0. More information about MINIX 2.0.4 is
provided in Subsection 1.3.

Figure 6.4 provides an overall impression of the various microkernels.
The table immediately shows the key differences between MINIX 2.0.4 and
MINIX 3.0.0. The kernel has been transformed from a hybrid microkernel
into a true microkernel by moving the device drivers to user space. This
reduced the number of lines of code (LoC) that is part of the kernel from
20,000 to approximately 7,500 LoC in MINIX 3.0.0.

The main question is how MINIX compares to the other systems, though.
Mach has been included because of its historical value, but the comparison
between QNX, L4, and the new version of MINIX is most interesting.

86 CHAPTER 6. RELATED WORK
Mach QNX L4 MINIX

Year 1986 2001 2003 2003 2005
Version CMU Mach Neutrino Pistachio ‘old’ ‘new’
Release 3.0 6.3 0.4 2.0.4 3.0.0
Microkernel hybrid hybrid true hybrid true
- drivers kernel user user kernel user
- manager user kernel user user user
Language C C C++ C C
Kernel LoC 75,000 n.a. 10,000 20,000 7,500
Open source yes - yes yes yes
Single-server yes - yes - -
Multiserver - yes yes yes yes

Figure 6.4: This figure compares MINIX 2.0.4 and the new version, MINIX 3.0.0, to
the microkernels that are surveyed in this chapter. The ‘manager’ entry represents
what is known as the process manager (PM) in QNX or the memory manager (MM)
in MINIX. The number of kernel lines of code was measured with the ‘sloccount’
utility.

QNX is a reliable and full-featured system that is widely used for embed-
ded system. Commercially, QNX is very successful. Compared to MINIX,
however, QNX has the down side that it is not freely available and does not
come with all source code available. Although MINIX does not have as many
features, its simplicity, the amount of documentation that is available, and
the fact that it has a liberal licensing model makes it an interesting com-
petitor in certain markets. From a design perspective, MINIX 3.0.0 also is
interesting because it has true microkernel, whereas QNX has hybrid micro-
kernel.

L4 is the current state of the art in microkernel design. L4 is a relatively
small and fast microkernel, which has gradually evolved for over a decade.
Although the kernel of MINIX 3.0.0 is actually smaller, it compromises on
functionality such as virtual memory. When L4 and MINIX’ microkernels are
compared L4 probably is better because it is much more mature. Research
on L4, however, has not really focused on multiserver applications on top of
L4. The SawMill Linux project is interesting in this respect, but has been
discontinued since 2001. MINIX on the other hand provides a complete,
POSIX conformant multiserver operating system.

All in all, MINIX has a number of desirable properties and may well find
its own niche next to QNX and L4. This master’s project is just a first step
in this direction, though. MINIX 3.0.0 is still in an early stage of development
and has to become more mature.

Chapter 7

Summary and conclusion

This chapter concludes this master’s thesis. The first section starts with
an overview of the major contributions of this project by summarizing the
results presented in the previous chapters. Section 7.2 discusses whether the
goal that was set forth in the title of this master’s thesis, ‘Towards a True
Microkernel Operating System’, is fulfilled and draws conclusions. Finally,
Section 7.3 ends with a description of open issues and outlines directions for
future research.

7.1 Contributions

Supporting user-space device drivers When device drivers are trans-
formed to independent, user-space programs they lose privileges and can
no longer directly access kernel data structures. Section 3.1 discusses new
system calls and other kernel changes that are needed to support user-space
device drivers.

First of all, several system calls to perform device I/O on behalf of a
user-space driver were added. Variants include calls to read of write a single
device register or a series of registers.

Interrupt handling is a typical device driver function, but user-space
device drivers have no privileges to handle interrupts. A system call to
enable or disable interrupts was added. The call also allows to add a policy
to be executed by a generic interrupt handler at the kernel.

A generic virtual copy system call was added to copy between processes,
from or to the BIOS, and from or to remote memory areas. This system
call replaced the copy function with physical addressing that was previously
used. Using virtual addressing is easier to control and thus more secure.

Many device drivers require information about the system environment
or kernel settings. A new system call was added to request a copy of certain
system information. The call is also used by a new information server that
provides debug dumps of entire data structures.

87

88 CHAPTER 7. SUMMARY AND CONCLUSION

Interprocess communication Interprocess communication (IPC) facili-
ties are discussed in Section 3.2. MINIX’ IPC is characterized by rendezvous
message passing, which must be used with care to prevent blocking kernel
tasks and deadlocks. The partial message ordering of MINIX 2.0.4 circum-
vents the problem, but does protect kernel tasks from being blocked. An
important change to the system call handler solved this problem by verifying
that the caller is waiting for a reply message.

MINIX’ system call handler was updated in other ways as well. System
call errors are now properly handled. Furthermore, nonblocking system calls
were added to prevent a process from being blocked when the other side is
not ready. Finally, a system call protection mechanism that checks whether
a process is allowed to communicate with another process was added. A
process now is only permitted to another process when that process’ bit is
enabled in its send mask entry in the process table. The result is a clean
separation of policy and mechanism.

Dealing with asynchronous events MINIX 2.0.4 uses several different
approaches to deal with asynchronous events in the kernel. A new notifica-
tion construct obviated the need for this and has several important benefits
for MINIX’ kernel. The new construct can safely be used to handle all kinds
of asynchronous system events, because it circumvents race conditions and
does not block the caller when the destination is not ready to receive a
message. This allowed to remove several exceptional cases that existed in
MINIX 2.0.4 and provided an elegant solution for the problems relating to
MINIX’ shutdown sequence and the SYN_AL task. The latter, for example,
could be removed in its entirety. Moreover, it simplifies and beautifies the
kernel’s source code, because all asynchronous events are now handled in a
uniform way. This mechanism is treated in detail in Section 3.3.

A new shutdown sequence The shutdown sequence of MINIX was com-
pletely revised as discussed in Section 3.4. The most important benefit is
a new stop sequence that notifies all system service of the upcoming shut-
down, instead of abruptly shutting down as in MINIX 2.0.4. This is done
by sending an alert with the new notification construct. The alert are sent
according to the dependencies between different process types so that all
processes get a fair chance to clean up. The FS server, for example, is noti-
fied before the device drivers so that it can still rely on them to shutdown.
Only when all processes have exited—either gracefully or forcibly—MINIX
is really shutdown.

A new information server MINIX 2.0.4 allows the user to make debug
dumps of certain process table information by pressing ‘F1’ or ‘F2°’. This
is done by the TTY task in the kernel. Since the TTY was moved to user-

7.1. CONTRIBUTIONS 89

space and since directly touching important kernel data structures is not a
good design a new approach was presented in Section 4.1.

The user-space TTY driver allows other process to register for notifica-
tions when function keys are pressed. This is much like the ‘observer’ design
pattern. While certain function keys are reserved, the keys ‘F1’-‘F12° and
the combinations ‘Shift-F1’-‘Shift-F12’ can be observed. Notifications
are sent using the new nonblocking send function to prevent the TTY driver
from being blocked.

A new information server, IS, was created to handle the debugging dumps
that were previously done withing the kernel, as well as for handling various
new dumps. The IS server has registered the ‘F1’-‘F12° keys a the TTY
driver and blocks waiting until the user makes a request. When a function
key is pressed, the IS servers requests a copy of the associated kernel data
structure and dumps the information on the primary console.

Generic management of watchdog timers Device drivers in MINIX
2.0.4 heavily rely on watchdog timers that are managed by the CLOCK task.
Unfortunately, this functionality is no longer accessible when the drivers
are moved out of the kernel because the CLOCK task cannot directly call a
watchdog function across address spaces. Therefore, the timer management
functionality was extracted from the CLOCK task and made available as reg-
ular library functionality that is available to all processes. This is discussed
in Section 4.2.

The generic timer management functionality has several benefits. First
of all, it the makes it straightforward to maintain multiple watchdog timers
with only a single synchronous alarm available. This allowed moving device
drivers to user-space without compromising on timers. Furthermore, it puts
the responsibility for running the watchdog functions of expired timers where
it belongs, that is, at the process that actually uses the timers. Finally, the
new approach resulted in simpler source code.

Dealing with unresponsive hardware The approaches for detecting
timeouts that are used in MINIX 2.0.4 do not work for user-space device
drivers. Therefore, two new approaches were devised as discussed in Sec-
tion 4.3. A new timeout flag alarm was used to replace checking the elapsed
time with the microseconds counter of the 8253A timer. Furthermore, a
synchronous alarm was used replace watchdog timers that faked a hardware
interrupt upon expiration.

MINIX’ kernel was updated to use separate timer structures for each
type of alarm and for each process so that different types of alarms can be
combined safely. This is, for example, required by the RTL8139 driver.

Finally, Section 4.3 illustrates an advanced timer management scheme.
This scheme is discussed in Section 4.2 and allows user-space processes to

90 CHAPTER 7. SUMMARY AND CONCLUSION

RELATIONSHIPS

KERNEL

T
|
|
| —— system call
| ---> driver control
|
/

N e — kernel call

Figure 7.1: The outcome of this master’s project: a multiserver operating sys-
tem with a true microkernel. MINIX 3.0.0 has a true microkernel with user-space
PRINTER, MEMORY, AT_WINI, FLOPPY, and TTY device drivers. The new IS
server for debugging dumps is also shown.

have multiple outstanding watchdog timers with only a single synchronous
alarm at their disposal. For example, the FLOPPY and TTY drivers require
this scheme because they manage multiple devices.

User-space device drivers The main contribution of this work is the
successful transformation of five device driver tasks that were an integral
part of the MINIX’ kernel into independent user-space programs. This result
was made possible by a combination of the above contributions. Listed in
the order that they were removed from the kernel, MINIX now has a user-
space PRINTER, MEMORY, AT_WINI, FLOPPY, and TTY driver. This is
illustrated in Figure 7.1.

The device drivers were removed by replacing their dependencies with
alternatives that provide similar functionality in a user-space setting. The
contributions that are discussed above made this possible. The removal of
individual dependencies is not further discussed. Several improvements to
MINIX that were triggered by the transformation into user-space drivers are
discussed below, though.

Other contributions Process scheduling was greatly improved when the
PRINTER driver was moved to user-space. The four fixed priorities that are
based on the type of process were replaced by a generic multilevel scheduling
algorithm where priorities can be set for individual processes. This provides
better control over important system processes.

The transformation of the AT_WINI device driver revealed that the kernel

7.2. RETROSPECTIVE 91

of MINIX 2.0.4 dynamically maps controllers to disk drivers. Because this
is a typical FS functionality and the original approach does not work for
user-space device drivers the code was moved to the FS.

The device independent code was updated so that it could be used by
the user-space device drivers. This not only concerned removing kernel
dependencies, but the interface was updated as well to support MINIX’ new
shutdown sequence and to facilitate the management of watchdog timers.
The latter, for example, was required by the FLOPPY driver.

The removal of the TTY driver from the kernel caused several problems
relating to diagnostic output. The most important problem was that the
kernel could no longer output diagnostic messages to the console. The solu-
tion that was implemented is to collect kernel messages in a circular buffer
and notify the user-space TTY driver about them. When the TTY driver is
ready it can request a copy of the kernel messages and output them to the
primary console.

7.2 Retrospective

With the overview of the major contributions in Subsection 7.1 this master’s
thesis almost comes to end. This section briefly looks back to what was
accomplished. Various kernel improvements and new applications made it
possible to strongly reduce MINIX’ kernel in size by transforming the most
important device drivers into independent user-space device drivers.

The main contribution of this work is that MINIX 2.0.4 was fully revised
to become a multiserver operating system with a true microkernel. In a
stand-alone configuration without network support MINIX 3.0.0 can be com-
piled with user-space drivers only. All kernel-space drivers were removed, so
that only the true microkernel remains. The project’s outcome is illustrated
in Figure 7.1.

MINIX’ renewed structure brings many of the benefits that are examined
in Chapter 1. First of all, the restructuring has greatly improved the MINIX’
modularity, which is beneficial for many properties, including flexibility,
maintainbility, robustness and security. Furthermore, a lot of complexity
has been removed from MINIX’ kernel and its size was tremendously reduced
by 75%, which means a great simplification and makes it less susceptible to
bugs. MINIX 3.0.0 thus is a big improvement over MINIX 2.0.4.

All in all this master’s project has been very successful. MINIX’ kernel
has been transformed from a hybrid microkernel with device drivers to a
true microkernel without device drivers. The goal that was set forth in
the title of this master’s thesis, ‘Towards a True Microkernel Operating
System’, thus has been fulfilled. MINIX 3.0.0 is an important step forward,
but, nevertheless, a lot of work remains to be done. The next subsection
outlines possible directions for future research.

92 CHAPTER 7. SUMMARY AND CONCLUSION

7.3 Future work

Performance analysis A preliminary investigation of the performance of
user-space device drivers is part of the problem analysis. In Section 2.1 the
time needed for typical request-response sequence is measured as illustrated
in Figure 2.1. Unfortunately, the timing measurements do only provide
an indication of the incurred overhead per context switch. The determine
the actual performance penalty, however, the number of additional context
switches and data copies that are required by user-space device drivers also
must be taken into account.

Therefore, a more detailed performance analysis on modern machines
must be performed for the user-space device drivers. In special, the number
of extra context switches and data copies must be analyzed. Since the device
drivers that were removed from the kernel are different in nature this analysis
should be done for each class of drivers.

Performance optimizations Depending on the results of the detailed
performance analysis, performance optimizations may be needed. It was
not yet investigated whether a better performance can be obtained by ap-
plying different problem solving strategies. In general, all dependencies were
replaced by a similar alternative that does the same job in user space, but
no changes were made to the algorithms that are used.

Performance bottlenecks, for example, may be dealt with by combining
multiple requests, by relocating tasks to the server where they are most used,
or by redefining the communication protocol. Related research on SawMill
Linux, for example, was aimed at finding an efficient multiserver protocol
that minimizes IPC.

Other user-space device drivers In a stand-alone configuration with-
out network support MINIX 3.0.0 can be compiled with only user-space device
drivers. This setup is illustrated in Figure 7.1. To increase the usefulness of
the system more user-space device drivers must become available. A user-
space Ethernet driver probably has the highest priority in order to support
normal networking functionality. The RTL8139 device driver seems a good
candidate because network cards with Realtek RTL8139 chip sets are widely
available for prices below 10 euros.

User-space Ethernet drivers form an interesting class of device drivers
from a performance perspective. While Realtek RTL8139 based cards per-
form at 10/100 Mbps (Fast Ethernet), modern network interface cards per-
form at 1/10 Gbps (Gigabit Ethernet). The design and implementation of
a user-space Ethernet driver that can manage such data transfer rate seems
a challenging effort.

7.3. FUTURE WORK 93

Dynamic control over system services Section 2.2 gives a comparison
between static and dynamic control over system services. Although this
project uses a static approach by including all system services in the boot
image, the ability to dynamically start and stop system services provides
many benefits. Therefore, an important area of future work is the design of
a proper interface for dynamically controlling system services.

Among other things the design should cover the following aspects. Since
system services usually have more privileges than ordinary user processes,
the new interface should provide mechanisms for distributing rights. To sup-
port user-space device drivers the FS should be able to dynamically control
the mapping between major devices and drivers.

Dynamic control also offers potential for automated system recovery.
The system, for example, could transparently reload a malfunctioning server
when its detects certain errors conditions. An interesting issue in this respect
is how to deal with state information of system services.

System services as ordinary user processes System services in MINIX
have a special status and are treated differently from ordinary user processes,
for example, by the MM and FS. There are no obvious reasons for making this
distinction, however. While system services typically have more privileges
than user processes they are very similar in all other respects.

Making system services more like ordinary user processes would greatly
simplify the system’s architecture. The source code of the kernel, MM and
FS can be simplified because exceptional cases for system services are no
longer needed. Moreover, system administration becomes simpler because
system services and user processes can be controlled in a unified way.

Restricting access to system resources Finally, an important area for
future work is the design and implementation of mechanisms for restricting
access to system resources. One issue is where and how to store the privileges
of each process. As mentioned above, another interesting aspect is how to
distribute the rights of each process. Currently a static approach is used, but
a more intricate scheme is needed to support dynamic control over system
services.

Once the mechanisms are in place appropriate policies must be defined.
According to the principle of least authorization (POLA) all processes should
be restricted as much as possible. This means that only those privileges
should be granted that are strictly needed for the task at hand.

Bibliography

1]

Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems
Design and Implementation. Prentice-Hall, Upper Saddle River, NJ
07458, USA, second edition, 1997. Includes CD-ROM.

Jochen Liedtke, Uwe Dannowski, Kevin Elphinstone, Gerd Lieflander,
Espen Skoglund, Volkmar Uhlig, Christian Ceelen, Andreas Haeberlen,
and Marcus Voélp. The L4Ka Vision, April 2001. System Architecture
Group, University of Karlsruhe, Germany.

M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and
M. Young. Mach: A new kernel foundation for UNIX development.
Proceedings Summer USENIX, July 1986.

Dan Hildebrand. An architectural overview of QNX. In Proceedings
of the Usenix Workshop on Micro-Kernels and Other Kernel Architec-
tures, pages 113-126, Seattle, WA, USA, April 1992. Usenix Associa-
tion.

Brian Walters. VMware virtual platform. Linuz Journal, 63, July 1999.

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. Exo-
kernel: an operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, volume 29, 1995.

Simon Patience. Redirecting system calls in Mach 3.0, an alternative
to the emulator. In USENIX, editor, Proceedings of the USENIX Mach
T Symposium, April 19-21, 1993, Santa Fe, New Mexico, USA, pages
57-73, Berkeley, CA, USA, April 1993. USENIX.

Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating
System Concepts. John Wiley & Sons, Inc., sixth edition, 2001. Ap-
pendix B, The Mach system.

Hermann Hértig, Michael Hohmuth, Jochen Liedtke, Sebastian
Schonberg, and Jean Wolter. The performance of microkernel-based

95

96

[12]

[13]

[14]

[17]

[18]

BIBLIOGRAPHY

systems. In Proceedings of the 16th ACM Symposium on Operating
System Principles, St. Malo, France, October 1997.

Birgit Pfitzmann and Christian Stiible. PERSEUS: A quick open-source
path to secure signatures. 2nd Workshop on Microkernel-based Sys-
tems, Banff, Canada, October 2001.

Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin El-
phinstone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars
Reuther. The SawMill multiserver approach. In Proceedings of the
9th ACM SIGOPS European Workshop, Kolding Denmark, September
2000.

Jochen Liedtke. Towards real microkernels. Communications of the
ACM, 39(9):70-77, September 1996.

Jochen Liedtke. Improving IPC by kernel design. In Proceedings of
the 14th Symposium on Operating Systems Principles, pages 175-188,
Asheville, NC, USA, December 1993. ACM SIGOPS.

Andread Haeberlen, Jochen Liedtke, Yoonho Park, Lars Reuther, and
Volkmar Uhlig. Stub-code performance is becoming important. In
Proceedings of the 1st Workshop on Industrial Experiences with Systems
Software, San Diego, CA, USA, October 2000.

Jochen Liedtke. On p-Kernel Construction. In Proceedings of the 15th
ACM Symposium on Operating System Principles, pages 237-250, Cop-
per Mountain Resort, CO, USA, December 1995. ACM SIGOPS.

Brian Bershad. The increasing irrelevance of IPC performance for
micro-kernel-based operating systems. In Proceedings of the Workshop
on Micro-kernels and Other Kernel Architectures, pages 205-212, Seat-
tle, WA, USA, April 1992. USENIX Association.

Henri E. Bal. Interprocess communication and synchronization based
on message passing. In Reader Parallel Programmeren, Najaar 2001.
Vrije Universiteit Amsterdam, 1995.

Jonathan S. Shapiro. Vulnerabilities in synchronous IPC designs. In
Proceedings of the IEEE Symposium on Research in Security and Pri-
vacy, pages 251-262, Oakland, CA, USA, May 2003. IEEE Computer
Society Press.

Daniel Julin, David Golub, Douglas Orr, Michael Jones, Richard
Rashid, Richard Sanzi, Ro Forin, and Robert Baron. Mach: A founda-
tion for open systems, September 1992.

BIBLIOGRAPHY 97

[20]

[21]

[22]

David B. Golub, Guy G. Sotomayor, and Freeman L. Rawson III. An
architecture for device drivers executing as user-level tasks. In Pro-
ceedings of the Usenix Mach Symposium, pages 153-172, Berkeley, CA,
USA, 1993. USENIX.

David Golub and Richard P. Draves. Moving the Default Memory
Manager out of the Mach Kernel. In Proceedings of the Usenix Mach
Symposium, November 1991.

QNX Software Systems Ltd. QNX Neutrino RTOS architecture, 2003.
QNX website (http://www.qnx.com/) :: Developers Support :: System
Architecture guide.

Cl.-J. Hamann, H. Hartig, L. Reuther, M. Borriss, M. Hohmuth,
R. Baumgartl, and S. Schonberg. Dresden Realtime Operating Sys-
tem, December 2001.

Hermann Hartig, Michael Hohmuth, and Jean Wolter. Taming linux.
In Proceedings of PART’98. TU Dresden, 1998.

The L4Ka::Pistachio Microkernel (White Paper), May 2003. System
Architecture Group, University of Karlsruhe, Germany.

Appendix A

Source tree organization

This appendix discusses MINIX’ old and new source tree. Section A.l pro-
vides an overview of all kernel files in MINIX 2.0.4 and shows that the ma-
jority of files belongs to device drivers. Section A gives an overview of the
new source tree of MINIX 3.0.0.

A.1 Overview of all kernel files

This section gives an overview of the kernel of MINIX 2.0.4 as it can be
obtained from http://www.cs.vu.nl/pub/miniz/. The listing below shows
all files in the directory src/kernel/ together with their size and purpose.
Although all files are compiled into the kernel, two groups were formed—
microkernel files and device drivers files—to give a quick impression of the
potential reduction of the kernel’s size when device drivers are transformed
into user-space servers.

In total, the kernel of MINIX 2.0.4 has 77 files and is about 878 KB in size.
The microkernel comprises less files than the device drivers and, moreover,
the average size per file is much smaller. Only 25% of the code (220 KB)
belongs to the microkernel, whereas 75% of the code (658 KB) is taken by
device drivers.

Microkernel files (25 files, 220 KB in total)

FILENAME FILESIZE PURPOSE

assert.h 653 B /* header for assertions */

clock.c 2263 B /* the CLOCK task */

const.h 5492 B /* header with kernel constants */
exception.c 2090 B /* exception handlers */

glo.h 3197 B /* global variables */

i8259.¢ 5403 B /* 8259 interrupt controller */
kernel.h 800 B /* master header file */

klib386.s 16256 B /* 80386 kernel utilities */

99

100

klib88.s
klib.s
main.c
misc.c
mpz386.s
mpz88.s
mpz.s
proc.c
proc.h
protect.c
protect.h
proto.h
sconst.h
start.c
system.c
table.c
type.h

APPENDIX A. SOURCE TREE ORGANIZATION

28978 B
177 B
5123 B
6231 B
16669 B
21450 B
172 B
18928 B
4957 B
10804 B
5660 B
14769 B
847 B
2846 B
42107 B
5439 B
3928 B

Device driver files

FILENAME

3c503.c
3¢503.h
ahal540.c
at_wini.c
bios_wini.c
console.c
dmp.c
dosfile.c
dp8390.c
dp8390.h
driver.c
driver.h
drvlib.c
drvlib.h
esdi_wini.c
fatfile.c
floppy.c
keyboard.c
memory.c
ne2000.c
ne2000.h
pci_amd.h
pci_intel.h
pci_sis.h
pci_table.c
pci_via.h
pci.c

FILESIZE

6239 B
2555 B
63465 B
36213 B
11917 B
30324 B
5942 B
12278 B
48197 B
12043 B
10465 B
2043 B
6408 B
816 B
21807 B
18868 B
39973 B
15017 B
9509 B
7361 B
625 B
547 B
1906 B
459 B
8413 B
945 B
28796 B

/* 8088 kernel utilities */

/* chooses 8088 or 80386 mode */

/* main program of MINIX */

/* mem_init, env_parse, bad_... */

/* 80386 startup code + interrupt handlers */
/* 8088 startup code + interrupt handlers */
/* chooses between 8088 or 80386 mode */
/* process and message handling */

/* declaration of the process table */

/* protected mode (GDT, LDT, IDT) */

/* constants for protected mode */

/* kernel function prototypes */

/* constants for assembly code */

/* C startup code for MINIX */

/* the SYSTEM task */

/* global data + tasktable */

/* kernel types */

(42 files, 658 KB in total)

PURPOSE

/* DP8390 task: 3COM Etherlink IT */

/* DP8390 task: 3COM Etherlink IT */

/* AHA1540 task: Adaptec 154x SCSI */

/* AT_WINI task: IBM-AT winchester */

/* BIOS_WINI task: ROM BIOS disk driver */
/* TTY task: driver for 6845 video chip */

/* TTY task: kernel dumping routines */

/* DOSFILE task: ‘DOS file as disk’ driver */
/* DP8390 task: device independent part */
/* DP8390 task: device independent part */
/* device independent driver interface */

/* device independent types and constants */
/* IBM device driver functions and utilities */
/* IBM device driver definitions */

/* ESDI_WINI task: IBM PS/2 ESDI adapter */
/* FATFILE task: handles FAT files */

/* FLOPPY task: NEC PD765 chip controller */
/* TTY task: PC and AT keyboard driver */
/* MEMORY task */

/* DP8390 task: Novell NE1000/ NE2000 */
/* DP8390 task: Novell NE1000/ NE2000 */
/* PCI constants for AMD compatible */

/* PCI constants for Intel PII compatible */
/* PCI constants for SIS compatible */

/* PCI tables with vendor and device ids */
/* PCI constants for VIA compatible */

/* PCI support routines */

A.2. ORGANIZATION OF THE NEW SOURCE TREE 101

pcih 2261 B /* PCI constants and types */

printer.c 13006 B /* PRINTER task: Centronics driver */

pty.c 12379 B /* TTY task: Pseudo terminals */

rs232.c 28806 B /* TTY task: RS232 serial driver */

rtl8029.c 2369 B /* DP8390 task: Realtek 8029 driver */

rtl8139.c 59176 B /* RTL8139 task: Realtek 8139 (requires PCI) */
rt18139.h 19849 B /* RTL8139 task: Realtek 8139 (requires PCI) */
sb16_dsp.c 18469 B /* SB16_DSP task: Digital Sound Processor */
sb16_mizer.c 11951 B /* SB16_MIX task: Mixer */

sb16.h 6153 B /* SoundBlaster 16: shared header file */

tty.c 51055 B /* TTY task: device independent part */

tty.h 4594 B /* TTY task: device independent part */
wdeth.c 9825 B /* DP8390 task: Western Digital WD80x3 */
wdeth.h 3294 B /* DP8390 task: Western Digital WD80x3 */
xt_wini.c 27749 B /* XT_WINI task: WD WX-2 controller */

A.2 Organization of the new source tree

The revision of MINIX resulted in the following source tree. Note that only
directories where major revisions took place are listed.

Kernel

The files in this directory are part of MINIX’ kernel. Compared to MINIX
2.0.4 the number of files is strongly reduced, because all device drivers have
been removed from the kernel. The implementation of the system call han-
dlers of the SYS and CLOCK task was moved to the directories src/ker-
nel/system/ and src/kernel/clock/, and is now compiled into two libraries
that are linked with the kernel.

Device drivers

All user-space device drivers are contained in the directory src/drivers/.
There are subdirectories for the PRINTER (Centronics compatible print-
ers), MEMORY (/dev/null, /dev/mem, /dev/kmem, and /dev/ram devices),
FLOPPY (floppy disk drives), AT_WINI (AT Winchester hard disks), and
TTY (terminal) device driver. These drivers were previously part of the ker-
nel. The directory drivers/libdriver/ contains shared code for block device
drivers.

Servers

All user-space servers at contained in the directory src/servers/. There is a
new information server (IS) which is discussed in Section 4.1. In short, it is
responsible for the debugging dumps that were previously done in the TTY

102 APPENDIX A. SOURCE TREE ORGANIZATION

driver. The memory manager (MM), file system (FS) and Internet server
(INET) were moved to this new location.

System libraries

All libraries are contained in the base directory src/lib/. The user-space
implementation of the system library handled by the SYS task is contained
in src/lib/syslib/. Numerous new system calls were added to support the
user-space device drivers. Similarly, a new library was setup for system calls
directed to the CLOCK task. In addition, two new libraries to support servers
and device drivers were created. More information can be found in the
respective header files: <miniz/extralib.h> and <timers.h>. More details
on the library for generic timer management can be found in Section 4.2.
Appendix B discusses how to add a new system library.

Include files

Many existing header files were updated with new or changed constants and
definitions. Especially <miniz/com.h> was completely reorganized. This
files now contains all definitions of process number and message types. Sev-
eral new header files were created as well, for example, <timers> for the
new generic timer management library.

SOURCE TREE PROCESS : DESCRIPTION
/usr/src/
+ kernel/
- system/ SYSTEM : system call handlers
- clock/ CLOCK : system call handlers
+ drivers/
- printer/ PRINTER : Centronics driver
- memory/ MEMORY : memory device driver
- at_wini/ AT_WINI : hard disk driver
- floppy/ FLOPPY : floppy disk driver
- tty/ TTY : Terminal driver
+ servers/
- is/ IS : information server
- mm/ MM : memory manager
- fs/ FS : file system
- inet/ INET : network server

Figure A.1: This figure shows the location of all system services in the source
tree of MINIX 3.0.0. The most important change compared to MINIX 2.0.4 is that
device drivers and servers have been moved to separate base directories.

Appendix B

How to apply changes ...

This appendix discusses how MINIX can be enhanced with new elements.
The discussion includes the changes that were most frequently encountered
during this project. Section B.1 discusses how new system services, such
as user-space device drivers, can be added to the boot image. Section B.2
shows what is needed to create a new system call. Finally, Section B.3 treats
updates to MINIX’ system libraries.

B.1 Adding programs to the system image

All system services that are part of the system image are automatically
started at boot time. The image of MINIX 2.0.4, for example, includes the
MM and FS servers. The removal of device drivers from the kernel tasks
yielded new user-space device drivers that were included in the system image
as well. The steps below describe how to add a program, named X, to the
system image.!

Changes to MINIX’ source code. These changes concern MINIX source
code. It is assumed that the new program to be included in the system image
is available.

e If you want to be able to include and exclude the program from the
system image, add a definition ENABLE X in <miniz/config.h>. It is
required to use one of the values 0 and 1 to indicate whether to program
is part of the system image.

e Define a process number for the new program in <miniz/com.h>. This
must be done so that is does not conflict with other servers and device
drivers. Note that the MM and FS have fixed process numbers.

!Note that the number of programs in the system image is limited to 16. This has to
do with amount of memory that is reserved for the boot monitor at the beginning of the
kernel’s data segment. See Subsection 2.2.1 for more details.

103

104 APPENDIX B. HOW TO APPLY CHANGES ...

e Update the IMAGE_SIZE variable so that the kernel knows about the
number of processes in the system image. If you created an ENABLE_X
definition add + ENABLE_X, otherwise add + 1.

e Define a new send mask X_.SENDMASK in src/kernel/sendmask.h. The
kernel uses this bit mask to check if communication with other pro-
cesses is permitted. Also update the send masks of existing processes
that must communicate with the new program.

e The image table in src/kernel/table.c must be updated to include the
new program. Among other things, this table includes the type of
program, its send mask, and a name for the process table.

Changes to the tools. The Makefile in src/tools is used to build the sys-
tem image. It must be updated to include the new program. This assumes
that ENABLE X in src/miniz/config.h is set to 1 if the program is optional.

e Add the new server to the PROGRAMS variable. This ensures that is
it included in the system image. It is important that the order of the

programs must corresponds to the order using in the image table in
src/kernel/table.c.?

e The programs make target must be updated to include a make rule for
the new program. The exact order is not of importance here. Note
that this step implies that a Makefile is available for the new program.

Changes to the file system. The file system is responsible for the map-
ping between major device numbers and device drivers. If the new program
is a device driver it must be mapped onto a device to make it effective.

e The table with all device-driver mappings is found in src/fs/dmap.c.
Update the dmap table to map a device onto the new device driver.

B.2 Adding system calls

This section discusses how to define new system calls to request kernel ser-
vices from the CLOCK or SYS task. This is different from user system calls,
such as ‘alarm(2)’, which are handled by either the MM or FS. The steps
to add a new system call are rather simple.

e Define a new, unique SYS_CALL message type and all needed param-
eters in <miniz/com.h>. In the rare case that none of the current
message types can accommodate all parameters, a new message type
may be defined in <miniz/type.h>.

2The order of the programs in the system image must be known by the kernel so that
it can look up the correct details for each program from the image table.

B.3. ADDING SYSTEM LIBRARIES 105

e Implement a handler function for the system call in the CLOCK or SYS
task. This should be done in a separate file in the directory src/ker-
nel/clock or src/kernel/system. See Section A.2 for more details.

e Update the table with system call-handler function mappings so that
the new SYS_CALL message type is recognized and dispatches to the
function that handles it. If no errors were made the call should work
now.

e Because each system call requires building a request message, sending
it to the kernel, and awaiting the response, it is convenient to define a
new function in one of the system libraries to do this. See Section C.1
for more details on sytem call organization.

Numerous system calls were added to support user-space servers and
device drivers. Appendix C provides an overview of the calls that are new
since MINIX 2.0.4.

B.3 Adding system libraries
This section discusses how to add a new system library, mylib, to MINIX.

e Place the header file that defines the types and function prototypes
for the library in src/include/ or a subdirectory thereof. The precise
directory depends on the kind of library it concerns.

e Create a new directory in src/lib/, for example, src/lib/mylib/ for
the library’s implementation. By convention, use one file per function
contained in the library.

e Place a new make file in your library’s directory to build it. This
is most easily done by copying a Makefile from one of the existing
libraries and adapting it to your needs. The library’s target name
must start with /ib and must be placed in the directory sre/lib, for
example, src/lib/libmylib.a

e Finally, update the master make file, src/lib/Makefile, to include the
new library. You must add the library to the make targets all, install-
i86, and install-i386, so that it is installed in the correct directory after
issuing a ‘make install’.

Once the new library has been installed, it can be linked with an appli-
cation or the system image. To link against the new libmylib.a library, for
example, one must append ‘-1lmylib’ to the compile command.

Appendix C

MINIX’ system calls

In general, system calls allow system processes to request kernel services, for
example, to perform for privileged operations. Section 3.1 already discussed
some system calls that were implemented to support the new user-space
device drivers and servers. This appendix provides a complete overview of
MINIX’ system calls and shortly discusses their organization.

C.1 Organization of system call implementation

A system call means that a request is sent to a kernel where it is handled
by one of the kernel tasks. The details of assembling a request message,
sending it to the kernel, and awaiting the response are conveniently hidden
in the system libraries. The header files of the libraries are <miniz/syslib.h>
and <miniz/clocklib.h>. The implementation of the libraries can be found
in sre/lib/syslib and src/lib/clocklib, respectively.

The actual implementation of the system calls is part of the kernel. All
calls are directed to either the CLOCK task or the SYS task; in what follows,
TASK can be substituted by one them. Suppose that program makes a
task_call() system call. By convention, this call is transformed into a request
message with type TASK_CALL that is sent to the kernel task TASK.

The TASK handles the request in a function named do_call() and returns
the result. The function prototypes of all the handler functions are declared
in src/kernel/task.h. The actual implementation is contained in separate
files in the directory src/kernel/task/. The files are compiled into a library
src/kernel/task/task.a that is linked with the kernel.

The system call message types and their request and response parameters
are defined in <miniz/com.h>. Unfortunately, MINIX 2.0.4 does not follow a
strict naming scheme. Therefore, numerous message types and parameters
have been renamed in MINIX 3.0.0. System calls to the SYSTEM or CLOCK
task start with SYS_ and CLK_, respectively. Furthermore, all parameters
that belong to the same system call now share a common prefix.

106

C.2. OVERVIEW OF SYSTEM CALLS IN MINIX 3.0.0 107

C.2 Overview of system calls in MINIX 3.0.0

This section gives an overview of the system calls in MINIX 3.0.0. A concise
overview is given in Figure C.1. The last two columns show the contribution
of this master’s project and indicate the future status of each system call.

System call Purpose Status
PROCESS MANAGEMENT
SYS_EXEC Execute a process (initialize process) - T
SYS_EXIT Exit system service (clean up process) N D
SYS_FORK Fork a process (create new process) - T
SYSKILL Kill a process (send a signal) - T
SYS_NEWMAP Install new or updated memory map - T
SYSXIT Exit a user process (clean up process) - T
SYS_SIGCTL Signal handling (get and process it) U P
SYS_TRACE Tracing (control process execution) U P
COPYING DATA
SYS_COPY General copying (virtual and physical) - D
SYS_PHYSCOPY Physical copying (arbitrary memory) - D
SYS_VCOPY General copying (vector with requests) - D
SYS_VIRCOPY Virtual copying (local, remote, BIOS) N P
DEVICE 1/0
SYS.DEVIO Read or write a single device register N T
SYS_SDEVIO Input or output an entire data buffer N T
SYS_VDEVIO Process a vector with multiple requests N T
SERVER CONTROL
SYS_IOPENABLE Set CPU’s I/O privilege level bits N T
SYS_KMALLOC Allocate memory for RAM disk N T
SYS_PHYS2SEG Add segment descriptor in LDT N T
SYS_SVRCTL System control (manipulate server) U T
SYSTEM CONTROL
SYS_ABORT Abort MINIX (shutdown the system) P
SYS_GETINFO Get system information (copy data) P
SYS_IRQCTL Interrupt control (toggle, set policy) P
CLOCK FUNCTIONALITY
CLK_GETUPTM Get uptime (since MINIX was boot) - D
CLK_SETALARM Set alarm (signal, message, flag) U P
CLK_TIMES Get times (uptime and CPU usage) U P
CLK_TMSWITCH Measure context switch overhead N D

Figure C.1: This figure provides an overview of the system calls in MINIX 3.0.0.
The last two columns show the contribution of this master’s project and future
status of each call. The legenda is as follows: New or Updated since MINIX 2.0.4;
Permanent, Temporary or Deprecated.

108 APPENDIX C. MINIX’ SYSTEM CALLS

Some system calls have a temporary character and are likely to be mod-
ified or removed by future work. Therefore, an attempt is made to provide
to future status of each call. A call is either permanent, temporary or depre-
cated. Permanent system calls are not expected to change in future versions
of MINIX.

Temporary system calls are likely to change in the near future. For
example, all process management system call will be unified in a new system
call SYS_PROCTL—similar to what was done for SYS_SIGCTL. Furthermore,
there are several system calls that concern allocating resources or obtaining
additional privileges. These calls will be combined with the SYS_SVRCTL
system call to form a unified interface for system control.

A number of MINIX 2.0.4 system calls has been deprecated in MINIX
3.0.0, but are still in place. This, for example, is true for the SYS_.COPY
system call that has been replaced by SYS_VIRCOPY. The calls could not yet
be removed because they still have some temporary uses. The calls that are
deprecated according to Figure C.1 will be removed.

Overview of all system calls in alphabetical order

A detailed overview of MINIX’ system calls is provided below. For each
system call the message type, the purpose, message type, request and/ or
response parameters, and return value are specified. Additional remarks
about the future status of the call also may be provided. Please note, how-
ever, that this project is ongoing work and that all system calls may be
subject to change.

SYS_ABORT: Shutdown MINIX. This is used by MM, FS and TTY. Normal aborts usually
are initiated by the user, for example, by means of the ‘shutdown’ command or
typing a ‘Ctrl-Alt-Del’. MINIX will also be taken down if a fatal error occurs in
the MM or FS.

request parameters

ABRT_HOW: How to abort. One of the values defined in <wunistd.h>.
e RBT_HALT: Halt MINIX and return to the boot monitor.
e RBT_REBOOT: Reboot MINIX.
e RBT_PANIC: A kernel panic occurred.
e RBT_MONITOR: Run the specified code at the boot monitor.
e RBT_RESET: Hard reset the system.

ABRT_-MON_PROC: Process to get the boot monitor parameters from.

ABRT_MON_LEN: Length of the boot monitor parameters.
ABRT_-MON_ADDR: Virtual address of the parameters.

return type

OK: The shutdown sequence was started.

C.2. OVERVIEW OF SYSTEM CALLS IN MINIX 3.0.0 109

SYS_COPY: A copy function to copy data using either physical or virtual addressing. Vir-
tual address are in text, stack or data segment, or ABS to indicate a physical
address.

request parameters
CP_SRC_SPACE: Source segment.
CP_SRC_BUFFER: Virtual source address
CP_SRC_PROC_NR: Process number of the source process.
CP_DST_SPACE: Destination segment.
CP_DST.BUFFER: Virtual destination address
CP_DST_PROC_NR: Process number of the destination process.
CP_NR_BYTES: Number of bytes to copy.

return type
OK: The copying was done.
EFAULT: Virtual to physical mapping failed.

remarks
This call is deprecated. It has been replaced by SYS_VIRCOPY.

SYS.DEVIO: Perform device I/O on behalf of a user-space device driver. The driver can
request a single port to be read or written with this call. Also see SYS_SDEVIO and
SYS_VDEVIO.

request parameters
DIO_REQUEST: Input or output.
e DIO_INPUT: Read a value from DIO_PORT.
e DIO_OUTPUT: Write DIO_VALUE to DIO_PORT.

DIOTYPE: A flag indicating the type of values.

e DIOBYTE: Byte type.
e DIO_WORD: Word type.
e DIO_LONG: Long type.
DIO_-PORT: The port to be read or written.
DIO_VALUE: Value to write to the given port. For DIO_OUTPUT only.

response parameters
DIO_VALUE: Value that was read from the given port. For DIO_INPUT only.

return type
OK: The port I/O was successfully done.
EINVAL: An invalid DIO_REQUEST or DIO_TYPE was provided.

remarks
All device I/O calls will be unified in a single SYS_DEVIO call.

SYS_EXEC: A process has successfully executed a program. The FS has copied the binary
image into memory and the MM requests the kernel patch up the process’ registers
for execution.

110 APPENDIX C. MINIX’ SYSTEM CALLS

request parameters
PR_PROC_NR: Process that executed a program.
PR_TRACING: Flag to indicate whether tracing is enabled.
PR_STACK_PTR: New stack pointer.
PR_IP_.PTR: New program counter.
PR_NAME_PTR: Pointer to name of program.

return type
OK: This call always succeeds.
remarks

This call will be combined with other process control calls. A new SYS_PROCTL will
be created for this. Proper error handling must be added.

SYS_EXIT: A system process wants to exit. Clean up its process slot. Note that this call is
different from the SYS_XIT call that is used by the MM to announce that a regular
user process has exited.

request parameters
EXIT_STATUS: Zero on a normal exit. Non-zero if an error occurred.

return type
This call never returns.

remarks
This call will be removed when system services become ordinary user processes.

SYS_FORK: A process has forked. The MM has found an available process slot in its own
process table and now requests the kernel to allocate the associated process slot in
the kernel’s process table.

request parameters
PR_PROC_NR: Child’s process table slot.
PR_PPROC_NR: Parent, the process that forked.

return type
OK: This call always succeeds.

remarks

This call will be combined with other process control calls. A new SYS_PROCTL will
be created for this. Proper error handling must be added.

SYS_GETINFO: Obtain a copy of all kinds of system information. This call supports user-
space device drivers and servers that need certain system information. Furthermore
it is used by the IS server to request entire data structures for debugging dumps.
Note that a new message type, mess_7, was declared in <miniz/type.h> to accom-
modate all needed parameters.

request parameters
I_.REQUEST: The type of system information that is requested.
e GET_KENVIRON: Get the system environment as known by the kernel.
e GET_KADDRESSES: Get the physical addresses of kernel variables.
e GET_TASKTAB: Copy the tasktab table defined in src/kernel/table.c.
e GET_.MEMCHUNKS: Copy the mem array with free memory chunks.

C.2. OVERVIEW OF SYSTEM CALLS IN MINIX 3.0.0 111

e GET_PROCNR: Retrieve the process number for a given process name.
e GET_PROCTAB: Copy the proc table defined in src/kernel/proc.h.

e GET_MONPARAMS: Get a copy of the boot monitor parameters.

e GET.KENV: Get a single parameter. Key provided by the caller.

e GET_SCHEDINFO: Retrieve the current scheduling queues.

I.PROC_NR: Process where the information should be copied to.
I_VAL_PTR: Virtual address where the information should be copied to.
I_VAL_LEN: Maximum length that the caller can handle.
I_KEY_PTR: Virtual address of the key provided by the caller.

return type
OK: The information request succeeded.
EFAULT: An illegal memory address was detected.
EINVAL: Invalid request or process number, or key is too large.
ESRCH: The requested kernel environment string was not found.
E2BIG: Requested data exceeds the maximum provided by the caller.

SYS_IOPENABLE: Request the I/O Protection Level bits of the given process to be enabled.
This gives user-space processes privileges to perform device I/O. This may endanger
the system, so it only works if it is explicitly allowed by the current configuration.
To make the call effective, the definitions ENABLE_USERPRIV and ENABLE_USERIOPL
in <miniz/config.h> must both be set to 1.
request parameters

PROC_NR: The process to give I/O Protection Level bits.
return type

OK: The I/O Protection Level bits were successfully set.

EPERM: The current configuration does not allow the call.
remarks

This call will be unified with the SYS_.SVRCTL call.

SYS_IRQCTL: Interrupt control. This call allows user-space device drivers to enable or
disable interrupts and to install a policy for the kernel’s generic interrupt handler.

request parameters
IRQ_REQUEST: Interrupt control request to perform.
e IRQ_ENABLE: Enable IRQs for the given IRQ line.
e IRQ._DISABLE: Disable IRQs for the given IRQ line.
e IRQ_SETPOLICY: Set interrupt policy for the generic interrupt handler.
IRQ_VECTOR: IRQ line that must be controlled.
IRQ_POLICY: Bit map with flags indicating IRQ policy.
IRQ_-PROC_NR: Policy: indicates process to be notified about hardware interrupts.
IRQ-PORT: IRQ Policy: indicates port to read from or write to.
IRQ_VIR_ADDR: Policy: virtual address at caller to store value read from port.
IRQ_-MASK_VAL: Policy: Mask to strobe back value to port or value to write to port.

!Usually this is the calling process, but the MM may request system information to
be copied on behalf of another process for backward compatibality. When the MM de-
tects the no longer supported SYSGETENV server control request, it is transformed into a
SYS_GETINFO request that does the job.

112 APPENDIX C. MINIX’ SYSTEM CALLS

return type

EINVAL: Invalid request, IRQ line or process number.

EFAULT: Invalid virtual address at caller.

EPERM: Only owner can remove its IRQ policy.

ENOSYS: Removal of IRQ policy is not yet supported.

EBUSY: Each IRQ vector can only have a single policy at this moment.
remarks

TIRQ policies may be subject to change when more device driver are moved to user-
space. Multiple IRQ policies should be available per IRQ line. The call should be
simplified by copying IRQ policy structure from caller, instead of overloading the
message with all values.

SYS_KILL: A system service sends wants to signal a process. All signals are forwarded to

the kernel to prevent being blocked if the MM is not ready. The kernel notifies the
MM about the pending signal for further processing.

request parameters
SIG_.PROC_NR: Process to be signaled.
SIG_.NUMBER: Signal number.

return type
OK: Always succeeds.

remarks
This call will be unified with the SYS_SIGCTL call.

SYS_KMALLOC: Request a (DMA) buffer to be allocated in one of the free memory chunks.
This call is only used by the MEMORY driver to allocate a RAM disk before the
MM grabs all memory.

request parameters
MEM_CHUNK_SIZE: Size of the requested buffer in bytes.
response parameters
MEM_CHUNK_BASE: The physical address of the start of the allocated buffer.
return type
OK: The buffer was successfully allocated.
ENOMEM: No memory chunk was big enough to hold the buffer.
remarks
This call will be unified with the SYS_SVRCTL call.

SYS_NEWMAP: A process gets a new memory map, either because it was just forked or

because its map was updated. Fetch the memory map from MM.

request parameters
PR_PROC_NR: Install new map for this process.
PR_.MEM_PTR: Pointer to memory map at MM.

return type
OK: New map was successfully installed.
EFAULT: Incorrect address for new memory map.

EINVAL: Invalid process number.

C.2. OVERVIEW OF SYSTEM CALLS IN MINIX 3.0.0 113

remarks

This call will be combined with other process control calls. A new SYS_PROCTL will
be created for this.

SYS_PHYS2SEG: Add a segment descriptor to the LDT and return a selector and offset
that can be used to reach a physical address. This is meant for device drivers doing
memory I/O in the A0000 - DFFFF range. Currently the call is only used by the
TTY driver to access video memory. For large segments, where 4K granularity is
required instead of 1K, ENABLE_LOOSELDT in <miniz/config.h> should be enabled.
request parameters

SEG_PHYS: Physical base address of segment.

SEG_SIZE: Size of segment.
response parameters

SEG_SELECT: Segment selector for LDT entry.

SEG_OFFSET: Offset within segment. Zero, unless 4K granularity is used.
return type

OK: Segment descriptor successfully added.

E2BIG: If size of segment is too large and ENABLE_LOOSELDT is not enabled.
remarks

This call will be unified with the SYS_.SVRCTL call.

SYS_PHYSCOPY: Copy data from anywhere to anywhere in the memory. This copy call
uses physical addressing. The SYS_VIRCOPY system call should be used instead
whenever possible.

request parameters
CP_SRC_BUFFER: Physical source address.
CP_DST_-BUFFER: Physical destination address.
CP_NR_BYTES: Number of bytes to copy.

return type
OK: The copying was done.

EFAULT: Either the source or destination address was zero.
remarks
This call is deprecated. It has been replaced by SYS_VIRCOPY.

SYS_SDEVIO: Perform device I/O on behalf of a user-space device driver. The driver can
request a input or output of an entire buffer. Also see SYS_DEVIO and SYS_VDEVIO.

request parameters
DIO_REQUEST: Input or output.
e DIOINPUT: Read a value from DIO_PORT.
e DIO_OUTPUT: Write DIO_VALUE to DIO_PORT.

DIO_TYPE: A flag indicating the type of values.

e DIOBYTE: Byte type.
e DIO_WORD: Word type.
e DIO_LONG: Long type.

114 APPENDIX C. MINIX’ SYSTEM CALLS

DIO_PORT: The port to be read or written.

DIO_VEC_PROC: Process where buffer resides.

DIO_VEC_ADDR: Virtual address of buffer.

DIO_VEC_SIZE: Number of elements to input or output.
response parameters

DIO_VALUE: Value that was read from the given port. For DIO_INPUT only.
return type

OK: The port I/O was successfully done.

EINVAL: Invalid process number, request, or granularity.

EFAULT: Invalid virtual address of buffer.
remarks

All device I/O calls will be unified in a single SYS_DEVIO call.

SYS_SIGCTL: Signal handling. When the kernel notifies the MM about pending kernel
signals, the MM calls back to get the outstanding signals and process them.

request parameters
SIG_.REQUEST:

S_GETSIG: See if there are pending kernel signals.
e S_ENDSIG: Finish up after a KSIG-type signal.

e S_SENDSIG: POSIX-style signal handling.

e S_SIGRETURN: Return from POSIX-style signal.

SIG_PROC: Indicates the process that was signaled.

SIG_.CTXT_PTR: Pointer to context structure for POSIX-style signal handling.
response parameters

SIG_PROC: Return next process with pending signals or NONE.
return type

OK: Signal handling action successfully performed.

EPERM: Only the MM is allowed to request the signal control operations.

EINVAL: Invalid SIG_LREQUEST, SIG_.PROC or SIG_.CTXT_PTR provided.

EFAULT: Invalid context structure address, or could not copy signal frame.

SYS_SVRCTL: This system call allowes to dynamically load a server by giving it extra
privileges. It currently is only used by the INET server.

request parameters
SVR_REQUEST: Server control operation that is requested.
e SYSSIGNON: Sign on as a new server.
e SYSSENDMASK: Only set a new send mask.
SVR_PROC_NR: Process number of the caller.
SVR_MM_PRIV: Process privileges as soon by the MM.

return type
OK: The calls succeeded.
EPERM: Permission was denied because the process is not running as super user.

EINVAL: Invalid process number or the request type was not supported.

C.2. OVERVIEW OF SYSTEM CALLS IN MINIX 3.0.0

remarks

115

This system call will be extended to provide both better support and security checks
for servers or device drivers that must be dynamically loaded. This is part of future

research.

SYS_TRACE: Observe and control processes. Handle the debugging commands supported

by the ptrace() system call.
request parameters

CTL_REQUEST: The tracing request.
e T_STOP: Stop the process.
e T_GETINS: Return value from instruction space.
e T_GETDATA: Return value from data space.
e T_GETUSER: Return value from user process table.
e T_SETINS: Set value from instruction space.
e T_SETDATA: Set value from data space.
e T_SETUSER: Set value in user process table.
e T_RESUME: Resume execution.
e T_STEP: Set trace bit.

CTL_PROC_NR: The process number that is being traced.

CTL_ADDRESS: Virtual address in the traced process’ space.
CTL_DATA: Data to be written.
response parameters
CTL_DATA: Data be returned.
return type
OK: Always succeeds.
EIO: Set or get value failed.

SYS_.VCOPY: Copy multiple blocks of memory from one process to another.

vector is fetched from the caller. Virtual addressing is used.
request parameters
VCP_VEC_SIZE: Number of elements in request vector.
VCP_VEC_ADDR: Virtual address of request vector at caller.
VCP_SRC_PROC: Source process.
VCP_DST_PROC: Destination process.
return type
OK: The copying was done.
EDOM: Request vector too large.
EFAULT: Virtual to physical mapping failed.
remarks
This call is will be unified with SYS_VIRCOPY.

A request

SYS_VDEVIO: Perform a series of device I/O on behalf of a user process. The call accepts
a pointer to an array of (port,value)-pairs that is to be handeld at once. Hardware
interrupts are temporarily disabled to prevented the bactch of I/O calls to be

interrupted. Also see SYS_.DEVIO and SYS_SDEVIO.

116 APPENDIX C. MINIX’ SYSTEM CALLS

request parameters
DIO_REQUEST: Input or output.

e DIO.INPUT: Read a value from DIO_PORT.
e DIO_OUTPUT: Write DIO_VALUE to DIO_PORT.

DIOTYPE: A flag indicating the type of values.

e DIOBYTE: Byte type.
e DIO_WORD: Word type.
e DIO_LONG: Long type.

DIO_VEC_SIZE: The number of ports to be handled.

DIO.VEC.ADDR: Virtual address of the (port,value)-pairs in the caller’s space.
return type

OK: The port I/O was successfully done.

EINVAL: Invalid request, granularity, or vector size.

EFAULT: The address of the (port,value)-pairs is erroneous.
remarks

All device I/O calls will be unified in a single SYS_DEVIO call.

SYS_VIRCOPY: A copy function to copy data using virtual addressing. The virtual can
be in three segments: LOCAL_-SEG (text, stack, data segments), REMOTE_SEG (e.g.,
RAM disk, video memory), and the BIOS_SEG (BIOS I/0O). This is the most common
system call relating to copying.

request parameters
CP_SRC_SPACE: Source segment.
CP_SRC_BUFFER: Virtual source address
CP_SRC_PROC_NR: Process number of the source process.
CP_DST_SPACE: Destination segment.
CP_DST_-BUFFER: Virtual destination address
CP_DST_PROC_NR: Process number of the destination process.
CP_NR_BYTES: Number of bytes to copy.
return type
OK: The copying was done.
EDOM: Invalid copy count (CP_.NR_BYTES j 0).
EFAULT: Virtual to physical mapping failed.
EINVAL: Incorrect segment type or process number.
EPERM: Only owner of REMOTE_SEG can copy to or from it.

SYS_XIT: A user process has exited. The MM sent a request to clean up the process table
slot and to accumulate the child times at the parent process.

request parameters
PR_PROC_NR: Slot number of exiting process.
PR_PPROC_NR: Slot number of parent process.
return type
OK: The cleanup succeeded.
EINVAL: Incorrect process number.

C.2. OVERVIEW OF SYSTEM CALLS IN MINIX 3.0.0 117

remarks

This call will be combined with other process control calls. A new SYS_PROCTL will
be created for this.

CLK_.GETUPTM: Get the uptime since MINIX was boot.
response parameters
T_BOOT_TICKS: Number of ticks since MINIX boot.
return type
OK: Always succeeds.
remarks

This call is deprecated; CLK_TIMES provides the same functionality.

CLK_SETALARM : Set or reset an alarm. This system call provides a single interface to set
different types of alarms.

request parameters
ALRM_TYPE: Action to be taken when the alarm goes off.

e CLK_SIGNALRM: send a SIG_ALRM signal.
e CLK_FLAGALRM: set a timeout flag to 1.
e CLK_SYNCALRM: send a SYN_ALARM notification.

ALRM_PROC_NR: Process that must be alerted when the alarm expires.

ALRM_EXP_TIME: Absolute or relative expiration time for this alarm.

ALRM_ABS_TIME: Zero if expire time is relative to the current uptime.

ALRM_FLAG_PTR: The virtual address of the timeout flag for CLK_FLAGALRM.
response parameters

ALRM_SEC_LEFT: The number of seconds left on the previous alarm is returned here.
return type

OK: The alarm was successfully set.

EINVAL: The alarm type or requesting process number was incorrect.

EFAULT: The address of the timeout flag was erroneous.

CLK_TIMES: Get all time information for a given process.
request parameters
T-PROC._NR: The process to get the time information for.
response parameters
T_USER.TIME: User time in ticks.
T_SYSTEM_TIME: System time in ticks.
T_CHILD_UTIME: Cumulative user time of children.
T_CHILD_STIME: Cumulative sys time of children
T_BOOT._TICKS: Number of ticks since MINIX boot.
return type
OK: Always succeeds.

CLK_TMSWITCH: Measure context switch overhead as described in Section 2.1. This system
call is only meant to initiate the test sequence. The tests must be done within the
kernel because microsecond precision timing is needed.

return type
OK: Always succeeds.

