
Final Year Project

Porting MINIX to Xen

Name Ivan Kelly

ID Number 0225991

Supervisor John Sturdy

Course Computer Systems

Submitted in part requirement for final year project course CS4618 to

University of Limerick, Ireland on May 8, 2006

i

Copyright c©2006, Ivan Kelly.

Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the Free

Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts.

A copy of the license is available athttp://www.gnu.org/licenses/fdl.html.

http://www.gnu.org/licenses/fdl.html

Acknowledgements

MINIX on Xen would not have been possible without the support of many people. I would like

to thank the Xen Team, not only for creating Xen, but for providing support through IRC and

email. Without the help of Mark Williamson and Keir Fraser in particular, this project would

have never gotten off the ground.

I would also like to thank Andrew S. Tanenbaum whose help in the early days of the project,

helped me see what needed to be done.

I would like to thank John Sturdy and Mel Gorman for talking me through many difficult

problems during the implementation of MINIX on Xen.

I would like to thank my friends and family for their support and my housemates for bring-

ing me tea, and listening to my ranting.

Lastly, I would like to thank Pili for her love and support, and for her willingness to endure

hours of rants regarding GDTs and interrupt handlers.

ii

Abstract

Virtualisation has received a lot of attention from the I.T. media lately. Paravirtualisation in

particular has drawn a lot of attention due to it’s high performance. Paravirtualised virtual ma-

chines run at near native speeds. Operating systems must be modified to run on paravirtualised

platforms.

Developers starting out in the field of paravirtualisation face a steep learning curve. This

project hopes to soften that curve, by supplying developers with an insight into the porting of

an operating system to a paravirtualised platform. In this case, the MINIX operating system is

ported to the Xen platform.

iii

Table of Contents

1 Introduction 1

1.1 What is Virtualisation?. 2

1.1.1 State of the Art. 2

1.2 Project Scope. 3

1.3 Prerequisites. 3

2 Background Information 4

2.1 What is Xen? . 4

2.2 What is MINIX? . 4

3 Development Environment 6

3.1 Hardware Setup. 6

3.2 Software Used. 6

3.3 Debugging. 7

4 Xen Internals 8

4.1 The Kernel . 8

4.1.1 Privilege Rings. 8

4.1.2 Hypercalls . 9

4.1.3 Memory Management. 9

4.1.4 Shared Information. 10

4.1.5 Control Interface Rings. 10

4.2 The Applications . 10

4.2.1 Libraries . 10

4.2.2 Xend and Xm. 10

5 Modifications to Xen 11

5.1 Motivation for Xen Modifications . 11

5.1.1 Executeable File Formats. 12

5.2 The MINIX Builder . 13

5.2.1 Loading the Image to Memory. 13

5.2.2 Setting up the Memory Layout. 14

5.2.3 Global Descriptor Table. 15

5.2.4 Passing Information to the Domain. 16

iv

TABLE OF CONTENTS v

5.2.5 Setting up the CPU Context. 17

6 Modifications to MINIX 18

6.1 Overview of MINIX Architecture . 18

6.1.1 Advantages and Disadvantages. 19

6.1.2 Kernel Tasks, Drivers and Servers. 19

6.1.3 MINIX on Xen . 20

6.2 Porting the Microkernel. 20

6.2.1 Xen Hypercalls. 21

6.2.2 Initialisation . 22

6.2.3 Events, Interrupts & the Control Interface. 24

6.2.4 Kernel Tasks. 27

6.3 Console Driver . 30

6.3.1 Xen Virtual Console. 30

6.3.2 The MINIX TTY Driver . 30

6.3.3 Debugging Console. 31

6.4 Block Device Driver . 32

6.4.1 MINIX Block Devices . 32

6.4.2 Xen Block Interface . 32

6.4.3 Current Status. 33

7 Recommendations for Further Development 34

7.1 Port to Xen 3.0 . 34

7.2 Replace Custom Builder with ELF Bootloader. 34

8 Conclusion 35

A Xen Hypercalls 37

B Installing MINIX on Xen 39

B.1 Patching the Xen Libraries. 39

B.1.1 Downloading and Applying the Patch. 39

B.1.2 Compiling Xen with the Patch. 39

B.2 Downloading MINIX for Xen . 40

B.3 Compiling MINIX . 40

List of Figures

2.1 Comparison of virtualisation approaches. 5

3.1 Hardware setup for project. 7

4.1 Use of Intel privilege rings in Xen. 9

5.1 Sequence of MINIX builder actions. 12

5.2 Looking up a virtual address in the page table. 14

5.3 Minix domU initial memory layout. 15

6.1 Microlithic vs. Monolithic . 18

6.2 System calls. 19

6.3 Sources of interrupts. 26

6.4 Handling a keystroke. 30

vi

List of Tables

1.1 Comparison of virtualisation technologies. 2

vii

Chapter 1

Introduction

Virtualisation has seen a sharp raise in popularity lately, especially in the open source commu-

nity. Projects such as User Mode Linux(1) and Xen(2), have allowed users and administrators

alike, to set up whole virtual networks within one single piece of hardware. Linux vendors

are starting to see the appeal of this technology with Redhat and Novell both having plans to

ship the next generation of their products with virtualisation support built in(3). Likewise, chip

makers have seen its potential. AMD(4) and Intel(5) are shipping virtualisation technology in

the newest incarnations of their chips.

Virtualisation has been touted as the new ’killer app’ for the open source community(6), and

open source virtualisation products have started directly challenging the established players in

the field such as VMWare. VMWare, seeing the new competition, have released free versions

of their workstation and server products.

There are barriers for those wishing to learn about and develop with virtualisation tech-

nology. Developing for the proprietary vendors is difficult as the source code is unavailable.

Xen was chosen for this project because it is an open source project and community support is

substantial.

The documentation for Xen(7), while sufficiently detailed, is targetted primarily at those

who have many years of kernel development. The documentation alone is not enough to gain

a full understanding of Xen. To understand how Xen works, one must read the source of the

operating systems which have been ported to it. This is not an easy task. Linux and Freebsd

contain 4,818,291∗ and 1,781,777† lines of code respectively. A simpler kernel must be ported

∗Line count taken on Linux 2.6.16.9 with sloccount.
†Line count taken on Freebsd 6.0 with sloccount.

1

1.1. What is Virtualisation? 2

Type Speed Modified OS Multiple OS Products

Full- Slow No Yes VMWare(11), Virtual PC(12)
Para- Fast Yes Yes Xen(2), Denali(13)
Emulation Very Slow No Yes qemu(14), Bochs(15)
Partitioning Fast Yes No Solaris Zones(16), UML(1)
Hardware Very Fast No Yes Intel Vanderpool(5), AMD Pacifica(4)

Table 1.1: Comparison of virtualisation technologies

for ease of understanding of how Xen works. For this, MINIX was chosen. MINIX(8) is an

ideal candidate as it was designed with ease of learning in mind. Coupled with its accompanying

textbook(9), it is used by many universities to teach operating systems to undergraduates.

There were other reasons which influenced the choice to take on this project.

To date, there had been no microkernels ported to Xen. This was the initial motivation for

looking into this field. The choice was between MINIX and GNU Hurd(10). MINIX won out

due to its excellent documentation. The fact that MINIX was already used as a tool for teaching

kernel development, was also a factor. By porting MINIX to Xen, developing with MINIX

would be simplified, as a dedicated machine would not be needed to run it. A MINIX port for

Xen would also make it easier to learn about Xen internals, as the MINIX kernel is very small

and simple.

1.1 What is Virtualisation?

Virtualisation is a technology which allows multiple instances of an operating system to run on

a shared set of resources, unaware that it is sharing the resources with others. The operating

systems can be all of the same type or of different types. There are many different forms of

virtualisation, each with their own advantages and disadvantages.

See table1.1for details.

1.1.1 State of the Art

There are currently two main players in the field of software virtualisation, VMWare and Xen.

VMWare’s products have the advantage of offering full virtualisation. As such, operating sys-

tems can run unmodified on VMWare’s products. This does however come with performance

penalties. VMWare also have a para-virtualisation product called VMWare ESX Server(17).

Xen is an open source virtualisation solution. It is an implementation of para-virtualisation

1.2. Project Scope 3

and as such, requires operating systems to be modified to run on top of it. These modifications

mean that the guest operating system runs very efficiently.

1.2 Project Scope

This project details the porting of MINIX to the Xen architecture. This includes the porting of

the microkernel, the console driver and the block device driver.

1.3 Prerequisites

This documents assumes a prior knowledge of C and some assembly. Also a knowledge of

operating systems design and the x86 architecture, while not strictly necessary, will greatly

ease the understanding of the following text. To this end, “Operating Systems, Design and

Implementation”, by Andrew S. Tanenbaum(9) is recommended.

Chapter 2

Background Information

2.1 What is Xen?

Xen is a para-virtualising virtual machine monitor for the x86 architecture. Using Xen, one

machine can run multiple virtual machines concurrently with very little overhead.

Xen itself is a kernel that runs directly on the hardware. This approach is very different to

traditional software virtualisation solutions, which run on top of an operating system which is

already running on the hardware.

The advantage of this approach is that Xen can effectively and simply partition resources.

It can then guarantee these resources to its virtual machines.

A virtual machine in Xen is called a domain. There are two types of domain, a dom0 and

a domU. A single machine can only ever run one dom0, whereas it can run as many domU

instances as its resources allow. The dom0 is the control domain that can be used to create and

destroy domUs. dom0 is usually the only domain which has access to real hardware. As such,

dom0 is responsible for providing backend drivers for virtual block and network devices to the

domUs. The domU can then access these resources through very thin frontend drivers.

Xen uses para-virtualisation. An operating system must be modified to run on Xen. This

project is to port MINIX to run on Xen.

2.2 What is MINIX?

MINIX is a minimalistic UNIX clone, developed by Andrew S. Tanenbaum in 1987. It was

developed out of a need for a teaching operating system. Traditionally, AT&T UNIX had been

4

2.2. What is MINIX? 5

O
pe

ra
tin

g
Sy

st
em

G
ue

st

O
pe

ra
tin

g
Sy

st
em

G
ue

st

O
pe

ra
tin

g
Sy

st
em

G
ue

st

O
pe

ra
tin

g
Sy

st
em

G
ue

st

C
on

tr
ol

 D
om

ai
n

Xen Kernel

HARDWARE

G
ue

st
 D

om
ai

n

G
ue

st
 D

om
ai

n

G
ue

st
 D

om
ai

n

Xen Approach

HARDWARE

Host Operating System

Virtualisation Product

Traditional Approach

Figure 2.1: Comparison of virtualisation approaches

used, but a change in its license meant that the source code was no longer available for teaching.

From then until the release of MINIX, operating systems lecturers could only teach theory, as

they had no example code available to them.

MINIX was released alongside a textbook explaining operating system principles and the

MINIX implementation(9). The architecture of MINIX is discussed in section6.1.

Chapter 3

Development Environment

3.1 Hardware Setup

For development, two computers are used. One was for writing and compiling the code. The

other was for testing and running the code. This setup is used so development can continue

during a complete system crash.

Both computers are connected to the local area network. There is also a serial cable running

between them. This is needed for debugging and for console output from the testing computer.

3.2 Software Used

This project used MINIX version 3.1.1 and Xen version 2.0.7.

Programming was done in Emacs. Subversion(18) was used for software configuration

management.

Compilation of the Xen modifications was done with gcc. Compilation of MINIX is more

difficult as it can only be compiled by the Amsterdam Compiler Kit(19) which will only run

from within MINIX. To overcome this, a MINIX installation was set up in qemu(14), and all

compilation was done on this virtual machine.

Transferring the source from the development computer to the MINIX installation is another

problem, as MINIX does not have an NFS driver. One solution is to copy all files over for each

compilation. This is not suitable, as the whole tree needs to be recompiled every time as all the

files look like they have been edited. Another solution is to use rsync(20). This was not viable

as there was no rsync port for MINIX when development started. However a rsync port for

6

3.3. Debugging 7

source control system and remote shell
Ethernet for access to

Serial Line for Debugging

Development computer

Build and testing computer

Hub
Ethernet

Figure 3.1: Hardware setup for project

MINIX has recently been released. Yet another solution would have been to install a subversion

client on MINIX, but there are none available.

The current solution is to use a post commit hook for the subversion repository. When a

commit occurs, all changes are exported to a CVS(21) repository. MINIX, using CVS, can then

update its source tree from the CVS repository and build a kernel image.

3.3 Debugging

Debugging of Xen domU kernels takes place over the serial line. Console output also comes

over the serial line, so debugging packets have the most significant bit set to distinguish them

from console packets(22).

On the development computer, there is a daemon that splits the serial input into two streams

and sends them to different TCP ports on the computer. GDB(23) can then connect to one of

these TCP ports and debug the kernel.

There are no symbol files for the MINIX kernel, so step through debugging is not possible.

It is possible however, to put Xen into a debugging state, and dump memory from any particular

domain.

Chapter 4

Xen Internals

This chapter will explain the internals of Xen in more detail than the introduction.

Xen can be divided into two parts, its kernel and its applications. Each of these will be

discussed separately.

4.1 The Kernel

The Xen kernel is a multiboot(24) compliant image, upon which Xen-compatible kernels can

run. The Xen kernel acts as a mediation level between the domain kernel and hardware, allowing

many domains to coexist.

It presents an interface similar to the x86 architecture. Currently Xen has only been ported

to run on x8632 and x8664.

4.1.1 Privilege Rings

The x86 architecture separates processes requiring differing privileges using a mechanism called

privilege rings(25). There are four privilege rings, from ring 0 to ring 3. Ring 0 has the most

privileges, and can access all instructions and memory addresses. The operating system usually

runs in ring 0. Ring 1 and 2 have less privileges and are used for operating system services.

Ring 3 has the least privileges and is used for user applications.

Xen exploits these privilege rings to allow multiple operating systems to run at the same

time. Xen itself runs in ring 0. The domain kernels run in ring 1. Any calls which would

previously have required ring 0 to operate are replaced with hypercalls to Xen. Applications

still run unmodified in ring 3.

8

4.1. The Kernel 9

Ring 1

Ring 2

Ring 3

Ring 0

Operating System

Services

Kernel
Operating System

Ring 1

Ring 2

Ring 3

Ring 0

Operating System

Services

Kernel
Operating SystemApplications

Xen Kernel

Applications

Figure 4.1: Use of Intel privilege rings in Xen

4.1.2 Hypercalls

Domains communicate with Xen using software interrupts called hypercalls. For more details

on hypercalls, see6.2.1.

Only ring 1 can make hypercalls, which can present difficulties for those porting a micro-

kernel to Xen. See6.2.1for more details.

4.1.3 Memory Management

Since domain kernels run in ring 1, all low level memory operations must go through Xen. This

allows Xen to partition and manage the memory for these domains.

The operations that Xen manages are those for paging and segmentation. As such, the

domain kernel cannot directly edit the page tables, global descriptor tables or local descriptor

tables. Doing so could potentially crash other domains on the same system(7). These operations

must all be mediated by Xen.

Three different types of addresses are referred to in this document. They are machine ad-

dresses, pseudo-physical addresses and virtual addresses.

• Machine addresses are memory addresses on physical memory.

• Pseudo-Physical addresses are addresses in which the first 20 bits specify a page in the

page table, and the last 12 indicate an offset.

• Virtual addresses are offsets within a segment. They must be added to the segment base,

then looked up in the page table before the machine address can be found.

Xen provides a domain with a list of machine frames during bootstrapping, and it is the

domain’s responsibility to create the pseudo-physical address space from this.

4.2. The Applications 10

4.1.4 Shared Information

Xen provides each domain with a shared information frame for communication between Xen

and the domain. This frame is used for sending event notifications to the domain along with

supplying time information to the domain.

4.1.5 Control Interface Rings

The control interface rings are placed half way through the shared information frame. There

are two rings, the transmitter ring and the receiver ring. Each ring is an array of eight control

messages. Xen fills these rings in a round robin fashion. There are also variables associated

with each ring that the domain uses to inform Xen that it has handled all requests on the ring

and it can start filling it again.

This is covered in more detail in6.2.4.

4.2 The Applications

The Xen applications runs on dom0. It consists of a daemon called Xend, a console application

called xm and a number of libraries.

4.2.1 Libraries

The two primary C libraries are libxc and libxutil. libxutil is a library of utility functions needed

by Xen. libxc is the Xen control library. It communicates with Xen through dom0 hypercalls

and does most of the work in creating and destroying domains.

Both libraries have python bindings.

4.2.2 Xend and Xm

Xend and xm communicate with Xen through the Xen libraries. Xend is started at boot time

and remains running in the background as a daemon until the machine is shut down.

xm is the client for this daemon. It is used for starting and stopping domains and retrieving

information about domains.

Chapter 5

Modifications to Xen

5.1 Motivation for Xen Modifications

Xen is designed to run kernel images that conform to a specific set of criteria. They need to

be in an ELF executable format, with extra sections added for verification. The MINIX kernel

image has its own format, based on the a.out standard.

MINIX can only be compiled with the Amsterdam Compiler Kit (ACK) (19). The source

code is ANSI C, but the assembly is in a modified Intel format only compilable by ACK. ACK

has a number of limitations. It can only run on MINIX and only produces a.out executables.

One work around for this is to port MINIX to the GNU tool chain, but this is difficult for a

number of reasons. The assembly in MINIX is in Intel syntax. The GNU assembler only takes

input in AT&T syntax. To compile the MINIX assembly with the GNU tools a large amount

code would need to be modified and this would be a project in itself.

MINIX, as a microkernel(26)∗, runs as an array of processes. All of the initial processes

must be loaded at startup by the bootloader. Xen does not allow for this. It expects to bootstrap

a macrokernel, where everything is in one executable.

In Xen, domU kernels are loaded by builders. These builders are part of the libxc library.

There are two builders available. One is for ELF executables. It is called the Linux builder for

historical reasons. The other is for plan9(27). A specialised plan9 builder had to be created

because the Plan9 kernel is in an a.out format. The MINIX kernel, as another a.out format, also

needs its own builder.

A builder loads the kernel image from dom0’s filesystem into domU’s allocated memory.

∗See6.1

11

5.1. Motivation for Xen Modifications 12

Load kernel image
from filesystem

Start execution of the domain

Create shared information frame

Setup GDT pages

Load kernel into domU memory

Setup page tables

Dom0 Xen KernelMINIX DomUMINIX Builder

Figure 5.1: Sequence of MINIX builder actions

The bootstrap page table is then set up. The CPU context is initialised and the domain is booted.

To modify one builder, the whole libxc library must be recompiled. This is not a problem

if all kernels are ELF kernels, as modifications are not needed. Problems only arise when

you move out of the homogeneous GNU environment. The Xen developers have realised this

short coming and recently there has been request for comments on the Xen developers mailing

list(28) discussing a new builder architecture. If this is accepted, each builder will be its own

executable, and new builders can just be dropped into place.

5.1.1 Executeable File Formats

Assembler Output (a.out)

a.out is the classic Unix executable file format. There are usually three sections and a header

in an a.out executable. The header specifies the size of the sections among other things. The

text section contains the machine code instructions of the executable. The data section contains

initialised data, while the bss section contains uninitialised data. There may also be a symbols

section but this is optional.

5.2. The MINIX Builder 13

Executable Linking Format (ELF)

ELF is a newer executable file format that superseded a.out. It is used by most modern UNIX

like operating systems. The format is more complex than a.out. Each file contains a header.

This header describes the sections in the file, which usually includes a data section, a code

section and a bss section.

The MINIX Kernel Image

The MINIX kernel image consists of many a.out files concatenated together. The first file must

be the microkernel itself followed by the processes that need to be run at startup, such as the

device drivers, filesystem and memory manager.

5.2 The MINIX Builder

The MINIX builder is based on the builders for Linux and plan9. The entry point for builders is

xc <imagetype> build. See listing5.1 for an example prototype for a builder function. These

functions have python binding to allow calls from Xend.

Listing 5.1: Prototype for builder function.

i n t
x c m i n i x b u i l d (i n t xc hand le ,

u32 domid ,
cons t char ∗ image name ,
cons t char ∗ cmdl ine ,
unsigned i n t c o n t r o l e v t c h n ,
unsigned long f l a g s)

5.2.1 Loading the Image to Memory

The MINIX kernel is loaded into memory by the functionload minix image. This function

loops through all the a.out executables in the kernel image and then loads each one into the

domU’s allocated memory. The kernel is loaded into the start of the domU’s memory space.

This makes it easier to apply protection to the kernel’s memory pages later on in the setup

process.

5.2. The MINIX Builder 14

1011011 10 110010 0010 1011 01011001

Page Table

Page Directory

Virtual Memory Address

Machine Memory Address

Figure 5.2: Looking up a virtual address in the page table

The header for each process and its position in memory is saved in the start information

structure(see5.2.4),

5.2.2 Setting up the Memory Layout

A domU kernel is allocated a number of machine frames on startup. These frames are 4096

bytes in size and correspond to physical memory frames in hardware. These frames must be

mapped into a linear memory space by the builder. This mapping is part of a process called

paging.

Paging involves a two level mapping scheme. Memory addresses on a 32-bit system are 32

bits long. The first 10 bits work as an index to the page table directory. The page table directory

is a list of page tables. The second 10 bits are an index to the page table that is returned from

the page table directory. A page table is a list of pages, each 4096 bytes long. Finally, the last

12 bits are an offset in the page returned from the page table.

MINIX’s page tables are set up in thesetuppagetable function. MINIX is different to the

other operating systems that have been ported to Xen in that it is completely unaware of paging.

This means that all of the allocated memory for the domU must be mapped before the domain

starts. The memory space starts at 0x0, as this is where the MINIX kernel expects to be at

startup.

MINIX is also different from the other ported operating systems in that it uses segmentation(29).

5.2. The MINIX Builder 15

Shared Information

Free Memory

...

Free Memory

Initial Kernel Stack

Start Information

Phys−Machine Mapping

Page Tables

Page Directory

16 GDT Frames

Kernel Processes

0x2000000

0x2001000

0x0

Figure 5.3: Minix domU initial memory layout

Segmentation is not very portable, so most operating systems try to ignore it as best they can.

They create a few memory segments that span the whole allocated memory space and use these

for all processes. Processes are protected from each other using paging. MINIX allocates five

segments for each user space process and three segments for the microkernel. Process segments

are defined in the global descriptor table(GDT) and local descriptor tables(LDT). Xen requires

that the GDT be placed at the beginning of a page. The GDT therefore, must be created in the

builder for MINIX, because MINIX is unaware of the existence of pages.

Xen requires that certain pages are set as read only. These are the pages containing the page

directory and page tables, along with the pages for the GDT. Pages also have a protection bit.

This bit defines which protection rings may access the page. If set, ring 3 can access the page,

otherwise the page can only be accessed by ring 0-2. All kernel pages have this bit unset.

The builder also maps the shared info frame to a high memory address, as specified by the

constant FIXEDSHARED INFO.

Lastly a page is allocated mapping all the pseudo-physical pages to machine frames and the

machine to pseudo-physical map in the memory management unit is updated.

5.2.3 Global Descriptor Table

Two entries need to be created in the GDT before the domain starts, so that MINIX can enable

the new GDT immediately at startup. These entries are for the kernel text segment and kernel

5.2. The MINIX Builder 16

data segment. These are both given ring 1 privilege and the maximum limit.

It should be possible to enable this GDT before the domain starts, but this approach failed

when attempted. Discussions with the Xen developers shed no light on why it failed, so it was

decided that the simplest option would be to initialise the GDT in the builder and enable it

immediately on start up.

Xen supplies a default GDT which is used until the new GDT is enabled.

5.2.4 Passing Information to the Domain

Some information needs to be passed from the builder to the domain for the domain to operate

correctly. MINIX requires more information than most operating systems. As it is a microker-

nel, information for all the boot processes must be passed in. As the GDT is initialised in the

builder, pointers to the GDT must be passed in.

Xen provides a structure,start info t. This is incorporated into a new structureminix start info t

alongside another structuredomainsetupinfo t which contains the MINIX specific startup

information. Thestart info t structure is at the start ofminix start info t, and as a result,

minix start info t can be accessed as a plainstart info t structure.

Listing 5.2: Startup information structures.

s t r u c t d o m a i n s e t u p i n f o t {
unsigned long msi vadd r ;
/ ∗ v i r t u a l add ress o f s t a r t i n f o s t r u c t ∗ /
unsigned long fmem vaddr ;
/ ∗ v i r t u a l add ress o f f r e e memory∗ /
unsigned long g d t v a d d r ;
/ ∗ v i r t u a l add ress o f GDT∗ /
unsigned long gd t mfns [NR GDT MF] ;
/ ∗ Machine f rame numbers o f t h e GDT∗ /
p r o c e s s t p r o c e s s e s [PROCESSMAX] ;
i m a g e h e a d e r t p r o c h e a d e r s [PROCESSMAX] ;

} ;

s t r u c t m i n i x s t a r t i n f o t {
s t a r t i n f o t s t a r t i n f o ;
s t r u c t d o m a i n s e t u p i n f o t s e t u p i n f o ;
s h a r e d i n f o t ∗ s h a r e d i n f o ;
/ ∗ vaddr o f shared i n f o ∗ /

} ;

5.2. The MINIX Builder 17

5.2.5 Setting up the CPU Context

The final piece of work the builder does is to set the CPU to a state from which MINIX can

boot. The code segment register is set to FLATGUESTCS. The other segment registers are all

set to FLATGUESTDS. These constants point to segments which Xen automatically adds to

all GDTs.

The interrupt descriptor table is cleared. The hypervisor and failsafe callback instruction

pointers, and the general purpose registers are all set to zero. Theesi register is set to the

pseudo-physical address where the start information structure has been placed. The page table

base is set to the pseudo-physical address of the page directory table.

The initial stack is placed after the start information structure and extends to the end of that

page. It is only used until the GDT is enabled, after which point the MINIX kernel stack is

used. The kernel stack is a large area of zeroed memory defined in the data section of the kernel

executable.

The domain is started with a DOM0BUILDDOMAIN hypercall.

Chapter 6

Modifications to MINIX

6.1 Overview of MINIX Architecture

MINIX(9) is a microkernel. Most of the work that the kernel of an operating system would

usually do in ring 0 is moved to ring 1, 2 or 3 (see4.1.1). Only a minimalistic kernel runs in ring

0. This “micro” kernel takes care of initialisation, context switching, interrupt and exception

handling, system calls and interprocess communication.

The other responsibilities of the kernel all take place in separate processes on top of this.

These other responsibilities include device drivers, file systems and process and memory man-

agement. Processes dealing with devices are called drivers, while the processes dealing with

services such as memory management and file systems are called servers.

There are some processes within the the microkernel called the kernel tasks. These share

the memory space of the microkernel.

User Programs

HARDWARE HARDWARE

User Programs

Process
Manager

Filesystem
Drivers
Device

Fi
le

sy
st

em

D
ev

ic
e

D
ri

ve
rs

et
c.

..

Pr
oc

es
s

M
an

ag
er

Microkernel
Kernel

Monolithic Kernel ArchitectureMicrokernel Architecture

Figure 6.1: Microlithic vs. Monolithic

18

6.1. Overview of MINIX Architecture 19

User Program Kernel
Server, Task

or DriverUser Program Microkernel

System call

processed

System call

processed

System call made
System call made

Function call within a process

Context Switch between processes

System call in microkernel architecture System call in monolithic kernel architecture

Call passed to

system call handler

Microkernel returns

to user program

Handler returns to

Microkernel
to user program

Kernel returns

Figure 6.2: System calls

This design is very different to the macrokernel approach. In a macrokernel, everything is

done within the kernel, and the kernel itself is one large executable file.

6.1.1 Advantages and Disadvantages

A microkernel design is much more elegant than a macrokernel design. Separation of responsi-

bilities is much clearer. The design is very modular, so any part of the operating system can be

replaced with little trouble.

A microkernel does have the disadvantage of being slower. While all parts of a macrokernel

can make system calls directly, the non-kernel parts of a microkernel must make all systems

calls through the microkernel. This involves message passing which incurs a time penalty(26).

6.1.2 Kernel Tasks, Drivers and Servers

All drivers and servers in the MINIX operating system adhere to the same basic structure. They

all have a main execution loop. This takes the form of amain function in all tasks and servers

except for the four kernel tasks, where it is in the form of a simple function. These functions

never return.

Kernel tasks are processes which are part of the MINIX microkernel. As such, they do not

have amain function. Instead another function is used as its point of entry. These processes

are in the kernel for performance reasons, as they have full access to the microkernel’s memory

space without having to use message passing.

6.2. Porting the Microkernel 20

The main execution loop first initialises the task, driver or server. Then it enters a never

ending loop of receiving requests and dealing with them.

Listing 6.1: Pseudo Code for MINIX tasks drivers and servers

vo id p s e u d o t a s k ()
{

i n t r e s ;
message m;

i f (! (r e t = i n i t t a s k ())) {
p a n i c (‘ ‘ Task i n i t i a l i s a t i o n f a i l e d . ’ ’ , r e t) ;

}

whi le (TRUE) {
r e c e i v e (ANY, &m) ;

/ ∗ dea l w i t h message∗ /
}

}

i n t i n i t t a s k ()
{

/ ∗ do t a s k i n i t i a l i s a t i o n ∗ /
re turn 1 ;

}

6.1.3 MINIX on Xen

Running on native hardware, the MINIX microkernel will run in ring 0. The kernel tasks run in

ring 1. Everything else runs in ring 3.

This changes with Xen, as Xen itself must run in ring 0. Therefore, the microkernel must

move to ring 1 and the kernel tasks must move to ring 2.

Porting MINIX to Xen can be split into two tasks. The first is to port the microkernel to run

in ring 1. The second is to write the device drivers. While MINIX running natively on hardware

uses real devices, on Xen it communicates with the virtual hardware provided by Xen, and

therefore new device drivers are required.

6.2 Porting the Microkernel

The MINIX microkernel is located under thekernel/ directory of the source tree. For the

assembly components, the same method is used to separate the original minix386 code from

6.2. Porting the Microkernel 21

the Xen code as is used to separate minix86 from minix386.

For example withmpx.s, the entry point of the kernel, there are three conditional prepro-

cessor statements, each including the assembly file for each port depending on what constant is

defined.

For the C part, Xen sections are only compiled if the XEN constant∗ is defined.

6.2.1 Xen Hypercalls

Xen hypercalls are all defined inxen.cexcept for hypervisorstackswitch, which is defined in

klibxen.s as it is a pure assembly subroutine.

All hypercalls make a call toxenop to make the actual hypercall. This assembly subroutine

pulls the arguments passed to Xen off the stack, and fires the Xen interrupt with these as the

parameters.

Listing 6.2: xenop subroutine

xen op :
mov eax , 4 (esp)
mov ebx , 8 (esp)
mov ecx , 12(esp)
mov edx , 16(esp)
mov es i , 20(esp)
i n t 0x82
r e t

It is important to note that any pointers to structures or arrays that are passed as parameters

to a hypercall, must be converted from virtual addresses to pseudo-physical addresses. The

virt2phys macro, provided by MINIX, is used to do this conversion.

See AppendixA for a description of all the hypercalls and what they do.

Xen hypercalls can only be made from privilege ring 1. This presents a problem as kernel

tasks, running in ring 2, need to be able to make hypercalls.

To work around this problem a Xen proxy interrupt handler is created. Any hypercalls re-

quired by the kernel tasks check which privilege ring they are running in. If they are running

in ring 1, hypercalls can be executed directly. Otherwise the proxy must be used. Amulti-

call entry t structure is filled with the parameters for the hypercall and the Xen proxy software

interrupt is fired.

∗Defined ininclude/minix /config.h

6.2. Porting the Microkernel 22

Listing 6.3: Example hypercall using proxy.

PUBLIC i n t h y p e r v i s o r y i e l d ()
{

i f (c u r r e n t r i n g () != RING1) {
xen proxy op . op = HYPERVISOR schedop ;
xen proxy op . a r g s [0] = SCHEDOPyield ;
x e n p r o x y i n t () ;
re turn x e n p r o x y o p r e t ;

}

re turn xen op (HYPERVISOR schedop , SCHEDOPyield) ;
}

The Xen proxy interrupt is trapped by thexenproxy interrupt handler. This handler saves

the processor state and callsdo xenproxy op. do xenproxy op makes the hypercall using the

parameters specified in themulticall entry t structure.

Listing 6.4:do xenproxy op

PUBLIC vo id do xen p roxy op ()
{

x e n p r o x y o p r e t = xen op (xen proxy op . op ,
xen proxy op . a r g s [0] ,
xen p roxy op . a r g s [1] ,
xen p roxy op . a r g s [2] ,
xen p roxy op . a r g s [3] ,
xen p roxy op . a r g s [4]) ;

}

A more elegant solution would be to modify Xen to allow hypercalls from ring 2. This

would, however, requiring modifying the Xen kernel. This is not desirable, as it means all users

of MINIX on Xen will have to use a modified Xen kernel as well as modified Xen applications.

6.2.2 Initialisation

The first thing that needs to be done when the domain starts is to enable the new GDT (see

5.2.3). Nothing useful can be done without this GDT, as any access to variables will access

the wrong memory locations, having potentially disastrous effects. The GDT is enabled by the

xen init gdt† function. hypervisorsetgdt is called, with an array of 16 machine frames which

constitute the GDT. This array is part of the start information, which is passed to the domain

from the builder. See5.2.4.
†xen.c

6.2. Porting the Microkernel 23

For MINIX to access the start information once the correct GDT is in place, the address

must be a virtual address taking the offset of the data segment into account. The value ofesi(see

5.2.5) is a pseudo-physical address pointing to the start information structure. This needs to be

converted to a virtual address before MINIX can use it.hypervisorsetgdtdoes this conversion.

Once it returns, the correct address is placed in theeaxregister. This is later pushed onto the

stack for the call to thexencstartfunction.

Once the new GDT is in place, the data, stack and extra segment selectors are updated

to their correct values and a far jump is made to update the code selector. The new stack is

switched in.

xencstart is called. Whenxencstart returns, the flags register is cleared, the kernel stack

is saved and themainfunction is called.

xen cstart

The xencstart function in start.c creates an environment in which the MINIX main loop can

run. Its only parameter is the pointer to the start information structure. This is saved to a global

variable. As is a pointer to the shared information frame, for easy access.

Information about the location in memory and size of the kernel process are saved to the

kinfo structure. This structure is a global variable and is used later by many functions and

macros such as virt2phys.

A call to xenprot init is made. This function updates the code segment for the kernel,

so that the limit doesn’t extend past the end of the assembly instructions. Another descriptor is

added for an extra segment which extends from memory address 0x0 to the end of memory. This

segment is used for copying data between processes. The original MINIX function,prot init,

also added a segment descriptor for the microkernel’s data segment, which limited the range of

memory the microkernel could modify. In MINIX for Xen, this is omitted as the microkernel

needs to access the shared information frame which is placed high in the address space.

Originally in MINIX, each process had its own LDT. Limitations imposed by Xen would

make giving each process its own LDT very difficult as the LDT must be page aligned(7) and

MINIX is unaware of paging. The solution is give each process some descriptors in the GDT.

The GDT in MINIX on Xen is much larger than the original GDT used in MINIX. It occupies

16 frames, of 4096 bytes each. Each entry in the GDT is 8 bytes long. Therefore there is enough

room for 8192 entries. The default maximum number of processes in MINIX is less than 100.

6.2. Porting the Microkernel 24

Each process needs 2 segments, one for text and one for data, and 3 optional segments. So, 500

is the maximum number of segments we could need. There is plenty of room to store all seg-

ments descriptors in the GDT. The segment descriptor indexes for each process are allocated in

xenprot init though the actual segment descriptors themselves are not built until the processes

are created.

main

Themain function does the final piece of the initialisation before the process scheduler starts.

All entries in the process table are first zeroed. Then the boot processes, the kernel tasks,

the servers and the drivers are initialised. Which processes to initialise are specified by the

imagearray intable.c. The process table entries for each of these processes is populated using

information from the header, passed in with the start information. Their segments are then

initialised by thealloc segmentsfunction.

Thealloc segmentsfunction has not changed much from its original MINIX implementa-

tion except that GDT indexes are passed to theinit segfunctions instead of a pointer to the

entries. This is because, in Xen, the GDT is read-only and can only be updated through the

updatedescriptorshypercall.

Once all boot processes have been initialised, a banner message is printed, and scheduling

begins.

main is also responsible for callinginit eventswhich initialises events and interrupts for

Xen.

6.2.3 Events, Interrupts & the Control Interface

While all events in minix386 could be handled by the IDT, in Xen, different types of events

must be handled in different ways.

Exceptions and Software Interrupts

Interrupts from the CPU are handled in a similar fashion to how they are handled in minix386.

There is a table of interrupt traps inevtchn.c. These traps are passed to Xen through thehyper-

visor set trap tablehypercall.

The same traps can be used for MINIX on Xen as are used for minix386.

6.2. Porting the Microkernel 25

The structure of an interrupt handler is uniform. When an exception or software interrupt

occurs, the current values of theeip, cs andflags registers are pushed onto the stack. If the

current process is running in ring 2 or 3 theespandssregisters are pushed also and replaced by

the values saved byhypervisorswitchstack. The code of the specified interrupt trap is entered

at this point(30).

The trap first saves the CPU’s current state by jumping to thesavesubroutine. This sub-

routine manipulates the stack so that when the calling function returns, the restart or restart1

subroutine will be entered. Once the CPU state has been saved, the trap runs its own specific

code and returns.

When the trap returns, it jumps to the restart or restart1 subroutine, depending on whether

the interrupt occurred while the CPU was running in ring 1 or not. This function restores the

CPU state from the stack and restarts the execution of the the interrupted process.

Interrupts from Xen

All hardware events in Xen come through the event channels. There are three types of event

that go through the event channel.

• Virtual Interrupts

• Physical Interrupts

• Interdomain communication

Of these, only virtual interrupts and interdomain communication are discussed here. MINIX

will not be run as a dom0 kernel, so handling physical interrupts is unnecessary.

On initialisation, the hypervisor and failsafe callbacks are set. This is done ininit events.

The structure of these callbacks is very similar to that of MINIX’s interrupt handlers. The save

subroutine is called, events are disabled,do hypervisorcallbackis called, events are reenabled

and the callback returns.

Theoretically, events in Xen can be reentrant. On real x86 hardware, when an interrupt oc-

curs interrupts are disabled untiliretd is called. Xen does not automatically disable events when

it sends an interrupt. This means that the hypervisor callback must do all disabling and reen-

abling of events. Events are disabled by setting sharedinfo->vcpu data[0].evtchnupcall mask

to non-zero, and reenabled by setting this to zero. This can only be done when the kernel ad-

dress space is being used, so disabling must occur after the call tosave, and reenabling must

6.2. Porting the Microkernel 26

Xen Kernel
− Virtual clock device
− Emergency console

Dom0
− Virtual Block Device
− Virtual Network Device
− Virtual Console Device

Real Hardware
− Storage Media
− Network devices
− Input devices

Minix domU

Figure 6.3: Sources of interrupts

occur before the callback returns. It is during the call tosaveand the call toreturn‡ that reen-

trance may occur. Reenterring callbacks can overflow the kernel stack, and cause the system to

crash.

Three arrays control what happens when an event occurs. These areevtchnto irq, virq to irq

andhandlers. When a task wishes to register a handler for a virtual irq or event channel, it must

first bind that virtual irq or event channel to an irq. These irqs are internal to the MINIX on

Xen port and have no relevance to Xen itself. Once the task has bound the virtual irq or event

channel, it will receive an irq which it can use to register their handler.

Finally it must enable the irq to allow events to start occurring.

Events are dependant on thevcpudata structure and the evtchn variables in the shared

information. Each event has a event channel associated with it. For an event to occur.

• sharedinfo->vcpudata[0].evtchnupcall pendingmust be 0.

• sharedinfo->vcpudata[0].evtchnupcall maskmust be 0.

• Thenth bit of sharedinfo->evtchnpending[32]must be 0, where n is the number of the

event channel for that event.

• Thenth bit of sharedinfo->evtchnmask[32]must be 0.

• The (n >> 5) bit of sharedinfo->evtchnpendingselmust be 0.

‡Invoked by ret. See6.2.3

6.2. Porting the Microkernel 27

Listing 6.5: Interface for registering irq handlers.

/ ∗ f rom e v t c h n . c ∗ /
PRIVATE unsigned i n t e v t c h n t o i r q [NR EVENT CHANNELS] ;
PRIVATE unsigned i n t v i r q t o i r q [NR VIRQS] ;

PRIVATE s t r u c t i r q h a n d l e r t h a n d l e r s [NRIRQS] ;

PUBLIC unsigned i n t b i n d e v t c h n t o i r q (unsigned i n t ev tchn) ;
PUBLIC unsigned i n t b i n d v i r q t o i r q (unsigned i n t v i r q) ;

PUBLIC unsigned i n t a d d i r q h a n d l e r (unsigned i n t i r q ,
vo id (∗ h a n d l e r)
(unsigned in t ,
s t r u c t s t a c k f r a m e s ∗))

PUBLIC unsigned i n t e n a b l e i r q h a n d l e r (unsigned i n t i r q)

Once all these conditions are met, an event can occur. When an event occurs,hypervi-

sor callbackcalls the functiondo hypervisorcallback. do hypervisorcallbackwill determine

the irq of the event which occurred, lookup the corresponding handler for this irq in the handlers

array and then execute it.

Interrupts from Dom0

Interaction between dom0 and domUs takes place on the control interface. The control interface

is a special event channel, over which a domU can communicate with its virtual console, virtual

block devices or virtual network device. In MINIX on Xen, the control interface has become a

new kernel task. See6.2.4for details.

6.2.4 Kernel Tasks

Kernel tasks are processes that are part of the MINIX microkernel. They do not have a main

function. Their point of entry is a normal function which is specified in the images array in

table.c. They run in privilege ring 2.

Clock Task

The clock task requires very little modification to work with Xen. The initialisation function

has to be replaced so that the handler is registered with the event channel. Once this is done,

the clock works perfectly.

6.2. Porting the Microkernel 28

Control Interface Task

While Xen uses the event channels to notify the domU kernel when an event has occurred, no

data can be attached to this event. Only the event channel on which the event occurred can be

determined.

Therefore another mechanism is needed to transfer actual data to and from the virtual device

causing the event. For this the domain controller is used. The control interface is used for

communication with the domain controller.

The control interface is a structure at a half frame offset§ from the start of the shared in-

formation frame. This structure consists of two transaction rings and four counters. One trans-

action ring is for receiving control interface messages and the other is for transmitting control

interface messages. These each have two counters associated with them, to count the number

of requests and responses made on the ring.

Control messages are structures that can hold up to 60 bytes of data. They also have a type

field and a subtype field. There is a new MINIX interprocess communication message type

to facilitate passing of these messages between processes, as no other message type is large

enough¶.

Listing 6.6: Control interface structure.

t ypede f s t r u c t {
c o n t r o l m s g t t x r i n g [CONTROL RING SIZE] ; / ∗

0: g u e s t −> c o n t r o l l e r ∗ /
c o n t r o l m s g t r x r i n g [CONTROL RING SIZE] ; / ∗

512: c o n t r o l l e r −> g u e s t ∗ /
CONTROL RING IDX t x r e q p r o d , t x r e s p p r o d ;

/ ∗ 1024 , 1028 ∗ /
CONTROL RING IDX r x r e q p r o d , r x r e s p p r o d ;

/ ∗ 1032 , 1036 ∗ /
} PACKED c o n t r o l i f t ; / ∗ 1040 b y t e s ∗ /

In MINIX, the control interface is a new kernel task. When MINIX is initialising, the

control interface task registers an interrupt handler for the domain controller event channel

which was passed in from the builder through the start information structure. The task then

loops continuously, waiting for messages from other processes.

When an event occurs on the domain controller event channel, the interrupt handler,ctrl if interrupt

§2048 bytes
¶seeinclude/minix /ipc.h

6.2. Porting the Microkernel 29

is called. This function simply sends a notification message to the control interface task which

will be received by it as a HARDINT message. It is important to note that the interrupt handler

will run in privilege ring 1, while the control interface task runs in privilege ring 2. This means

that any real work must be done within the task, as to do it from the interrupt would mean that

any messages sent or received would have an unpredictable source due to the source being taken

as the process pointed to byproc ptr which could be any process when an event occurs.

Messages to the control interface can have seven types. They are:

• HARD INT

• CTRLIF REG HND

• CTRLIF UNREG HND

• CTRLIF SEND BLOCK

• CTRLIF SEND NOBLOCK

• CTRLIF SEND RESPONSE

• CTRLIF NOP

HARD INT messages are used to notify the control interface that an event needs to be

dealt with. When a message of this type occurs, the control interface task tries to send all

outgoing control interface messages waiting to be sent and passes any received messages to

their registered handler if one exists.

CTRLIF REG HND & CTRLIF UNREG HND messages register and unregister han-

dlers for different types of control interface messages. A handler is simply a process number.

When a control interface message is received, it is forwarded to the process indicated by this

process number.

CTRLIF SEND BLOCK, CTRLIF SEND NOBLOCK & CTRLIF SEND RESPONSE

messages are all used to send control interface messages to the domain controller. CTR-

LIF SEND NOBLOCK will try to send a message on the transmitter ring but will return if

it is not possible. CTRLIFSEND BLOCK will do the same but block until the message sends.

CTRLIF SEND RESPONSE puts a message on the receiver ring to simulate a message from

the domain controller.

CTRLIF NOP messages are used for debugging.

6.3. Console Driver 30

TTY
Driver

2. Event occurs. Key press passed
from domain controller to domain
through control interface.

3. Control interface task passes
 message to registered driver.

Control Interface
Kernel Task

4. TTY driver sends message to
 control interface task, requesting
 the typed character be displayed.5. Control interface task forwards

 message to domain controller.

1. Key pressed on keyboard

6. Character echoed on screen.

$ ls

Figure 6.4: Handling a keystroke

6.3 Console Driver

6.3.1 Xen Virtual Console

Xen provides each domU with a virtual console. Users in the dom0 can access this console using

the commandxm console<domid>. To the user, the console will look like a telnet session.

This console can be accessed by the kernel through the control interface transaction rings.

When the user pressed a key, a domain controller event occurs, and a control interface message

with type CMSGCONSOLE is placed on the receiving ring. This message will contain the key

or keys input.

To write to the console, a control message with a type of CMSGCONSOLE must be placed

on the transmission ring and a notification is sent to the domain controller event channel. When

the domain controller receives this notification it will check to see if there are any new messages

on the transmission ring, and if there are, it will send them on to the desired destination.

6.3.2 The MINIX TTY Driver

The tty driver in MINIX contains drivers for three types of terminal, hardware consoles, rs232

serial consoles and pseudo-terminals. The main driver function ismainin drivers/tty /tty.c. This

function calls the initialisation function and begins listening for messages from other processes.

The initialisation function creates a number of terminals depending on the values of the

constants NRCONS, NRRS LINES and NRPTYS. These constants also decide how many

terminals of each type are created.

The hardware specific drivers for each terminal type are in separate files. The hardware

console, rs232 serial console and pseudo terminal drivers are inconsole.c, rs232.candpty.c

6.3. Console Driver 31

respectively. The hardware console driver also containskeyboard.c, as the input is separate to

the display in the case of a hardware console.

Each of these terminal drivers define a set of functions for reading and writing data to the

terminal. When a terminal is being initialised, the initialisation function of its terminal type is

called. The reading and writing functions for that terminal type are assigned to function pointers

in the tty structure for that terminal. From this point onward, all terminals are treated equally

by the tty driver.

Xen Terminal Driver

For the Xen virtual console, a new hardware specific terminal driver is needed. This is contained

in the filexencons.c. A new constant is also created, NRXEN CONS. The driver itself consists

of an initialisation function, a set of read and write functions and an interrupt handler function.

The initialisation function,xenconsinit, registers the tty process as the handler for CMSGCONSOLE

messages. It also initialises two queues, the input buffer and the output buffer. These are used

by the reading and writing functions to buffer data so that a call to the control interface does not

need to be made every time a character is printed or a key is pressed.

The interrupt handler function is called whenever the tty process receives a HARDINT

message from the control interface.

Modifications are needed in the rest of the driver, to allow for the hardware console to be

turned off. Traditionally, a computer would always have had a hardware console, so turning it

off would be pointless but with Xen there is no hardware console, so it must be turned off. To

do this, the console and keyboard drivers are wrapped in preprocessor statements, which will

only include the code if NRCONS is greater than zero.

6.3.3 Debugging Console

The virtual console supplied by Xen is not the only place that output can be sent. There is also

a debugging console that can be written to with a simple hypervisor call. This is used within

the microkernel only, as other processes are unable to make hypervisor calls.

The hypervisor call for writing to the debug console ishypervisorconsolewrite. It is

only ever called by thekputcxen function in kernel/utility.c , which in turn is only called by

xenkprintf.

6.4. Block Device Driver 32

6.4 Block Device Driver

6.4.1 MINIX Block Devices

As with all other drivers in MINIX, a block device driver is its own independent process. How-

ever block device drivers differ from other drivers because they have no message receiving loop

as other drivers do. Instead, adriver structure, containing pointers to the driver’s hardware

specific functions, is passed to thedriver tasklibrary call, which will run the event loop.

This allows for device independent code, such as that for buffering, to be shared among all

the block device drivers.

6.4.2 Xen Block Interface

The Xen virtual block device interface uses two channels of communication for transactions

between domU and the backend driver.

It uses the control interface to communicate with the domain controller. These transactions

are used to connect or disconnect to the virtual block device interface or to query the status of

a virtual block device. It is also used to setup the infrastructure to allow the second mode of

communication.

The second mode of communication consists of a shared memory frame and a event channel.

The shared memory frame is specified when the virtual block device interface is connected. This

shared frame contains a communication ring, much like those in the control interface. Requests

and responses are both placed on a single ring however. The event channel is set by a block

interface query to the control interface.

A request contains an operation to be performed, the device to use, the first sector to use

and a list of frames and sections.

No actual data is transferred over the rings, as a DMA like mechanism is used. When the

domU wants to read or write some memory, a request structure is created, specifying where on

disk to read or write and the memory location which is the destination or source of the data to

be transferred. This allows requests to be batched, and is much faster than actually passing all

the data over the block interface directly.

The request is then put onto the communication ring and a notification is sent to the virtual

block device event channel. When the request has been fulfilled or an error has occurred, a

response is put onto the communication ring. An event then occurs on the virtual block device

6.4. Block Device Driver 33

event channel.

6.4.3 Current Status

As of the time of writing, the block device driver is still in development.

Chapter 7

Recommendations for Further

Development

7.1 Port to Xen 3.0

This project focuses on porting MINIX to the Xen hypervisor, version 2.0.7. During the course

of the project, Xen 3.0 was released. Version 3.0 has significant differences to version 2.0.7,

especially in regard to communication with the virtual block device and virtual network device.

There has recently been a discussion on the Linux kernel mailing list(31) regarding a new

Virtual Management Interface(VMI)(32) to standardize the interface which all hypervisors

expose. It has been proposed by VMWare, and responses have been mixed, but if VMI is

accepted by the Xen development team, then VMI will be another target for a MINIX port.

7.2 Replace Custom Builder with ELF Bootloader

While using a custom builder for MINIX works well, it is not an elegant solution. It requires

that the Xen libraries be patched, which means for each new version of Xen a new patch will

possibly be needed. Also, unless the patch is accepted by the Xen developers, users will not be

able to use a binary distribution of Xen to run MINIX.

A better solution would be to create a minimal ELF bootloader that would chain load MINIX

into memory and initiate execution. With this, MINIX would be capable of running on a vanilla

Xen installation.

34

Chapter 8

Conclusion

Throughout this document I have hoped to effectively illustrate the process of porting an oper-

ating system to run upon the Xen hypervisor. In conjunction with the Xen interface documen-

tation and the Xen source code, this report should help others understand how Xen works and

the tasks required to port an operating system to run on a Xen system.

Because of its size and simplicity, MINIX was a excellent choice for this project. The source

code was well commented, and the most complicated parts were well explained by its associated

text book,Operating Systems: Design and Implementation(9). The book would however benefit

from a chapter or section explaining the boot loading code, as this initially presented a very

difficult learning curve due to the code’s complexity and lack of documentation.

While the MINIX kernel itself did present an excellent kernel to work with, it was not with-

out its own frustrating quirks, without which development would have been simplified hugely.

The fact that MINIX is an a.out kernel and can only be compiled with the Amsterdam Compiler

Kit resulted in much work that otherwise could have been avoided.

More application support on MINIX would also have eased development considerably. The

lack of basic tools like rsync made the build process far more complicated than it needed to be.

Porting a microkernel also raised problems with Xen that would not have occurred with a

monolithic kernel. Monolithic kernels perform all their privileged instructions in kernel mode.

Microkernels do some privileged instructions from user mode. This presented a problem be-

cause Xen only allows calls from kernel mode. I have outlined a possible solution to this in

section6.2.1.

Overall, MINIX was very pleasant to work with. With the kernel∗ itself at just 7104 lines of

∗The device drivers are not part of the kernel in a microkernel.

35

36

code, understanding its inner working was much simpler than that of monolithic kernels such

as Linux or freebsd, each of which contain millions of lines of code. With the Xen extensions,

MINIX only grew to 9435† lines.

†16692 LOC including tty and block device driver.

Appendix A

Xen Hypercalls

i n t h y p e r v i s o r c o n s o l e w r i t e (char ∗ s t r i n g , i n t l e n g t h)

Write lengthcharacters of the stringstring to the emergency console. See6.3.3.

i n t h y p e r v i s o r s e t g d t (unsigned long ∗ f r a m e l i s t , i n t e n t r i e s)

Set the array of frames pointed to byframelistas the GDT.framelisthas a pseudo-physical

address, as this operation must be performed before virtual addresses can be used. See6.2.2.

i n t h y p e r v i s o r u p d a t e d e s c r i p t o r (unsigned long index ,
s t r u c t s e g d e s cs ∗ segdp)

Update a segment descriptor in the GDT.indexspecifies the entry to update.segdppoints to a

segment descriptor structure which will be used to update the descriptor. See6.2.2

i n t h y p e r v i s o r s e t t r a p t a b l e (t r a p i n f o t ∗ t r a p s)

Copy the contents oftraps into the interrupt descriptor table for the domain. See6.2.3.

37

38

i n t h y p e r v i s o r s e t c a l l b a c k s (unsigned long e v e n t s e l e c t o r ,
unsigned long e v e n t a d d r e s s ,
unsigned long f a i l s a f e s e l e c t o r ,
unsigned long f a i l s a f e a d d r e s s)

Seteventaddressandfailsafeaddressas the entry points for the hypervisor and failsafe call-

backs respectively.eventselectorandfailsafeselectorspecify the code segments which should

be loaded when the callbacks occur. See6.2.3.

i n t h y p e r v i s o r e v e n t c h a n n e l o p (e v t c h n o p t ∗ t)

Send operationt to the event channel. Operations include those to bind, close and send data to

event channels. See6.2.3.

i n t h y p e r v i s o r x e n v e r s i o n ()

Request the hypervisor’s version. Used to force a hypervisor callback.

i n t h y p e r v i s o r s h u t d o w n ()

Shutdown the calling domain.

i n t h y p e r v i s o r y i e l d ()

Yield the processor to another domain. Used when there is no work to be done for the calling

domain.

Appendix B

Installing MINIX on Xen

B.1 Patching the Xen Libraries

B.1.1 Downloading and Applying the Patch

Download the newest patch fromhttps://svn.skynet.ie/˜ikelly/MinixOnXen/patches/.
Extract the Xen 2.0.7 sources and apply the patch.

t a r z x f xen−2.0.7− s r c . t g z
cd xen−2 . 0/
c a t . . / m i n i x b u i l d e r −0604112115. pa tch | pa tch −p1
p a t c h i n g f i l e t o o l s/ l i b x c / Make f i l e
p a t c h i n g f i l e t o o l s/ l i b x c / min ixa . ou t . h
p a t c h i n g f i l e t o o l s/ l i b x c / minix . h
p a t c h i n g f i l e t o o l s/ l i b x c / xc . h
p a t c h i n g f i l e t o o l s/ l i b x c / x c m i n i x b u i l d . c
p a t c h i n g f i l e t o o l s/ python/ s e t u p . py
p a t c h i n g f i l e t o o l s/ python/ xen / l o w l e v e l / xc / xc . c
p a t c h i n g f i l e t o o l s/ python/ xen / xend/ XendDomainInfo . py
p a t c h i n g f i l e t o o l s/ x f r d / Make f i l e

B.1.2 Compiling Xen with the Patch

To compile and install Xen with the new patch is only a matter of running the following.

make i n s t a l l− t o o l s

This assumes you already have Xen installed from this source tree. If not you need to do so.

make wor ld
make i n s t a l l

Xend will need to be restarted for the changed to take effect.

39

https://svn.skynet.ie/~ikelly/MinixOnXen/patches/

B.2. Downloading MINIX for Xen 40

/ e t c / i n i t . d / xend r e s t a r t

B.2 Downloading MINIX for Xen

A snapshot of MINIX for Xen is available athttp://svn.skynet.ie/˜ikelly/MinixOnXen/

snapshots/.

There are two subversion repositories. One at secure.bleurgh.com and one at svn.skynet.ie.

secure.bleurgh.com is the most current. svn.skynet.ie is a mirror. To checkout from the reposi-

tories, do the following.

svn co h t t p s :/ / s e c u r e . b l eu rgh . com/ svn / min ix / t r u n k
svn co h t t p s :/ / svn . s k y n e t . i e/ svn / MinixOnXen/ min ix

You can then copy the code into your MINIX install for compilation with using. MINIX

does not have a subversion client yet.
There is also a cvs repository that is updated whenever a commit is made to the svn server at

secure.bleurgh.com. MINIX has a cvs client, so it can checkout directly from this. To checkout
from cvs do the following.

cvs −d : p s e r v e r : anoncvs : @bleurgh . com :/ var / l i b / cvs l o g i n
cvs −d : p s e r v e r : anoncvs : @bleurgh . com :/ var / l i b / cvs co min i x

B.3 Compiling MINIX

MINIX can only be compiled by MINIX. For this reason you will have to have MINIX either

running on hardware or in an emulator to compile MINIX for Xen.
Once you have downloaded and extracted the MINIX for Xen sources, you need to install

the some new headers. The easiest way to do this is just to install all the headers again.

cd <m i n i x f o r x e n> / i n c l u d e s
make i n s t a l l

WARNING: If you have preexisting changes in the MINIX includes that you wish to keep, you

will have to install the headers manually. This requires that you copy thexen/ subdirectory of

the includes directory to/usr/include. You will also need modify/usr/include/minix /com.h

and/usr/include/minix /config.h to match the Xen versions.

http://svn.skynet.ie/~ikelly/MinixOnXen/snapshots/
http://svn.skynet.ie/~ikelly/MinixOnXen/snapshots/

B.3. Compiling MINIX 41

You must move some of the original MINIX kernel source out of the way and move the new

versions in. The directories which you need to move are the kernel directory and the tty driver.

cd / us r / s r c
mv k e r n e l k e r n e l . o ld ; mv d r i v e r s/ t t y d r i v e r s / t t y . o ld

Then move the new directories into place. You may need to run mkdep on the directories.

The compilation will fail if .depend files are missing.

cp −r <m i n i x f o r x e n> / k e r n e l / us r / s r c
cp −r <m i n i x f o r x e n> / d r i v e r s / t t y / us r / s r c / d r i v e r s
cp −r <m i n i x f o r x e n> / d r i v e r s / xenvbd / us r / s r c / d r i v e r s
cd / us r / s r c
mkdep k e r n e l ; mkdep d r i v e r s/ t t y ; mkdep d r i v e r s/ xenvbd

You are now ready to compile the kernel.

cd / us r / s r c / t o o l s
make image

The result will be a fileimage in /usr/src/tools. Copy this to your Xen host, and run it using

the following configuration.

B.3. Compiling MINIX 42

Kerne l image f i l e .
k e r n e l = ” / e t c / xen / minix ”

The domain b u i l d f u n c t i o n . D e f a u l t i s ’ l i n u x ’ .
b u i l d e r= ’ min ix ’

I n i t i a l memory a l l o c a t i o n (i n megabytes) f o r t h e new domain .
memory = 20

A name f o r your domain . A l l domains must have d i f f e r e n t names .
name = ” M in i xTes te r ”

Number o f ne twork i n t e r f a c e s . D e f a u l t i s 1 .
n i c s=0

e x t r a=” ” ” r o o t d e v =896
ramimagedev=896
rams i ze=0
p r o c e s s o r=686
bus=xen
v ideo=xen
chrome=c o l o r
memory=930000: a00000
l a b e l=XEN
c o n t r o l l e r=c0
image=xenimage
” ” ”

Bibliography

[1] “The User-mode Linux Kernel Home Page.”http://user-mode-linux.

sourceforge.net/.

[2] “The Xen virtual machine monitor.”http://www.cl.cam.ac.uk/Research/SRG/

netos/xen/.

[3] S. Shankland, “Novell follows Red Hat with Xen announcement.”http://news.zdnet.

co.uk/software/linuxunix/0,39020390,39259033,00.htm.

[4] “AMD’s Virtualization Solutions.” http://enterprise.amd.com/Solutions/

Consolidation/virtualization.aspx.

[5] “Intel Virtualization Technology.”http://www.intel.com/technology/computing/

vptech/.

[6] “Xen virtualization quickly becoming open source ’killer app’.”http:

//searchopensource.techtarget.com/originalContent/0,289142,sid39_

gci1152219,00.html.

[7] The Xen Team, “Xen Interface Manual.”http://www.cl.cam.ac.uk/Research/SRG/

netos/xen/readmes-2.0/interface/interface.html.

[8] “The MINIX 3 Operating System.”http://www.minix3.org/.

[9] A. S. Tanenbaum and A. S. Woodhull,Operating Systems, Design and Implementation.

Prentice Hall, 2006.

[10] “The GNU Hurd.”http://www.gnu.org/software/hurd/hurd.html.

[11] “VMWare.” http://www.vmware.com.

43

http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://news.zdnet.co.uk/software/linuxunix/0,39020390,39259033,00.htm
http://news.zdnet.co.uk/software/linuxunix/0,39020390,39259033,00.htm
http://enterprise.amd.com/Solutions/Consolidation/virtualization.aspx
http://enterprise.amd.com/Solutions/Consolidation/virtualization.aspx
http://www.intel.com/technology/computing/vptech/
http://www.intel.com/technology/computing/vptech/
http://searchopensource.techtarget.com/originalContent/0,289142,sid39_gci1152219,00.html
http://searchopensource.techtarget.com/originalContent/0,289142,sid39_gci1152219,00.html
http://searchopensource.techtarget.com/originalContent/0,289142,sid39_gci1152219,00.html
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/readmes-2.0/interface/interface.html
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/readmes-2.0/interface/interface.html
http://www.minix3.org/
http://www.gnu.org/software/hurd/hurd.html
http://www.vmware.com

BIBLIOGRAPHY 44

[12] “Microsoft Virtual PC.” http://www.microsoft.com/windows/virtualpc/

default.mspx.

[13] “Denali: Lightweight virtual machines for distributed and networked systems.”http:

//denali.cs.washington.edu/.

[14] “QEMU.” http://www.qemu.org/.

[15] “Bochs IA-32 Emulator Project.”http://bochs.sourceforge.net/.

[16] “Solaris Zones.”http://www.sun.com/bigadmin/content/zones/.

[17] “VMware ESX Server.”http://www.vmware.com/products/esx/.

[18] “Subversion.”http://subversion.tigris.org/.

[19] “The Amsterdam Compiler Kit.”http://tack.sourceforge.net/.

[20] “RSync.” http://samba.anu.edu.au/rsync/.

[21] “Concurrent Versions System.”http://www.nongnu.org/cvs/.

[22] A. Ho, “Pervasive Debugging.”http://xenbits.xensource.com/xen-2.0.hg?

cmd=file;filenode=52bcf66776cf12be2222793203fbe8c46b3a9486;file=

docs/pdb.txt.

[23] “GDB: The GNU Project Debugger.”http://www.gnu.org/software/gdb/.

[24] “Multiboot Specification Manual.”http://www.gnu.org/software/grub/manual/

multiboot/.

[25] Intel Architecture Software Developer’s Manual Volume 3: System Programming, p. 112.

Intel Corporation.

[26] “Microkernel Wikipedia Article.”http://en.wikipedia.org/wiki/Microkernel.

[27] “Plan 9 from Bell Labs.”http://cm.bell-labs.com/plan9/.

[28] J. Levon, “domU Builder RFC.”http://lists.xensource.com/archives/html/

xen-devel/2006-02/msg00987.html.

[29] Intel Architecture Software Developer’s Manual Volume 3: System Programming, pp. 63–

79. Intel Corporation.

http://www.microsoft.com/windows/virtualpc/default.mspx
http://www.microsoft.com/windows/virtualpc/default.mspx
http://denali.cs.washington.edu/
http://denali.cs.washington.edu/
http://www.qemu.org/
http://bochs.sourceforge.net/
http://www.sun.com/bigadmin/content/zones/
http://www.vmware.com/products/esx/
http://subversion.tigris.org/
http://tack.sourceforge.net/
http://samba.anu.edu.au/rsync/
http://www.nongnu.org/cvs/
http://xenbits.xensource.com/xen-2.0.hg?cmd=file;filenode=52bcf66776cf12be2222793203fbe8c46b3a9486;file=docs/pdb.txt
http://xenbits.xensource.com/xen-2.0.hg?cmd=file;filenode=52bcf66776cf12be2222793203fbe8c46b3a9486;file=docs/pdb.txt
http://xenbits.xensource.com/xen-2.0.hg?cmd=file;filenode=52bcf66776cf12be2222793203fbe8c46b3a9486;file=docs/pdb.txt
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/grub/manual/multiboot/
http://www.gnu.org/software/grub/manual/multiboot/
http://en.wikipedia.org/wiki/Microkernel
http://cm.bell-labs.com/plan9/
http://lists.xensource.com/archives/html/xen-devel/2006-02/msg00987.html
http://lists.xensource.com/archives/html/xen-devel/2006-02/msg00987.html

BIBLIOGRAPHY 45

[30] Intel Architecture Software Developer’s Manual Volume 3: System Programming,

pp. 141–198. Intel Corporation.

[31] Z. Amsden, “VMI RFC on the Linux kernel mailing list.”http://lkml.org/lkml/

2006/3/13/140.

[32] “Virtual Machine Interface (VMI) Specifications.” http://www.vmware.com/

interfaces/vmi_specs.html.

http://lkml.org/lkml/2006/3/13/140
http://lkml.org/lkml/2006/3/13/140
http://www.vmware.com/interfaces/vmi_specs.html
http://www.vmware.com/interfaces/vmi_specs.html

	Introduction
	What is Virtualisation?
	State of the Art

	Project Scope
	Prerequisites

	Background Information
	What is Xen?
	What is MINIX?

	Development Environment
	Hardware Setup
	Software Used
	Debugging

	Xen Internals
	The Kernel
	Privilege Rings
	Hypercalls
	Memory Management
	Shared Information
	Control Interface Rings

	The Applications
	Libraries
	Xend and Xm

	Modifications to Xen
	Motivation for Xen Modifications
	Executeable File Formats

	The MINIX Builder
	Loading the Image to Memory
	Setting up the Memory Layout
	Global Descriptor Table
	Passing Information to the Domain
	Setting up the CPU Context

	Modifications to MINIX
	Overview of MINIX Architecture
	Advantages and Disadvantages
	Kernel Tasks, Drivers and Servers
	MINIX on Xen

	Porting the Microkernel
	Xen Hypercalls
	Initialisation
	Events, Interrupts & the Control Interface
	Kernel Tasks

	Console Driver
	Xen Virtual Console
	The MINIX TTY Driver
	Debugging Console

	Block Device Driver
	MINIX Block Devices
	Xen Block Interface
	Current Status

	Recommendations for Further Development
	Port to Xen 3.0
	Replace Custom Builder with ELF Bootloader

	Conclusion
	Xen Hypercalls
	Installing MINIX on Xen
	Patching the Xen Libraries
	Downloading and Applying the Patch
	Compiling Xen with the Patch

	Downloading MINIX for Xen
	Compiling MINIX

