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1 INTRODUCTION   

The efficiency of computer programs has been always a big theme in the history of com-

puting. In the early days, programs were written in the machine’s native instruction set to 

squeeze every bit of performance out of the CPU. Nowadays most programs are written 

in higher level languages which impose an overhead but ease the job of programming. 

Some languages are based on program execution by an interpreter, which slows down 

execution even more. However, the programming language is not the only factor influ-

encing the speed of execution. A simple programming error or the wrong choice of data 

structure or sort algorithm could cause a program to execute orders of magnitudes slower 

then needed. To detect the existence or even find the location of such an error in a pro-

gram is not always a trivial task. 

1.1 MEASURING PERFORMANCE 

In order to provide programmers with means to measure (at runtime) where a program 

spends its time, so called profilers came into existence. These profilers, which are usually 

integrated in the operating system or compiler, conceptually split up the code of a pro-

gram into several pieces and measure how much CPU time is spent in each piece. The 

individual pieces can be functions, lines of code, address ranges in the program text, etc. 

The resulting measurements together form the ‘profile’ of a program, hence the name 

profiler. 

 

Most measuring tools enable the profiling of user processes. When integrated into a com-

piler, these assume the availability of operating system functionality. For example, the 

Gprof functionality of the GCC compiler uses system calls for file operations to write its 

results to a file. Some operating systems provide a profil system call to allow basic ad-

dress range profiling of user programs but not the operating system itself. 

 

Profiling an operating system is a challenge. Because of the privileged mode the operat-

ing system runs (partly) in, the profiling functionality has to be running there as well. The 

profiler may not have all needed functionality (like writing the results to a file) available 

at all times when running inside an operating system. There is a risk that the profiler in-

fluences its own measurements because it is part of what it is measuring. The perform-

ance of operating systems plays a mayor role; it directly affects the performance of pro-

grams that use its services. For an operating system developer, a profiler that measures 

the performance of the operating system is therefore a useful tool. 

 

This thesis describes the implementation of two different methods of profiling the MINIX 

3 operating system: statistical profiling and call profiling. 
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1.2 MINIX 3  

The MINIX 3 operating system is based on a microkernel (as opposed to a more common 

monolithic kernel). Having this type of kernel means that as little code as possible runs in 

the high-privileged mode of the CPU (this mode is also referred to as kernel-space). Most 

of the code runs in less privileged mode (user-space). The different components commu-

nicate by passing messages. An advantage of this approach is that the privileged part of 

the operating system code remains small in size and simple, and is therefore easier to 

keep bug-free. Bugs in user-space parts of the operating system are not able to bring the 

whole system down. A disadvantage is that there is a performance penalty because mes-

sage passing implies an overhead (building and copying messages) where a monolithic 

kernel just has one address space where any line of code of the operating system has full 

control over. For example, in MINIX 3, the file server (FS), process server (PM) and 

other operating system components (including the device drivers) run as user-space proc-

esses that request the kernel to perform privileged actions for them. In a monolithic ker-

nel, all parts of the operating system have high privileges and are able to perform the 

privileged actions themselves. 

 

System calls in MINIX 3 are implemented as follows: the system call ends up in a user-

space process that is related to the call (FS for file system related calls, PM for process 

related calls). The user-space process handles the call and if necessary, does a call to the 

kernel to inform it about changes or to request it to (for instance) copy data from one 

process to another. So, beneath the system calls there is a separate layer of calls. These 

calls are the kernel calls. 

 

When reading this thesis it is important to understand that the following parts of MINIX 3 

run in kernel-space: KERNEL, CLOCK, IDLE and SYSTEM. They run in the same ad-

dress space but are actually different processes with their own CPU contexts and are 

separately scheduled. KERNEL (also known as the kernel task) is the part of the kernel 

that contains code for the lowest levels of interrupt handling, process scheduling and IPC 

(Inter Process Communication). CLOCK (the clock task) contains functionality related to 

the system timer; IDLE does nothing more than run when no other process is runnable 

and SYSTEM (the system task) contains the code for the kernel calls. 

 

For more information about MINIX 3 I refer to its website http://www.minix3.org/ and 

the book Operating Systems: Design and Implementation, Third Edition by Andrew S. 

Tanenbaum and Albert S. Woodhull. 
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2 STATISTICAL PROFILING 

2.1 INTRODUCTION 

Statistical profiling is a method of profiling based on interrupting the operating system at 

a certain frequency to take a snapshot (sample). Such a snapshot denotes which process 

was active at the moment of interruption and where in its program execution it was. With 

this method of profiling, only a subset of all executions is registered. However, since the 

time intervals between snapshots are identical, the result represents all executions that 

occur often enough to be seen by the profiler. In this chapter I tell something about the 

timer used for profiling, a high level description of the design is given, the implementa-

tion is described in detail, and the results are discussed. 

2.2 IN SEARCH OF A TIMER 

To supply the frequency, a timer that is completely independent of existing processing is 

preferred. There is the system timer, but since this timer is already used by the operating 

system for scheduling purposes, it is not really independent. Another timer is preferred. 

2.2.1 i8259 Timers 

Let’s have a brief look at the hardware behind the system timer. The timer is generated by 

the 8253/8254 PIT (Programmable Interval Timer). The 8253/8284 was a separate chip in 

the first IBM PC’s, but now it is integrated somewhere on the motherboard. Conceptually 

it is still there though and it has three timers called Counter 0, 1 and 2. Counter 0 is con-

nected to the first interrupt line (IRQ 0) of the i8259 PIC (Programmable Interrupt Con-

troller) and is used by MINIX 3 as the system timer. Counter 1 is used for DRAM refresh 

and Counter 2 generates the frequency needed for the PC speaker. Unfortunately, Counter 

2 is not connected to the PIC, otherwise it might have been a candidate (not having the 

PC speaker available during profiling would be a small price to pay for a suitable timer). 

Conclusion: the 8253/8254 timers are not suitable for our purpose. 

2.2.2 CMOS Real-Time Clock 

There is another timer in the IBM PC; it is the CMOS “Real-Time Clock”. This timer is 

connected to the motherboard battery and keeps track of time. It is also connected to the 

first interrupt line on the secondary interrupt controller (IRQ 8), and it is programmable. 

It can generate interrupts ranging in frequency from 2 Hz to 8 KHz, in increasing powers 

of 2. This clock is an unused, independent timer which makes it suitable for statistical 

profiling. There is a drawback: since this clock is used to keep track of system time we 

run the risk of having unwanted side-effects on that time. As we later find out, these ef-

fects exist but they are a relatively small nuisance and do not affect profiling. 
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2.3 HIGH-LEVEL DESCRIPTION 

A rough description of how statistical profiling in MINIX 3 works follows. The user can 

start and stop statistical profiling utilizing a user program. When the user starts profiling, 

the program allocates memory for profiling data and does a system call passing the loca-

tion of the allocated memory as well as the location of an information structure (“info 

struct”) that allows the kernel to supply feedback about profiling. The system call is han-

dled by a user-space system process, as all system calls are in MINIX 3. This handler 

does not do a lot more then call the kernel. The kernel sets up the CMOS timer used for 

profiling. From now on the kernel will write profiling samples consisting of process name 

and program counter (also known as instruction pointer) to the memory allocated by the 

user program. It maintains the number of bytes written in a local info struct. The kernel 

call and system call return and the user program continues running in the background as a 

daemon process. The user can now run whatever he wants: profiling is turned on and will 

register the effects on the system. When the user wants to stop profiling, he runs the pro-

file command again with the stop parameter. A system call is done which is again passed 

to the kernel. The kernel stops profiling and copies its local info struct to user memory. 

The profiling data in memory is written to a file by the daemonized user program. There 

is a separate Perl tool that the user runs to analyze the raw data file and present the results 

in a formatted manner. 

 

 

Figure 2-1. Overview of data flows in statistical profiling 

 

The next paragraphs give a detailed description of statistical profiling in detail, split up in 

three levels: user-space, kernel-space and application level. 
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2.4 WORK DONE IN USER-SPACE 

2.4.1 The SPROFILE System Call 

A system call SPROFILE was added to MINIX 3 to enable user programs to start and 

stop profiling. Just like for existing system calls, a library function was created (in this 

case located in lib/other/ which is part of the C library) as a wrapper around the call. This 

hides the message passing from the user program by making it as simple as calling 

sprofile. When start of profiling is requested, the caller supplies pointers to a chunk of 

memory available for profiling data and to an info struct (defined in 

include/minix/profile.h) which is used by the kernel to supply feedback when profiling is 

stopped. 

 
struct sprof_info_s { 
 int mem_used; 
 int total_samples; 
 int idle_samples; 
 int system_samples; 
 int user_samples; 
} sprof_info_inst; 

Figure 2-2.  Info struct to be copied to from kernel to user program. 

The system call ends up in the PM server, which does a few things before calling the as-

sociated kernel call SPROF: it adds the endpoint of the calling process to the message 

parameters and does a check on the supplied pointers variables to see if the supplied lo-

cations are actually in the user program’s address space. In case stopping of profiling was 

requested, no pointers need to be supplied. 

2.5 WORK DONE IN KERNEL-SPACE 

2.5.1 The SPROF Kernel Call 

A kernel call SPROF was added to start and stop profiling in the kernel. When it is called 

to start profiling, in system/do_sprofile.c the following is done. There is a check if pro-

filing is already running, in which case an error is returned. The pointers to the info struct 

and to the memory available for profiling are translated to physical addresses and stored 

in local variables (variables related to profiling are in kernel/profile.h). 

 
EXTERN int sprofiling;   /* whether profiling is running */ 
EXTERN int sprof_mem_size;  /* available user memory for data */ 
EXTERN struct sprof_info_s sprof_info; /* profiling info for user program */ 
EXTERN phys_bytes sprof_data_addr; /* user address to write data */ 
EXTERN phys_bytes sprof_info_addr; /* user address to write info struct */ 

Figure 2-3. Variables related to profiling, in the kernel. 
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The kernel uses its own struct with profiling info, of which the variables are reset. It is 

instantiated from the same declaration, so the kernel can just write it into the user’s ad-

dress space when profiling stops and supply the user with this information. The CMOS 

clock is started by calling init_cmos_clock and a variable is set to indicate that profiling is 

now running. During profiling, the interrupt handler for the CMOS clock will do the ac-

tual work. When profiling is requested to be stopped it is checked if profiling is indeed 

running. The CMOS clock is then stopped by calling stop_cmos_clock. Finally the local 

info struct is copied to the user program using the physical address calculated when pro-

filing started. 

2.5.2 Profiling using the CMOS Timer Interrupt 

Functionality related to the CMOS clock is in kernel/profile.c (this file is listed in appen-

dix C). Programming the CMOS is done by mapped I/O using existing inb/outb library 

functions. In order to read/write a register first a byte identifying the register must be 

written into an index register, and then the data register must be read or written. Read-

ing/writing the data register after setting the index register is required. A description of 

the functions related to the CMOS clock now follows. Init_cmos_clock registers an inter-

rupt handler in the kernel for the CMOS timer interrupts. It then programs the CMOS 

timer’s frequency and enables its interrupts. Cmos_clock_stop disables the CMOS timer 

interrupts and deregisters the interrupt handler in the kernel. Cmos_clock_handler is the 

interrupt handler that runs on every tick. The handler first checks if profiling is actually 

turned on and if enough profiling memory is available. If this fails, it just returns. A 

check is done if writing a new profiling sample would overflow available profiling mem-

ory. If this is the case a variable in the info struct is set to -1 so the kernel itself and, at a 

later stage, a user program, will know about this. Depending on the process that was in-

terrupted by the CMOS timer interrupt, a few things could now be done. If the system 

was idle or if the current process is a user process, the appropriate counter in the info 

struct is increased, but no sample is written. If the current process is a system (MINIX 3) 

process, an additional check is done whether the process is actually runnable before its 

name and program counter (the sample) are written to the profiling memory. 
 
struct { 
 char name[8]; 
 int pc; 
} sprof_sample; 

Figure 2-4. What a profiling sample looks like. 

Writing a sample to user memory is done using the physical address calculated when pro-

filing started. After the sample is written, the mem_used counter in the info struct is in-

creased appropriately, to be used by the kernel itself when writing the next sample and 

later on by a user program to see how much memory was used. Finally, a counter for the 

total amount of samples in the info struct is increased to keep track of the number of 

CMOS clock ticks. At the end of the interrupt handler a data register of the CMOS is 

read. This is necessary to make the next interrupt happen. 
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2.6 WORK DONE AT THE APPLICATION LEVEL 

2.6.1 Control Tool: profile 

In commands/profile/ are some user tools to control profiling and analyze raw profiling 

data. The user program profile was written in C and is used to start and stop profiling and 

have the profiling data collected by the operating system written to a file. When profiling 

is started using the appropriate command line parameter(s), the following is done: the 

program forks and allocates memory for the profiling data, a system call SPROFILE is 

done providing the operating system with the following: the location and size of the allo-

cated memory, the location of a info struct (as mentioned earlier, this struct is defined in 

include/minix/profile.h) and the requested sample frequency. The user is informed that 

profiling has started (or an error is given if applicable), and the program detaches itself 

from the console. A named pipe is opened and a string of fixed length is written to it. 

From the user’s perspective, the program has exited but the program is still running in the 

background, blocking on the write to the named pipe. The user can now run anything he 

likes. The whole operating system is profiled from now on and the profiling samples are 

written by the operating system to the memory provided by the user program. 

 

When the user wants to stop profiling, he runs the profile program indicating that profil-

ing should stop. The program does the SPROFILE system call to have profiling stopped 

in the operating system. It then opens the named pipe set up by the process that started 

profiling and reads the same fixed amount of characters as the starter process wrote. The 

starter process unblocks because of this and knows profiling has now stopped. It checks 

the info struct to see if there was enough memory for the profiling data (if there was not, 

the kernel set it to -1). If this was found OK, it writes to a file a header containing several 

numbers found in the info struct, namely the counts of idle, user, system and total ticks. It 

then starts writing the profiling data from memory to the file. Output for the user regard-

ing progress or errors is directed to the named pipe. The stopper process just prints out 

what it receives through the pipe and therefore acts as a console for the starter process. 

When the starter process is done writing the data file, it closes the file handle and the 

named pipe and exits. Upon reading EOF on the named pipe, the stopper process knows 

everything is done and it exits as well. The user now has a file with raw profiling data. 

2.6.2 Analyzing Tool: sprofalyze.pl 

In the same directory, the Perl program sprofalyze.pl is available to analyze raw profiling 

data files. As a first step, sprofalyze.pl reads the symbol tables of all system executables 

by means of the nm program. From the symbol tables, indexes are generated as hash ta-

bles using the Perl built-in hash data structure. An index is generated for each system ex-

ecutable, where function names are indexed by address. Of course, from the symbol ta-

bles only the start addresses of the functions can be found. The gaps between the start ad-

dresses are filled with entries for every possible program counter value. This turns out to 

be well worth it as can be seen in the following step. 
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The script starts reading the data file. As mentioned, there is a header line containing the 

total number ticks the CMOS clock made during profiling, as well as the number of ticks 

that happened during execution of system processes, user processes and during idle time. 

These numbers are read into variables to be used later for statistics generation. After the 

header, the actual profiling samples follow. The samples are processed one by one. The 

fixed sample length is read and the process name (regular ASCII) and program counter 

(integer in binary form) are decoded from it. The process name is used to decide which 

index to use from the indexes created from the symbol tables. This index is then accessed 

using the program counter. Since every possible program counter value is in the index, 

this step is fast: just one lookup in a hash table. If the index would contain only the start 

addresses of the functions, time consuming (search) logic would be needed to find the 

correct function for each profiling sample. At 8 KHz, a profiling run could create one 

million samples in a few minutes at worst, so quick lookups are useful. Indexing into the 

table using the program counter returns a function name. A counter representing this 

function is increased; this counter is in another Perl hash: for each system process a table 

keeps track of the number of samples attributed to each function. Once all samples are 

processed, the results are sorted; percentages are calculated and formatting takes place. 

High scoring functions are shown aggregated and on a per process basis. There is a com-

mand line argument to sprofalyze.pl that allows the user to provide a minimum percent-

age (default: 1%). Only functions and processes that used at least that percentage of oper-

ating system time are shown.  

2.7 WHAT CAN AND WHAT CANNOT BE PROFILED 

All drivers, servers and the system task are profiled by the statistical profiler. However, 

as profiling is done through an interrupt handler in the kernel task, the kernel task itself 

cannot be profiled. The reason is that KERNEL is not reentrant: no interrupt, including 

the profiling timer interrupt, is allowed to occur while kernel task code is running. This 

implies that interrupt handling, scheduling and IPC code is not profiled. Note: SYSTEM 

which handles the kernel calls and also runs in kernel-space can be profiled. 

 

In all processes that are profiled, C functions (including library functions) and assembly 

language (identified by label instead of function name) are profiled. 

2.8 PROFILING RESULTS 

The results of a profiling run can be found in appendix C. They are analyzed below and 

in chapter 5. 

2.8.1 High Scoring IPC Functions 

In the results IPC functions score high in many processes. This is suspicious because 

these are efficient assembly language routines that should not take much CPU time, even 

when a lot of messages are processed by the system. To make sure samples are not incor-
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rectly attributed to blocking processes, a check is done in the interrupt handler to make 

sure the current process is actually runnable. The check is still there, although this always 

turned out to be the case. The latter makes sense since an un-runnable process is not 

scheduled and therefore cannot be the current process. I also checked for the value of 

k_reenter to make sure the kernel task was not running something else which would be 

incorrectly attributed to the current process. This was found to be OK, because as men-

tioned earlier KERNEL is not reentrant.  

 

So, what could be the cause of the high scoring IPC functions then? In order to find out 

more about the scoring of these functions, I put extra labels in __send, __receive and 

__sendrec in lib/i386/rts/_ipc.s. The code for __send after placing these extra labels 

(__snd[1-9]) is shown below. 

 
__send: 
        push    ebp 
__snd1: 
        mov     ebp, esp 
__snd2: 
        push    ebx 
__snd3: 
        mov     eax, SRC_DST(ebp)       ! eax = dest-src 
__snd4: 
        mov     ebx, MESSAGE(ebp)       ! ebx = message pointer 
__snd5: 
        mov     ecx, SEND               ! _send(dest, ptr) 
__snd6: 
        int     SYSVEC                  ! trap to the kernel 
__snd7: 
        pop     ebx 
__snd8: 
        pop     ebp 
__snd9: 
        ret 

 

After profiling with these extra labels, it turned out the results were always coming from 

label 7: the one after the trap instruction. It became clear the assembly routines are indeed 

not causing the strange results by being big time consumers: it has something to do with 

the software interrupt that takes place. 

2.8.2 Interrupt Delay 

My theory is that the CMOS timer interrupt is often delayed by the IPC traps. According 

to this theory, the high scoring IPC routines would then actually stand for the time spent 

during the trap by KERNEL in functions like mini_send. 

 

To test this theory, I temporarily changed the profiling interrupt handler: instead of writ-

ing profiling samples it read the CPU cycle counter, calculated the difference with the 

previous measurement and wrote it to profiling memory. This delivered a series of time 

differences between the interrupts, which should be similar if none are delayed. Since the 

CPU cycle counter is a steady way of measuring time differentials - its clock is never de-

layed - this might indicate if many CMOS timer interrupts were delayed. Some informa-

tion about these measurements: they were done on an Intel Celeron D running at 2.67 

GHz. The timer interrupt was set to 1 KHz. Therefore, the cycle counter difference be-

tween two interrupts is expected to be roughly 2670000000 / 1024 = 2607422 (~2.6 mil-
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lion cycles per 1/1024
th
 of a second). I ran the measurements for roughly 80 seconds 

(while running a busy make job). This generated 81732 measurements. I then took from 

the unsorted measurements every third one; this left me with 27244 results which would 

still be representative. (This was needed to fit the results in the program that created the 

graphs; admittedly quite a limitation for such a program, but it sufficed for most of my 

purposes.) The average of the 27244 measurements is 2599532, the average of the meas-

urements minus the extremes (explained below) is 2599580. 

 

The results are in the following diagram. The results were first sorted from small to large. 

On X-axis is the measurement number: smallest measurement on the left, largest meas-

urement on the right. On the Y-axis the cycle difference can be found, in number of cy-

cles. 

 

Figure 2-5. Time differences between CMOS timer interrupts. 

As can be seen in the above diagram, except for some extreme values, most measure-

ments have roughly identical values. However, the Y-axis of the diagram covers a very 

wide range to allow a few extreme values to be visible. For the next diagram, I took out 

the 30 lowest and 30 highest measurements; they account for 0.22% of all results. Now 

the Y-axis can zoom in to the remaining 99.78% of measurements. 
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Figure 2-6. Time differences between CMOS timer interrupts without extreme values. 

This diagram indicates that indeed a significant number of interrupts are delayed. This 

can be seen from the graph moving upwards at the right end where the intervals between 

interrupts are increasing. 

 

The longer intervals on the right side are ‘compensated’ by the shorter intervals the left 

side. This can be explained as follows: assume successive interrupts i, j and k where j is 

delayed and i and k are on time. Then the interval between i and j is larger than normal 

because of j’s delay (i happens at a timer tick, j happens after the next tick). As another 

consequence of j’s delay, the interval between j and k is shorter then normal (j happens 

after a timer tick, k happens at the next tick). So, each delayed interrupt affects intervals 

before (longer than normal) and after (shorter than normal). 

 

In my opinion, these measurements make interrupt delay a likely explanation for the high 

scoring IPC functions; in the rest of this document I will refer to this effect as the inter-

rupt delay effect. 

 

Finally, for completeness a histogram of the measurements (without the extremes) fol-

lows, as a more conventional way of showing the distribution. 
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Figure 2-7. Histogram of time differences between CMOS timer interrupts (without extremes). 

2.8.3 Profiling Runs on Simulator and Other CPU Models 

I did profiling runs on an Intel Pentium III 600 MHz, an AMD Duron 1 GHz and an Intel 

Celeron D 2.67 GHz. Although the results were mostly similar, the scoring of IPC func-

tions varied somewhat per CPU model. A possible explanation would be that the time it 

costs to trap is different from model to model. Cache size may have an effect on this. I 

also profiled in VMWare. In this simulator the IPC functions scored extremely high. I’m 

not sure if this is caused by very slow context switching because of the virtualization or 

for another reason. 

2.9 SIDE-EFFECT OF USING THE CMOS CLOCK 

Regularly after doing a profiling run, the system time will be off after the next reboot.  

Since the Real-Time Clock is used as profiling timer this is not really a surprise. The 

RTC is used to keep track of time in hardware. The operating system reads this time upon 

boot to set its own time variable. I expected that time would go slower or faster in the 

CMOS when its frequency was set lower or higher than its default, during profiling runs. 

In practice it would just be reset to 00:00:00 1 Jan 1970, a few days or years earlier or 

later then the current date or other corruption could be seen in the BIOS date/time. There-

fore, the BIOS time should be checked after running statistical profiling; this is especially 

true if a tool like rdate for remote time synchronization is not run automatically after 

boot. 
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3 CALL PROFILING 

3.1 INTRODUCTION 

Call (path) profiling is a completely different approach to doing measurements. Instead of 

having a timer that takes snapshots periodically, function calls throughout the execution 

of a program are followed continuously. This allows more than just taking measurements 

on a function level: call paths can be tracked and saved. This could give more insights 

into the execution of a program. The subject of this chapter is to describe the implemen-

tation of call profiling in MINIX 3. A high level description of the design is given, the 

implementation is described in detail, and the results are presented. 

3.1.1 Compiler-supported Call Profiling 

MINIX 3 is usually built with the ACK (Amsterdam Compiler Kit) compiler. This com-

piler has a command line option -Rcem-p. When used, ACK creates function calls to 

procentry and procexit on entry and exit of every function call. The procentry and 

procexit functions should be written by the compiler user. I used the –Rcem-p function-

ality to have profiling code triggered. This code generates call paths and registers the 

number of calls and cycles spent for each unique call path. 

3.1.2 Call Paths, Call and Cycle Attribution 

When talking about a call path “a b c”, it means execution started in a, a then called b and 

b then called c. To be able to differentiate where cycles were spent, the time attributed to 

a call path is the time spent in the function at the end of the call path. For example: call 

path “a b c” implies there are also paths “a” and “a b”. The results could look like this: 

 
calls cycles  path 
1  10  “a” 
1  30  “a b” 
2  20  “a b c” 
 

The start of the execution path is a (usually the start is main). It was called exactly once. 

In its own body (outside function calls it did), it spent 10 cycles. The second path also has 

1 as the number of calls, which means that a called b exactly once. There are 30 cycles 

attributed: these were spent in b when it was called by a. Possibly more cycles are spent 

in b, but only when another, different, call path exists where b is part of. “A b c” has two 

calls attributed to it; this means that from b in “a b”, c was called twice. The 20 cycles are 

the total of time spent in c during these two calls. 
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3.2 HIGH-LEVEL DESCRIPTION 

When the system is built using the –Rcem-p parameter, the system processes are linked 

with library functions procentry and procexit. Early after a profiled system process starts, 

it announces itself to the kernel. This allows the kernel to control profiling in the process 

through a shared data structure (the “control struct”) and know where the profiling table 

of that process is. In the process, profiling is done by the procentry and procexit library 

functions. In procentry the call path for a new call level is built using the name parameter 

(the name parameter of procentry points to a string with the name of the function that is 

called). A slot in a hash table corresponding to the call path is found or inserted, and the 

number of calls for the call path is updated in its slot. A stack is utilized that has an entry 

for each function called but not yet exited. The entry at the top of the stack corresponds to 

the most recent function call. In procentry the stack is used to save the call path length, a 

pointer to the slot corresponding to the call path and the CPU cycle count for the current 

level. When returning to a lower call level, in procexit the call path is restored using the 

stack. The CPU cycle count is read and the difference with the count on the stack is 

added to the cycles attributed to this call path using the slot pointer on the stack. In order 

to attribute only time spent in a functions own body, time spent on higher call levels (also 

maintained in the stack) is subtracted from it. 

 

The user can get the profiling tables of the profiled processed or have these tables reset 

using the same user program that is also used for statistical profiling. When the user 

wants to have the tables reset (the requested action is specified by a command line pa-

rameter), the program does a system call. The system call handler, which is as usual in a 

user-space system process, calls the kernel. The kernel writes a flag in the control struct 

of each profiled process. A profiled process sees this flag on its next entry of procentry 

and clears its table. When the user wants to get the profiling tables, the system is pro-

vided with pointers to user memory and an information structure (“info struct”) using the 

same system call. The kernel then copies all the profiling tables from the profiled proc-

esses to the memory supplied by the user; it writes feedback about the number of bytes 

copied and possible errors to the local info struct which is then copied to the user pro-

gram. The profiling data in memory is written to a file by the user program; it adds some 

information like the process names. There is a separate Perl tool that the user runs to ana-

lyze the raw data file and present the results in a formatted manner. 

 

On the next page there is a data flow diagram to visualize this. The following paragraphs 

will describe in detail how call profiling was implemented. 
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Figure 3-1. Overview of data flows in call profiling. 

3.3 WORK DONE IN USER-SPACE 

3.3.1 The CPROFILE System Call 

Analogous to statistical profiling, a system call CPROFILE was added to enable user pro-

grams to control profiling. This allows user programs to get or reset profiling tables. 

When the profiling tables are requested, the caller supplies pointers to a chunk of memory 

and to an info struct which is used by the kernel to supply the number of bytes written to 

the memory and the errors that may have happened during profiling. 
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struct cprof_info_s { 
 int mem_used; 
 int err; 
} cprof_info_inst; 

Figure 3-2 Info struct to be copied from kernel to user program. 

There is a library function cprofile for easy access to the system call. This call is handled 

by the PM server which does memory validity checks as well as adding the endpoint of 

the calling process to the message parameters.  

3.4 WORK DONE IN KERNEL-SPACE 

3.4.1 The PROFBUF and CPROF Kernel Calls 

A kernel call PROFBUF was added. Profiled processes utilize it to inform the kernel 

about the location of their profiling table and control structure. When this call is made, 

the name, endpoint, physical address of control struct and profiling table are saved in an 

array. The array holds a struct for each process and is used by the kernel call that will be 

described next. 

 
struct cprof_ctl_s { 
 int reset;  /* kernel sets to have table reset */ 
 int slots_used; /* proc writes nr slots used in table */ 
 int err;  /* proc writes errors that occurred */ 
} cprof_ctl_inst; 

Figure 3-3. Control structure used in profiled processes. 

A kernel call CPROF was added to allow a user program to get profiling results from the 

kernel, or have the profiling buffers reset. When CPROF is called (the kernel call is done 

through PM) in system/do_cprofile.c the following is done. On a RESET request, for each 

of the profiled processes it is checked whether the process is still alive and a flag is set in 

its address space using the physical address of its control struct. This address is in the ar-

ray mentioned in the previous paragraph. The profiled process should now respond to the 

change of the flag and reset its table. On a GET request, the user program pointers to info 

struct and profiling memory are translated to physical addresses and stored in local vari-

ables. For each of the profiled processes, it control struct is copied to a local variable 

which is then read to see how much tables slots were used for profiling up to now. From 

the total number of table slots, it is calculated if the results of all processes together 

would fit in the profiling memory of the user program. The info struct is then updated 

with the result: -1 in case of insufficient memory, otherwise a positive number for the to-

tal number of bytes that will be copied to the user’s memory. If there is enough memory 

available, the kernel copies for each profiled process to the user’s memory the name of 

the process, the number of used slots, followed by all the used slots in its profiling table. 

 



 

17 

EXTERN int cprof_mem_size;  /* available user memory for data */ 
EXTERN struct cprof_info_s cprof_info; /* profiling info for user program */ 
EXTERN phys_bytes cprof_data_addr; /* user address to write data */ 
EXTERN phys_bytes cprof_info_addr; /* user address to write info struct */ 
EXTERN int cprof_procs_no;   /* number of profiled processes */ 
EXTERN struct cprof_proc_info_s {  /* info about profiled process */ 
        int endpt;     /* endpoint */ 
        char *name;    /* name */ 
        phys_bytes ctl;    /* location of control struct */ 
        phys_bytes buf;    /* location of buffer */ 
        int slots_used;    /* table slots used */ 
} cprof_proc_info_inst; 
EXTERN struct cprof_proc_info_s cprof_proc_info[NR_SYS_PROCS]; 

Figure 3-4. Variables related to profiling, in the kernel. 

3.5 WORK DONE IN LIBRARIES 

3.5.1 Profiling Using Library Functions 

The heart of call profiling is in the library functions procentry and procexit. They are in 

lib/sysutil/profile.c (the listing of this file is in appendix B). For processes that were 

compiled using –Rcem-p, ACK adds calls to procentry and procexit on entry and exit of 

every function call. By defining the functions in a library against which system processes 

are linked, they need to be put only in one place. Another advantage of the library ap-

proach is that there is absolutely no change needed to most parts of the operating system 

(especially the servers and drivers) except for adapting the Makefiles so that the –Rcem-p 

flag is used and to make sure the –lsysutil flag is in there for correct linking. To make this 

happen, a bunch of Makefiles were changed slightly. In these Makefiles, a variable 

$(CPROFILE) was added to the regular $(CFLAGS). By declaring export CPROFILE=-

Rcem-p on the command line before building the system, this environment variable is in 

scope and applied during the make builds. An alternative would have been to use 

$(MAKEFLAGS) to have the make program propagate the flag instead of the shell. 

3.5.2 The Procentry Library Function  

Procentry first does a reentrancy check, the reason of which is explained in a later para-

graph. Then, the Pentium CPU cycle counter is read and the result (a 64-bit number rep-

resented by two 32-bit unsigned integers) is stored in a local variable. The function that is 

used to read the counter is in a separate file read_tsc.s which is also in the lib/sysutil/ di-

rectory. It is identical to read_tsc in kernel/klib386.s, but since the latter is kernel source 

code inaccessible to user-space processes I copied it to this location. 

 

Using static variable init there is a check if procentry was called for the first time. If this 

is the case, cprof_init is called to initialize the variables used for profiling. Some informa-

tion about these variables: cpath represents the current call path as a string of space sepa-

rated function names. For example, if foo was called and foo called bar, the call to pro-

centry on entry of bar will cause the call path to be set to “foo bar”. Cpath_len holds the 
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length of the call path string. A stack is maintained to store for each call level the call 

path length, the corresponding slot in a hash table, the CPU cycle counts taken at begin 

and end of procentry and the number of cycles that were spent at higher call levels. The 

size of the hash table and the announce number are then retrieved (these variables are ex-

plained further on). Cprof_init resets the stack and the hash table before returning. 

 

Using the same static variable init that is used to check for the first run, it is now checked 

if this is the announce run. Announcing means that the profiler is going to announce its 

existence to the kernel. Since the profiling functions are implemented as library func-

tions, the kernel has initially no idea which processes are being profiled. Therefore a 

function is called to have the process announce to the kernel the locations of its control 

struct and profiling hash table. This makes the kernel aware of the profiled process, and 

enables it to control its profiling. 

 

Before continuing, procentry does a sanity check on a variable that indicates whether an 

error happened earlier on. Since this variable is in the control struct of which the location 

was passed to the kernel earlier, it is available there as well. The kernel passes the error 

information on to user programs when they want the profiling tables. A check is now 

done on another variable in the control struct to see if the kernel instructed to reset the 

profiling table, in which case this is done. Note that the stack is not reset: it must outlive 

resets to keep its integrity. 

 
#define CPROF_CPATH_OVERRUN 0x1 /* call path overrun */ 
#define CPROF_STACK_OVERRUN 0x2 /* call stack overrun */ 
#define CPROF_TABLE_OVERRUN  0x4 /* hash table overrun */ 

Figure 3-5. Errors that may occur during profiling. 

The variable that holds the top of the stack is increased by 1 to prepare for the new call 

level. Should the stack overflow, the error variable in the control struct is updated and the 

function returns. Now the CPU cycle count that was read at the start of procentry is saved 

on the stack. An overflow check similar to that for the stack is done for the call path 

string. The current call path length is saved on the stack before the new call path string 

and its length are updated using the name parameter that is passed to procentry. The 

name parameter is a pointer to a string containing the name of the called function. 

 

The new call path string is run through a hash function to calculate the entry in the hash 

index that should point (directly or through chaining) to the slot for this string in the hash 

table. The hash algorithm used is ELF; I chose it because it seems a generally accepted 

algorithm with a reasonable good balance between distribution and calculation time. Us-

ing the hash index, a lookup is done in the hash table to see if this call path is already in 

there. If it is, the calls counter in the corresponding slot in the table is updated. 
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struct cprof_tbl_s { 
 struct cprof_tbl_s *next;    /* next in chain */ 
 char cpath[CPROF_CPATH_MAX_LEN];  /* string with call path */ 
 int calls;      /* nr of executions of path */ 
 u64_t cycles;     /* execution time of path, in cycles */ 
} cprof_tbl_inst; 

Figure 3-6 A hash table slot. 

If the path is not in the hash table yet, these actions are taken: a check is done for table 

overflow, the first available slot in the table is appointed to this new unique call path, the 

cpath and calls fields of the slot are set to the current call path and the number 1 (since it 

is the first call for this path). The hash index (in case of no collision) or hash chain (in 

case of collision) is updated. The hash result (index entry for this call path) is stored on 

the stack. Finally, the CPU cycle counter is read again and saved on the stack. 

 

 

Figure 3-7. Procentry has just run when foo was called. 

In the example above, the first function that executed in the process was foo. When foo 

was entered, procentry created an entry on the stack. The new call path length was saved 

in it. The call path string itself, including the function name, is in cpath (not visible in the 

diagram) and not on the stack, as explained later. A hash index was calculated and saved. 

Also the CPU cycle counts at begin and end of procentry were saved (in reality, the cycle 

count numbers are much higher, of course). For this new call path, the first slot in the 

hash table was allocated. In the slot, the call path string was written and the number of 

calls was set to 1. In this case, (naturally) there is no collision; the chaining field is not 

used. 

 



 

20 

 

Figure 3-8. Procentry has just run when foo called bar. 

In our example process, foo called bar during its execution. Just like for foo, procentry 

was run. It created a new stack entry and saved in it the new call path length, a hash index 

for this call path and the CPU cycle counts. A new slot on the hash table was allocated 

and the call path and number of calls (again 1, for a new path) were written to it. 

3.5.3 The Procexit Library Function 

So, procentry has run and a function in the profiled process was entered. The stack is up-

dated with all the information for the currently running system function and there is a slot 

in the hash table that has the correct number of calls for this call path. What is missing is 

the cycle usage of the function. Naturally this will only become known when the function 

returns: when procexit is called. I will now describe what happens in procexit. 

 

First a reentrancy check is done and then the CPU cycle counter is read into a local vari-

able. Before continuing a check is done if errors occurred, just like in procentry. Remem-

ber that the CPU cycle counter was read at begin and end of procentry. This is also done 

in procexit. The cycle counter was read at the start, and will be read at the end. The 

reason for this is that procentry and procexit themselves take time, which we do not want 

to mess up the measurements. How does it work? In order to calculate the time taken up 

by a function call, the cycle counter is read at the end of procentry and at the beginning of 

procexit to have as little overhead of these calls as possible. Let’s call the difference be-

tween these measurements the small difference. This number is used to attribute time to a 

certain call path, for example “foo”. However, there may be deeper call levels, and this is 

extracted from the time attributed, because we need the time actually spent in the call 

path on the current level. So, the time spent in higher levels, which is maintained in the 

stack, is extracted from the attributed time. For instance: foo spends 25 cycles in its own 

body and calls bar which spends 100 cycles in its body. Call path "foo" is attributed 25 
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cycles; call path "foo bar" is attributed 100 cycles. There is a caveat here: when the time 

spent in deeper levels is extracted, it should be the time including the time spent in 

procentry/procexit, otherwise this overhead will turn up in the measurements after all. 

Therefore another difference is calculated, the big difference, which is the difference 

between the cycles measured at begin of procentry and end of procexit (almost, some 64-

bit integer arithmetic cannot be avoided after the last reading in procexit). This is what 

happens in procexit: 

 

First, the small difference is calculated, the spent_deeper variable related to the current 

call path is subtracted from it and the result is added to the cycles counter in the slot cor-

responding to the current call path. Then spent_deeper is cleared for the call level we are 

leaving (to start fresh should the call path return to this level). Finally the CPU cycle 

count is read for the second time and the big difference is calculated. The result is added 

to the spent_deeper variable in the entry on the stack below the current entry, so it can be 

subtracted later from the time spent at that lower level. 

 

Meanwhile the call path string was updated by writing a null character at the appropriate 

position (the position was saved on the stack). This suffices since we’re leaving a func-

tion and therefore the string can just be chopped at the proper length. 

 

 

Figure 3-9. Procexit has just run when bar exited. 

Our example function bar exited, which caused procexit to run. Procexit read the CPU 

cycle count (115; the procexit cycle read-outs are not visible in the diagram), subtracted 

from it the cycle count at the end of procentry (105, as saved on the stack). The result 

(10) was saved in the slot for “foo bar”. At the end of its own execution, procexit also cal-

culated the difference of a new cycle count read-out (116) with the cycle count at the start 

of procentry (104, as saved on the stack) and saved the result (12) in spent_deeper in 

foo’s stack entry. It then removed the stack entry for bar. 
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Figure 3-10. Procexit has just run when foo exited. 

Example function foo exited, which caused procexit to run again. Procexit read the CPU 

cycle count (119), subtracted from it the cycle count at the end of procentry (101, as 

saved on the stack). Spent_deeper (from the stack) was then subtracted (18 – 12) and the 

result (6) was saved in the slot for “foo”. Since the call level has reached zero (no running 

functions), there was no spent_deeper for a lower level that had to be updated. Finally, 

the stack entry for bar was removed.  

3.5.4 The Call Path String 

The call path could have been saved in components on the stack by storing for every call 

level the name parameter that points to a string with the function name. Instead, the call 

path is stored separately in character array cpath and its length in cpath_len (the latter is 

saved on the stack). This is done for performance reasons. Since on every call to 

procentry the call path would have to be constructed from (pointers to) function names on 

every entry on the stack, it makes sense to just keep the call path as a separate string to 

avoid this work. In procentry the string in name only has to be written to the call path 

character array at the right position to create the new call path; the old call path length is 

saved on the stack. In procexit, the call path is restored by simply chopping it at the 

length read from the stack. 

 

Even though the measuring overhead of the profiling functions is eliminated for the most 

part, performance plays a factor. Right now the system is about 2-3 times slower doing 

system build make jobs with call profiling enabled. This is very acceptable but it should 

not be much slower. 
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3.5.5 Testing Overhead Elimination 

I did some tests to check the small/big difference logic. I created functions a, b, c and d, 

all of which have an identical empty loop in their body to simulate some processing. In 

addition to the loop, a contains calls to b and c, and b contains a call to d. The code looks 

like this: 

 
#define IT 10000 
 

PRIVATE void a(){ 
        int i; 
        for (i=0; i<IT; i++); 
        b(); 
        c(); 
} 
 
PRIVATE void b(){ 
        int i; 
        for (i=0; i<IT; i++); 
        d(); 
} 
 
PRIVATE void c(){ 
        int i; 
        for (i=0; i<IT; i++); 
} 
 
PRIVATE void d(){ 
        int i; 
        for (i=0; i<IT; i++); 
} 
 

In foo, somewhere in a loop: 

 
… 

  a(); 
… 

 

Since the profiler aims to attribute time spent in a functions own body, these functions 

should score roughly identical. I ran the test with single cycle count reads (at end of 

procentry and begin of procexit) and with the dual reads (as implemented). The call to a 

was placed in a loop in foo. There were two different runs in which the number of execu-

tions of a was almost -but not exactly- the same. So, one should look at the differences 

within a method (either single or dual read); the absolute differences between the 

methods cannot be used. Time is in milliseconds. 
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Single cycle count reads: 

 
ms path 
1294 foo a 
1237 foo a b 
1195 foo a b d 
1182 foo a c 
 

As expected, the overhead of procentry and procexit accumulates mostly in call path “a” 

which has two call levels on top of it containing three functions calls (itself calling b and 

c, and b calling d). Call path “a b” suffers from the same accumulation although to a 

lesser extent since it has only one call level above it, containing one function call (itself 

calling d). Paths “a b d” and “a c” contain no more functions calls and are attributed the 

lowest times, according to expectations.  

 

Dual cycle count read-outs: 

 
ms path 
1246 foo a 
1221 foo a b 
1213 foo a b d 
1212 foo a c 
 

The times attributed to the functions are more similar. It seems that the dual reading has 

effect: the overhead of procentry/procexit is eliminated significantly. 

3.6 PROFILING KERNEL-SPACE/USER-SPACE PROCESSES 

There are some differences in the way the profiling library handles kernel-space proc-

esses and user-space processes. These are described in 3.6.1. In 3.6.2 and 3.6.3 some is-

sues specific to profiling kernel-space are discussed. 

3.6.1 Differences in Announcing and Table Sizes 

As described earlier, a profiled process announces itself to the kernel. For the user-space 

processes this is done using the kernel call PROFBUF. The kernel, however, cannot do a 

kernel call. It has to manipulate the array of profiled processes directly. This posed a 

problem since the sysutil library is compiled separately from the system and at compile 

time it is unknown whether the library will be linked later on with a user-space process or 

the kernel. This could not be solved with some #if statements in the code. 

 

The Solution is in Linking 

 

I solved this by having procentry call a function profile_register to do the announcement. 

This function is defined in two places. It is in lib/sysutil/profile_extern.c as an additional 

library function; this one calls PROFBUF. It is also in kernel/profile.c; this one accesses 

the data structures directly. When user-space processes are linked with procentry/procexit 
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in the sysutil library, the linker will use profile_register in lib/sysutil/profile_extern.c be-

cause that is the only one known. However, when the kernel is linked the one from its 

own directory is chosen because the linker gives a locally defined function preference 

over one in a library. The same mechanism is used to solve two other problems. 

 

When to Announce 

 

For user-space processes, the announcement can take place on the first execution of 

procentry. For the kernel, this is not the case. The kernel code contains functions like 

cstart (the first C function in MINIX 3 after boot) and when it runs endpoints are not set 

up yet. Since the endpoint is needed for registration of a profiled process, the announce-

ment is not possible yet. Therefore a function profile_get_announce is defined in 

lib/sysutil/profile_extern.c as well as in kernel/profile.c for separate linking. In case of 

user-space processes, it returns CPROF_ANNOUNCE_OTHER. This is defined as 1 in 

include/minix/profile.h so a user processes calls profile_register on the first run of 

procentry. In case of the kernel, CPROF_ACCOUNCE_KERNEL is returned. This is de-

fined as 10000, so profile_register is called on procentry’s 10000
th
 run.  The number was 

a rough guess that works well because it turns out that at this run the kernel has finished 

setting up its data structures. It might have sounded more logical if this was done from 

the kernel itself at the exact moment it is ready. However, that would have been very 

impractical to implement since the profiling data structures that are registered at 

announcement are private to the sysutil library. It made more sense to do it this way. 

 

Profiling Table Size 

 

The profiling table size depends on the size of a slot and the number of slots. The size of 

a slots is largely depended on CPROF_CPATH_MAX_LEN (in include/minix/profile.h), 

which must be large enough to fit the largest call path. At the moment it is defined as 256 

bytes because some servers (notably FS and INET) have call path lengths that can exceed 

200 characters. Since the number of unique call paths (which is the number of slots 

needed) can exceed 2000 in these processes, the table can easily reach 1 MB or more 

when sizing it with some additional headroom in mind. 

 

For user-space processes this is not much of a problem, except that the boot image is 

loaded in extended memory and therefore much fit in 16 MB. Since there are only about 

eight processes in the boot image, this is still OK. For the kernel-space processes how-

ever there is a real problem: their image is loaded in lower memory and must therefore fit 

in 640 KB. To solve this, I let kernel and user-space processes have different table sizes. 

They are CPROF_TABLE_SIZE_OTHER (3000 slots) for user-space processes and 

CPROF_TABLE_SIZE_KERNEL (1500 slots) for the kernel. The different tables are de-

clared in lib/sysutil/profile_extern.c and in kernel/profile.c. The function 

profile_get_tbl_size is defined twice as well so the profiling functions can find out the 

size of their table at runtime. 

 

To illustrate the effect of call profiling on the size of the profiled processes, the output of 

make hdboot is shown below for a regular build and one with call profiling enabled. 
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     text     data      bss      size 
    24208     3384    44396     71988  ../kernel/kernel 
    21312     3116    93940    118368  ../servers/pm/pm 
    41536     5232  5019704   5066472  ../servers/fs/fs 
     6848      840    20388     28076  ../servers/rs/rs 
     3280      464     1808      5552  ../servers/ds/ds 
    27072     5696    48104     80872  ../drivers/tty/tty 
     6144   574504     3068    583716  ../drivers/memory/memory 
     5968      572    63280     69820  ../drivers/log/log 
     7056     2412     1356     10824  ../servers/init/init 
   ------   ------   ------   ------- 
   143424   596220  5296044   6035688  total 
 
     text     data      bss      size 
    30560     5096   495392    531048  ../kernel/kernel 
    25504     4360   952252    982116  ../servers/pm/pm 
    47440     7492  5878016   5932948  ../servers/fs/fs 
     9152     1116   878700    888968  ../servers/rs/rs 
     5648      728   860120    866496  ../servers/ds/ds 
    31728     7172   906416    945316  ../drivers/tty/tty 
     8512   574752   861380   1444644  ../drivers/memory/memory 
     8736     1028   921592    931356  ../drivers/log/log 
     7056     2412     1356     10824  ../servers/init/init 
   ------   ------   ------   ------- 
   174336   604156 11755224  12533716  total 

3.6.2 Kernel-Space Issue: Reentrancy 

As mentioned in the previous paragraphs, the profiling functions procentry/procexit con-

tain reentrancy checks. The checks are really there for when the system task is profiled. 

When a profiling function is running in this process, it is entirely possible that it is inter-

rupted during its execution. The (software or hardware) interrupt will cause a handler to 

be run. If this handler is a C function, a call to procentry will be done, and procexit will 

be called when the handler returns. Possibly even more calls to the profiling functions 

happen, if the handler has function calls in it. The kernel-space processes all use the same 

profiling data structures and the profiling functions do not take reentrancy into account. 

This has a corrupting effect on the time calculation when interrupts cause a handler in 

KERNEL or CLOCK to run when procentry or procexit was running at that time on behalf 

of the system task. 

 

To prevent this, lock variables are used to allow only one instance of the profiling func-

tions to run at a time. The consequence is that some interrupt handlers are missed.  

3.6.3 Kernel-Space Issue: The Call Path 

Since the kernel-space processes (KERNEL, CLOCK, IDLE and SYSTEM) all run in one 

address space, they use the same profiling data structures. This means they have the same 

profiling stack, hash table, etc. As a result of this, the call paths generated are influenced 

by interrupts. The call paths are littered with interrupt handlers. Even though the full call 

paths are not so useful because of this, this does not need to be a problem. The paths in 

kernel-space are very short and if the analyzer script (to be discussed soon) is instructed 

to show the totals per function the results are still very useful. 
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3.7 WORK DONE AT THE APPLICATION LEVEL 

3.7.1 Control Tool: profile 

The user program in commands/profile/ that was described earlier has options to control 

call profiling as well. When a reset of the profiling tables is requested, the program sim-

ply does a CPROFILE system call with the appropriate parameter and exits. When the 

user wants to get the profiling results the following is done. The program allocates mem-

ory for the profiling data. A system call CPROFILE is done which passes the operating 

system the following parameters: the location and size of the allocated memory and the 

location of an info struct. When CPROFILE returns, the user program reads the 

mem_used variable from the info struct. Just like with statistical profiling the value holds 

-1 when there was not sufficient memory, otherwise it holds the number of bytes used. If 

this was found OK, it writes to a file a header containing the value of 

CPROF_CPATH_MAX_LEN (which represents the length of the call path field in the 

hash table) and the value of CPROF_PROCNAME_LEN (fixed length reserved for proc-

ess names) as defined in include/minix/profile.h. The reason for this is explained below. It 

then writes the profiling data from memory to the file and exits. 

3.7.2 Analyzer Tool: cprofalyze.pl 

The Perl program cprofalyze.pl is available to analyze raw profiling data files. This script 

starts with reading the header with call path and process name lengths. The reason the C 

program wrote them in the data file is that the Perl tool is not aware of the C language 

header file where these values are defined as macros. Changes to the macros affect the 

structure of the profiling tables. By having the C user program write them in the data file, 

the Perl tool is informed about them. This solution avoids hard coding of the same values 

in the Perl tool which would be redundant and could cause problems if the Perl tool was 

not updated after the macros were changed. Also, the Perl tool can process data files cre-

ated by different operating system builds (with different values for these macros). 

 

After the header, the actual profiling data follows. For each system process, the kernel 

has written the process name, the number of slots used and those actual slots. The process 

name and the number of slots are of fixed length. The length of the data following them 

depends on the used number of slots, but since this was just read the analyzer knows how 

much to read before for the next process data starts. The fields for each slot: unique call 

path, number of calls and cycles used are read into variables. There is one field that is not 

used: the hash table chaining field. It was only of use when the table was actively used 

during profiling. The reason that it was copied to the user program is simplicity: it would 

take more complexity to omit it during copying. The size of the field is only one word per 

slot: about 2% of the table. The chaining could have been done in a separate array, but 

this would have cost extra lookups during profiling. There are several command line op-

tions to this script that allow control over the output and the results are sorted and for-

matted according to the users wish before being outputted. The analyzer does not calcu-

late percentages because most of the time they are not useful with blocking functions tak-

ing up so much time. 
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A mandatory parameter to cprofalyze.pl is the CPU clock speed. This is used to calculate 

milliseconds from the cycles field in the hash. 

 

In addition to the data file header mentioned earlier, there is one more header in the data 

file for both call and statistical profiling. This is the first line of the file and it indicates 

whether the file contains data for statistical or call profiling. This allows the analyzer 

scripts to do a sanity check before processing and to suggest the correct analyzer script if 

the wrong one is used. 

3.8 WHAT CAN AND WHAT CANNOT BE PROFILED 

Contrary to the statistical profiler, the kernel task (KERNEL) can be profiled. This allows 

us to have a better understanding of time spent in the kernel.  

 

Unfortunately due to the way call profiling works, blocking time (on I/O and send-

ing/receiving of messages) is included in cycle attribution. The profiler in each profiled 

process has no notion of the state of the process. 

 

The -Rcem-p option of ACK only works on C functions. There is functionality in the 

kernel that is written in assembly language (most of SYSTEM’s cycles are spent in it, as 

can be seen in the statistical profiling results), and this will not turn up in the profiler. 

Specifically these are the memory copying/setting, low-level message passing code and 

the _hwint00-15 interrupt handlers. However, a lot can be learned already from the names 

of the C functions that call the assembly “functions”. The time spent in assembly is at-

tributed to the calling C function: to the profiler it looks as if the assembly cycles were 

spent inline and they are attributed as such. This makes up somewhat for the lack of as-

sembly support. As a workaround, to point out the exact time spent in assembly language, 

the calls to it could be put in wrapping C functions with names like asm_phys_copy. 

 

Library functions are not profiled because I got some strange effects when compiling 

them with –Rcem-p. Also library dependencies would be more complicated because the 

programs in commands/ use them and require Makefile adaptation. My impression is that 

the system processes do not use library function a lot, though. 

 

Although the TTY driver can be profiled like any other process, it shows strange behavior 

on the console when it is compiled with call profiling enabled. Terminals over the net-

work are not affected. This is the reason that the $(CPROFILE) flag in 

drivers/tty/Makefile was taken out. It can be put back if profiling of TTY is needed. 

3.9 PROFILING RESULTS 

Some example results of profiling the kernel and FS are in appendix C. An analysis fol-

lows in chapter 5. 
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4 USAGE 

4.1 USAGE AND REQUIREMENTS 

Profiling is controlled using the profile program. This is its Usage: output: 

 
Statistical Profiling: 
  profile start [-m memsize] [-o outfile] [-f frequency] 
  profile stop 
 
Call Profiling: 
  profile get   [-m memsize] [-o outfile] 
  profile reset 
 
   - memsize in MB, default: 64 
   - default output file: profile.{stat|call}.out 
   - sample frequencies (default: 6): 
      3    8192 Hz          10     64 Hz 
      4    4096 Hz          11     32 Hz 
      5    2048 Hz          12     16 Hz 
      6    1024 Hz          13      8 Hz 
      7     512 Hz          14      4 Hz 
      8     256 Hz          15      2 Hz 
      9     128 Hz 
 
Use [sc]profalyze.pl to analyze output file. 

 

Before you can profile, you have to prepare the operating system. See the paragraphs be-

low. To run the analyzer scripts, Perl must be installed. This is easily done using the 

packman installer program that is part of MINIX 3. No additional Perl modules are 

needed. For statistical profiling the sprofalyze.pl script is used. This is its Usage: output: 

 
  sprofalyze.pl [-p percentage] file ... 
 
    percentage  print only processes/functions >= percentage 

 

And for call profiling the cprofalyze.pl script is used. This is its Usage: output: 

 
  cprofalyze.pl <clock> [-f] [-aoct] [-i] [-n number] file ... 
 
      clock  CPU clock of source machine in MHz (mandatory) 
         -f  print totals per function (original order lost) 
         -a  sort alphabetically (default) 
         -o  no sort (original order) 
         -c  sort by number of calls 
         -t  sort by time spent 
         -n  print maximum of number lines per process 
         -i  when -[ao] used: print full paths 

4.2 PREPARATIONS FOR STATISTICAL PROFILING 

To enable statistical profiling, set SPROFILE in /usr/include/minix/config.h to 1 and re-

compile the kernel (e.g. make hdboot in /usr/src/tools/).  Boot the new kernel. Do make 
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clean install in /usr/src/commands/profile/. You should now be able to start and stop pro-

filing. 

 

Warning: the BIOS time may be wrong after doing a statistical profiling run! The BIOS 

time should be checked afterwards and corrected if needed. 

 

The locations of all system executables are configured in sprofalyze.pl. When adding a 

driver or server to the operating system the location of the new executable should be 

added there. This allows the script to extract its symbol table and include it in system pro-

filing. 

4.3 PREPARATIONS FOR CALL PROFILING 

To enable call profiling, set the CPROFILE flag in /usr/src/include/minix/config.h (note, 

this is the config.h in the source tree). Do export CPROFILE=-Rcem-p in your shell to set 

this environment variable. Now build the operating system, including libraries, by doing 

make fresh hdboot in /usr/src/tools/. Be aware that this will overwrite the config.h in 

/usr/include/minix/ with the one in the source tree! If you have a customized config.h, 

back it up before doing make fresh. Boot the new kernel. Do make clean install in 

/usr/src/commands/profile/. You should now be able to reset and get profiling tables. The 

kernel prints a notice on the console if a get or reset action is taken; it includes the names 

of the profiled processes. 
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5 PROFILING RESULTS 

All results presented here are based on profiling runs during make clean install in 

commands/. 

5.1 KERNEL-SPACE PROCESSES 

5.1.1 Time Distribution by Function 

The following chart was made from the call profiler results listed in appendix C and 

represents KERNEL, CLOCK and SYSTEM. The clock task scored only 0.3% and is 

therefore in the other category. 

 

Figure 5-1. Distribution of time in kernel-space. 

5.1.2 Time Distribution by Category 

Using the function results from the previous paragraph, a distribution across certain 

categories of work is now made. 

 

Memory Copying and Clearing 

 

Virtual_copy (through do_copy), do_copy and do_memset together account for about 

42% of the time. This can be explained by the high number of process creations during 
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the make run. Since MINIX 3 uses segmented memory (instead of a more common vir-

tual memory system), for each process creation, through forking, a full process image 

must be copied and cleared. 

 

Note that this time is spent by SYSTEM, since the do_* functions are kernel calls. 

 

IPC 

 

IPC functions mini_send, mini_receive and lock_send account to 15.3% of time spent. If 

enqueue and dequeue (by far, most calls to these are made by IPC functions) and 

pick_proc (only called by enqueue and dequeue) are included the total is about 30%.  

 

This time is spent by KERNEL. 

 

Trapping 

 

Time spent for handling software interrupts is the total of sys_call and deadlock (only 

called from sys_call): about 17%. 

 

This time is spent by KERNEL. 

 

What Remains 

 

The remaining kernel-space time is spent in scheduling and in kernel calls other then 

do_copy and do_memset. 

 

The time spent by isokendpt_f is spread over the categories above. 

5.1.3 Conclusions 

Time spent in MINIX 3 kernel-space when the system is busy running make jobs that 

compile and install lots of source code, can be clearly categorized into distinct types of 

work. Almost half goes into memory copying and clearing, almost a third is in message 

passing, a sixth is spent processing traps. The remaining 7% goes to scheduling, account-

ing/time keeping, kernel calls other then for memory work, etc. 

 

Another categorization is also possible: about half is spent by the system task (memory 

work) and the other half is spent by the kernel task (the rest). 

 

One thing is not measured here: the assembly language _hwint* interrupt handlers. They 

are not called by C functions so they will not appear in the call profiling results. The re-

sults are based on the assumption that they do not use a lot of time. 
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5.2 ALL MINIX 3 PROCESSES 

A distribution of the time spent by all MINIX 3 processes is not easily made. The call 

profiler is not helpful here since the blocking time included in the user-space processes 

makes it unsuitable. The statistical profiler might be useful, but it does not measure the 

kernel task and attributes IPC time that really belongs to the kernel task to other processes 

due to interrupt delay. Still, I find the distribution of time across all MINIX 3 processes 

important and therefore I will make an effort to approximate it. 

5.2.1 Approximating 

From the results of a statistical profiling run, the IPC time attributed to processes due to 

the interrupt delay effect is taken out. The percentages for each process’ part of MINIX 3 

time are then recalculated. In the previous paragraph, we found that system and kernel 

task spend roughly as much time. Using that knowledge, we will use for the kernel task 

time the same number as the system task and normalize the percentages. The following 

graph is based on these calculations, which can be found in detail in appendix D. 

 

Figure 5-2. Approximation of time distribution of all MINIX 3 processes. 
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5.2.2 Message Processing Time 

In support of the approximation done, notice in the last part of the calculations in 

appendix D that the IPC time taken out of the processes is 22% of MINIX 3 time. This is 

not far off from the 30% of kernel-space time that IPC takes as concluded in 5.1.3: 

(38% + 38%) * 30% = 23%. 

 

The distribution of the IPC time (as part of total MINIX 3 time) is as follows: FS 11.7%, 

system task 6.8% and PM 3.5%. This time is spent by the kernel task, on behalf of the 

processes mentioned. 

 

We will now calculate the time spent by the CPU on MINIX 3 message handling, as part 

of everything that is running (MINIX 3 + user programs). From appendix C, statistical 

profiling results, we see that the balance MINIX 3 / user land ticks is 23 / 33. So the 

percentage of MINIX 3 message processing is 23 / (23 + 33) * 22% = 9%. 

5.2.3 Conclusions 

About three quarters of MINIX 3 time, when running the make jobs, is spent in kernel-

space. So, even though the amount of code in kernel-space is small it gets executed a lot. 

FS takes the second place which is no surprise considering the file system operations re-

quired during the make jobs. PM takes the third place, this is also no surprise because its 

work is required for the many processes that are created and exited. 

 

These are the times spent on message processing: 

 
As part of kernel-space  30% 
As part of MINIX 3   22% 
As part of everything on CPU  9% 
 

So, the performance penalty of MINIX 3 being based on messages seems to be around 

10%. In my opinion this is a small price to pay, especially considering the increases in 

speed seen in hardware. 
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6 RECONCILATION 

Although statistical and call profiler are very different in their approach, their measure-

ments should be reconcilable. In fact, if their results are similar both profilers gain credi-

bility. Unfortunately, a one-on-one comparison is not possible because of the following 

reasons: 

 

1. The statistical profiler is more fine grained then the call profiler in the sense that it 

profiles assembly language and library functions, both of which the call profiler is 

not able to profile directly (instead the time is attributed to the C functions that 

called the assembly code/library functions). 

 

2. The call profiler includes time spent blocking (on I/O and message sending and 

receiving), which is not the case with the statistical profiler. 

 

3. The statistical profiler picks up an unknown part of the time spent by the kernel 

task on IPC functions due to interrupt delay (as discussed in 2.8.2). 

 

Regarding point 1: in order to make comparison possible, I will analyze the functions re-

ported by the call profiler for embedded assembly and library calls in an effort to recon-

cile them with statistical profiling results. However, since these assembly and library 

functions could have been called by different C functions, it is impossible to attribute 

them to a specific one. However, in most cases the ‘mapping’ is straightforward. 

 

Regarding point 2: blocking functions in the call profiling results will be ignored. 

 

Regarding point 3: I will take out high scoring IPC function(s) of the statistical results 

and recalculate the percentages to simulate non-existence of the interrupt delay effect. 

 

I will try to reconcile the system task as well some user-space processes: FS and PM. All 

profiling runs were done during a make clean install in commands/. For call profiling re-

sults, percentages were calculated from the output of the analyzer program and used in-

stead of the regular calls/cycles results. 
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6.1 RECONCILING THE SYSTEM TASK 

 Statistical Profiler   Call Profiler  

       

1: unaltered results of a profiling run     

2: __receive set to 0%      

3: percentages normalized     

       

 1 2 3    

       

_phys_co 43.1% 43.1% 50.9%  virtual_copy 55.7% 

fill_sta 28.1% 28.1% 33.2%  do_memset 31.9% 

__receiv 15.4% 0.0% 0.0%  do_copy 2.8% 

_lock_se 3.3% 3.3% 3.9%  umap_local 1.9% 

_isokend 2.7% 2.7% 3.2%  do_getinfo 1.5% 

_clear_e 1.4% 1.4% 1.7%  clear_endpoint 1.4% 

_sys_tas 0.8% 0.8% 0.9%  do_umap 1.2% 

_virtual 0.7% 0.7% 0.8%  do_devio 0.9% 

_do_copy 0.5% 0.5% 0.6%  do_newmap 0.9% 

_do_vdev 0.5% 0.5% 0.6%  do_vdevio 0.6% 

_umap_lo 0.4% 0.4% 0.5%  do_setalarm 0.2% 

no0 0.4% 0.4% 0.5%  do_fork 0.2% 

pc_small 0.4% 0.4% 0.5%  do_times 0.2% 

_inb 0.3% 0.3% 0.4%  cause_alarm 0.1% 

_do_geti 0.3% 0.3% 0.4%  clear_proc 0.1% 

_alloc_s 0.3% 0.3% 0.4%  do_exec 0.1% 

_do_newm 0.2% 0.2% 0.2%  do_irqctl 0.1% 

_do_umap 0.2% 0.2% 0.2%  <0.1% 0.2% 

_sdesc 0.2% 0.2% 0.2%    

_outb 0.1% 0.1% 0.1%    

_tmrs_cl 0.1% 0.1% 0.1%    

<0.1% 0.6% 0.6% 0.7%    

       

 100.0% 84.6% 100.0%   100.0% 

  

Virtual_copy in kernel/system.c calls _phys_copy in kernel/klib386.s, so the biggest cy-

cle-eater can be reconciled reasonably well being so close percentage-wise in the results 

of both profilers. The same is true for do_memset in system/do_memset.c which calls 

_phys_memset in kernel/klib386.s where fill_start is a label. It may seem strange that 

fill_start would have a higher percentage then do_memset, but keep in mind that fill_start 

can be reached in other ways then through do_memset (for example, through do_exec). 

This is true for many other functions and makes further reconciliation a daunting task. 

The other functions score much lower than the two top scorers though; together number 1 

and 2 account for 80-90% of the CPU cycles used by SYSTEM. 
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How Call Profiling Results were Retrieved 

 

In order to get the results for the system task only, in kernel/ I compiled only system.c and 

system/* with the –Rcem-p option. Also, profile_register in kernel/profile.c was changed 

slightly to have SYSTEM announce itself instead of KERNEL. I used the –f –t parameters 

in the analyzing script to show totals per function, sorted by time spent. 

6.2 RECONCILING USER-SPACE PROCESSES 

I have put quite some effort in trying to reconcile FS as well as PM results, and was not 

able to make a ‘mapping’. Even though many functions end up roughly in the same class 

of cycle usage, many others do not. 

 

The problem is that it is not possible to take the blocking time out of the call profiling 

results; this time is spread over many functions. These functions may spend time block-

ing as well as running, and the profiler does not differentiate between those states. 

6.3 CONCLUSION 

Directly comparing user-space processes is as good as impossible due to the very differ-

ent nature of the profilers. 

 

In the system task blocking functions played no role. This implied that the call profiling 

results were blocking time ‘free’ so the comparison to the statistical results (corrected for 

interrupt delay pollution) was possible. In this comparison, for the significantly scoring 

functions the results were almost identical. 
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7 CONCLUSIONS 

7.1 WORK DONE 

In this thesis I described the making of performance measuring tools for the MINIX 3 

operating system. Two known methods of measuring program performance were imple-

mented: statistical profiling and call profiling.  

 

The actual profiling logic was implemented in kernel-space and user-space processes of 

the operating system. Data acquisition and analysis tools were implemented on the appli-

cation level. Efforts were taken to minimize the impact of measuring on the results. 

 

The work was done in such a way that measuring can be enabled or disabled from a sin-

gle configuration file so it does not stand in the way of the operating system and does not 

affect performance when not enabled. In fact, when disabled the measuring code is not 

even compiled.  

 

The results of both profilers were analyzed in chapter 5 and reconciled in chapter 6. 

7.2 COMPARING THE PROFILERS 

7.2.1 Advantages and Disadvantages of Statistical Profiling 

The methods each have their advantages and disadvantages. 

 

The statistical profiler is able to measure assembly and library functions. Its results are 

not polluted by time spent in blocking functions. It has hardly an impact on performance 

(the system runs only a few percent slower during a run).  

 

However, the kernel task cannot be profiled. In addition the profiler suffers from interrupt 

delay pollution causing an unknown part of the time spent by the kernel task on IPC func-

tions to show up in its results. It does not track whole call paths. It only sees functions 

that execute often enough to turn up in the results. 

7.2.2 Advantages and Disadvantages of Call Profiling 

The call profiler profiles full call paths. This allows the input to be used not for just 

measuring individual functions but also to gain insights into the execution paths of proc-

esses (for example, call graphs could be created from the results). It can profile all proc-

esses, including the kernel task, and it does not miss a single function call. There is no 

pollution from interrupt delay. 
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The disadvantages are that assembly and library function are not profiled; instead the 

time spent is included in the calling C functions. Blocking time (on I/O, sending and re-

ceiving messages) is included in the results which makes it hard to find out where time 

was actually spent running. The time spent in a function can only be measured when the 

function returns, this is a problem for functions that have not returned when the profiling 

results are retrieved (for example: the main function of a process). The system is two to 

three times slower during call profiling. 

7.2.3 Overview of Differences 

 Statistical Profiler Call Profiler 

Measures:   

Every single function call  •  

Full call paths  •  

Kernel task  •  

Assembly code •   

Library functions •   

   

Hampered by:   

Blocking functions  •  

Interrupt delay •   

Functions that have not re-

turned yet 

 •  

   

Impact on performance low high 

7.3 FINAL WORDS 

The results analysis shows that during compiling and installing of many C source code 

files, MINIX 3 spends most of its time copying and clearing memory to support the crea-

tion of the many (compiler, linker, installer) processes. This is due to the segmented 

memory system that MINIX 3 uses and will probably be different when MINIX 3 

changes to a virtual memory system. Of all the cycles spent (MINIX 3 + user land appli-

cations) about 10% of CPU goes to message processing. 

 

The reconciliation of the profilers was not possible on all processes because of the fun-

damental differences between what is included in the results. Namely, blocking time is 

included in the results of the call profiler but it is not in the results of the statistical pro-

filer. However, when comparing the only process that would allow a comparison because 

of the lack of time spent blocking and the availability of results in both profilers (the sys-

tem task) the high scoring results were very similar. This seems to indicate that the meas-

urements can be taken serious, but the user has to take in mind the characteristics of each 

profiler when weighing its results. 
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The call profiler shows its strength when measuring kernel-space processes because there 

it is not hampered by blocking functions. In user-space this profiler is useful to reveal 

execution paths and the number of times functions were called. 

 

The statistical profiler shines when profiling user-space processes because the many 

blocking functions do not affect the results. The interrupt delay effect should be taken 

into account however. 

 

Despite the shortcomings of each profiler, together they should be able to function as a 

useful tool in the further development of the MINIX 3 operating system. 
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8 FUTURE WORK 

8.1 PORTABILITY 

The CMOS clock used for statistical profiling is probably quite IBM PC specific. For a 

port to another platform, a timer should be available and the functions related to it, in 

kernel/profile.c, should be adapted. Depending on the frequencies available on the alter-

native timer, a few changes may need to be made to the user program as well to reflect 

them. 

 

For call profiling, the Pentium cycle counter is used. Such a counter may not be available 

on non-x86 based CPU’s. If such a counter is available, the assembly code to read it in 

read_tsc.s will have to be adjusted to make use of it. 

 

Call profiling depends on the –Rcem-p option of ACK. A similar feature should be avail-

able when a different compiler is used. 

8.2 EXTENDING TO USER PROGRAM PROFILING 

Both statistical and call profiling works on MINIX 3 processes. It is imaginable that peo-

ple will want to use the profilers for user programs as well (although users have other op-

tions like the Gprof functionality of GCC). Profiling user programs using the statistical 

and call profilers should be possible, but it would require at least the following changes to 

the code: 

 

For statistical profiling the clock handler in kernel/clock.c needs to be adapted to take 

samples of non-MINIX 3 processes; the sprofalyze.pl script should be changed not to 

complain and exit when it encounter samples that are not accounted for in the list of ex-

ecutables configured within the script (all user programs will now be profiled, while the 

user probably only wants to see his own); the user has to add the location of his executa-

ble in the sprofalyze.pl script. 

 

For call profiling, the user program should be compiled with ACK using the –Rcem-p 

option. In order to allow the process to announce itself to the kernel, a system call needs 

to be created that does the PROFBUF kernel call for the program. 
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8.3 IMPROVING THE STATISTICAL PROFILER 

The statistical profiler could be improved by using a non-maskable interrupt instead of 

the RTC interrupt. This will yield the following improvements: 

 

• the kernel task can be profiled 

• profiler interrupts are not delayed 

 

If call paths are not needed, the statistical profiler would then be the preferred profiler by 

far because it would have only advantages over the call profiler. Probably the kernel task 

does not need to be made reentrant for this since the profiling code does not interfere with 

any data structure of the kernel. 

 

A statistical profiler for Linux, OProfile, uses hardware performance counters for the pro-

filing clock. The interrupts are then generated by the CPU itself, and are non-maskable. It 

is a little bit more complicated because different CPU brands and models seem to be dif-

ferently programmed. 

 

Another option would be to look if the kernel task could be made reentrant some way 

(possibly just for profiling), for instance by not masking the CMOS timer. 
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APPENDIX A – FILES ADDED/CHANGED 

These files in MINIX 3 have been changed or added for the profiling project. 

 
changed commands/Makefile 
new commands/profile/Makefile 
new commands/profile/cprofalyze.pl 
new commands/profile/profile.c 
new commands/profile/sprofalyze.pl 
changed drivers/at_wini/Makefile 
changed drivers/bios_wini/Makefile 
changed drivers/cmos/Makefile 
changed drivers/dp8390/Makefile 
changed drivers/dpeth/Makefile 
changed drivers/floppy/Makefile 
changed drivers/fxp/Makefile 
changed drivers/lance/Makefile 
changed drivers/libdriver/Makefile 
changed drivers/log/Makefile 
changed drivers/memory/Makefile 
changed drivers/memory/ramdisk/proto 
changed drivers/pci/Makefile 
changed drivers/printer/Makefile 
changed drivers/random/Makefile 
changed drivers/rescue/Makefile 
changed drivers/rtl8139/Makefile 
changed drivers/sb16/Makefile 
changed drivers/ti1225/Makefile 
changed drivers/tty/Makefile 
changed drivers/tty/keymaps/Makefile 
changed include/ibm/interrupt.h 
changed include/minix/callnr.h 
changed include/minix/com.h 
changed include/minix/config.h 
new include/minix/profile.h 
changed include/minix/syslib.h 
changed include/unistd.h 
changed kernel/Makefile 
changed kernel/kernel.h 
changed kernel/main.c 
new kernel/profile.c partly listed in appendix B 
new kernel/profile.h 
changed kernel/system/Makefile 
new kernel/system/do_cprofile.c 
new kernel/system/do_profbuf.c 
new kernel/system/do_sprofile.c 
changed kernel/system.c 
changed kernel/system.h 
changed kernel/table.c 
changed lib/other/Makefile.in 
new lib/other/_cprofile.c 
new lib/other/_sprofile.c 
changed lib/other/syscall.c 
changed lib/syscall/Makefile.in 
new lib/syscall/cprofile.s 
new lib/syscall/sprofile.s 
changed lib/syslib/Makefile.in 
new lib/syslib/sys_cprof.c 
new lib/syslib/sys_profbuf.c 
new lib/syslib/sys_sprof.c 
changed lib/sysutil/Makefile.in 
new lib/sysutil/profile.c listed in appendix B 
new lib/sysutil/profile_extern.c 
new lib/sysutil/read_tsc.h 
new lib/sysutil/read_tsc.s 
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changed servers/ds/Makefile 
changed servers/fs/Makefile 
changed servers/fs/table.c 
changed servers/inet/Makefile 
changed servers/is/Makefile 
changed servers/pm/Makefile 
new servers/pm/profile.c 
changed servers/pm/proto.h 
changed servers/pm/table.c 
changed servers/rs/Makefile 
changed servers/sm/Makefile 
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APPENDIX B – SOURCE CODE 

kernel/profile.c 

Only the code concerning statistical profiling is shown. 

 
/* 
 * This file contains several functions and variables used for system 
 * profiling. 
 * 
 * Statistical Profiling: 
 *   The interrupt handler and control functions for the CMOS clock.  
 * 
 * Call Profiling: 
 *   The table used for profiling data and a function to get its size. 
 * 
 *   The function used by kernel-space processes to register the locations 
 *   of their control struct and profiling table. 
*/ 
 
#include <minix/config.h> 
 
#if SPROFILE || CPROFILE 
 
#include <minix/profile.h> 
#include "kernel.h" 
#include "profile.h" 
#include "proc.h" 
 
#endif 
 
#if SPROFILE 
 
#include <string.h> 
#include <ibm/cmos.h> 
 
/* Function prototype for the CMOS clock handler. */  
FORWARD _PROTOTYPE( int cmos_clock_handler, (irq_hook_t *hook) ); 
 
/* A hook for the CMOS clock interrupt handler. */ 
PRIVATE irq_hook_t cmos_clock_hook; 
 
/*===========================================================================* 
 *    init_cmos_clock                                * 
 *===========================================================================*/ 
PUBLIC void init_cmos_clock(unsigned freq) 
{ 
  int r; 
  /* Register interrupt handler for statistical system profiling. 
   * This uses the CMOS timer. 
   */ 
  cmos_clock_hook.proc_nr_e = CLOCK; 
  put_irq_handler(&cmos_clock_hook, CMOS_CLOCK_IRQ, cmos_clock_handler); 
  enable_irq(&cmos_clock_hook); 
 
  intr_disable(); 
 
  /* Set CMOS timer frequency. */ 
  outb(RTC_INDEX, RTC_REG_A); 
  outb(RTC_IO, RTC_A_DV_OK | freq); 
  /* Enable CMOS timer interrupts. */ 
  outb(RTC_INDEX, RTC_REG_B); 
  r = inb(RTC_IO); 
  outb(RTC_INDEX, RTC_REG_B); 
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  outb(RTC_IO, r | RTC_B_PIE); 
  /* Mandatory read of CMOS register to enable timer interrupts. */ 
  outb(RTC_INDEX, RTC_REG_C); 
  inb(RTC_IO); 
 
  intr_enable(); 
} 
 
/*===========================================================================* 
 *    cmos_clock_stop                                * 
 *===========================================================================*/ 
PUBLIC void stop_cmos_clock() 
{ 
  int r; 
 
  intr_disable(); 
 
  /* Disable CMOS timer interrupts. */ 
  outb(RTC_INDEX, RTC_REG_B); 
  r = inb(RTC_IO); 
  outb(RTC_INDEX, RTC_REG_B); 
  outb(RTC_IO, r & !RTC_B_PIE); 
 
  intr_enable(); 
 
  /* Unregister interrupt handler. */ 
  disable_irq(&cmos_clock_hook); 
  rm_irq_handler(&cmos_clock_hook); 
} 
 
/*===========================================================================* 
 *    cmos_clock_handler      * 
 *===========================================================================*/ 
PRIVATE int cmos_clock_handler(hook) 
irq_hook_t *hook; 
{ 
/* This executes on every tick of the CMOS timer. */ 
 
  /* Are we profiling, and profiling memory not full? */ 
  if (!sprofiling || sprof_info.mem_used == -1) return (1); 
 
  /* Check if enough memory available before writing sample. */ 
  if (sprof_info.mem_used + sizeof(sprof_info) > sprof_mem_size) { 
 sprof_info.mem_used = -1; 
 return(1); 
  } 
 
  /* All is OK */ 
 
  /* Idle process? */ 
  if (priv(proc_ptr)->s_proc_nr == IDLE) { 
 sprof_info.idle_samples++; 
  } else 
  /* Runnable system process? */ 
  if (priv(proc_ptr)->s_flags & SYS_PROC && !proc_ptr->p_rts_flags) { 
 /* Note: k_reenter is always 0 here. */ 
 
 /* Store sample (process name and program counter). */ 
 phys_copy(vir2phys(proc_ptr->p_name), 
  (phys_bytes) (sprof_data_addr + sprof_info.mem_used), 
  (phys_bytes) strlen(proc_ptr->p_name)); 
 
 phys_copy(vir2phys(&proc_ptr->p_reg.pc), 
  (phys_bytes) (sprof_data_addr+sprof_info.mem_used + 
     sizeof(proc_ptr->p_name)), 
  (phys_bytes) sizeof(proc_ptr->p_reg.pc)); 
 
 sprof_info.mem_used += sizeof(sprof_sample); 
 
 sprof_info.system_samples++; 
  } else { 
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 /* User process. */ 
 sprof_info.user_samples++; 
  } 
   
  sprof_info.total_samples++; 
 
  /* Mandatory read of CMOS register to re-enable timer interrupts. */ 
  outb(RTC_INDEX, RTC_REG_C); 
  inb(RTC_IO); 
 
  return(1);                                    /* reenable interrupts */ 
} 
 
#endif /* SPROFILE */ 
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lib/sysutil/profile.c 

/*  
 * profile.c - library functions for call profiling 
 * 
 * For processes that were compiled using ACK with the -Rcem-p option, 
 * procentry and procexit will be called on entry and exit of their 
 * functions.  Procentry/procexit are implemented here as generic library 
 * functions. 
 */ 
 
#include <lib.h> 
 
#if CPROFILE 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <minix/profile.h> 
#include <minix/syslib.h> 
#include <minix/u64.h> 
#include "read_tsc.h" 
 
#define U64_LO 0 
#define U64_HI 1 
 
PRIVATE char cpath[CPROF_CPATH_MAX_LEN]; /* current call path string */ 
PRIVATE int cpath_len;    /* current call path len */ 
PRIVATE struct cprof_tbl_s *cprof_slot; /* slot of current function */ 
PRIVATE struct stack_s {   /* stack entry */ 
  int cpath_len;   /* call path len */ 
  struct cprof_tbl_s *slot; /* table slot */ 
  u64_t start_1;   /* count @ begin of procentry */ 
  u64_t start_2;   /* count @ end of procentry */ 
  u64_t spent_deeper;  /* spent in called functions */ 
}; 
PRIVATE struct stack_s cprof_stk[CPROF_STACK_SIZE]; /* stack */ 
PRIVATE int cprof_stk_top;    /* top of stack */ 
EXTERN struct cprof_tbl_s cprof_tbl[];  /* hash table */ 
PRIVATE int cprof_tbl_size;    /* nr of slots */ 
PRIVATE struct cprof_tbl_s *idx[CPROF_INDEX_SIZE]; /* index to table */ 
PRIVATE struct cprof_ctl_s control;  /* for comms with kernel */ 
PRIVATE int cprof_announce;   /* announce on n-th execution 
       * of procentry */ 
PRIVATE int cprof_locked;   /* for reentrancy */ 
 
_PROTOTYPE(void procentry, (char *name) ); 
_PROTOTYPE(void procexit, (char *name) ); 
 
FORWARD _PROTOTYPE(void cprof_init, (void) ); 
FORWARD _PROTOTYPE(void reset, (void) ); 
FORWARD _PROTOTYPE(void clear_tbl, (void) ); 
 
 
PUBLIC void procentry (name) 
char *name; 
{ 
  static int init = 0; 
  unsigned hash = 0, i = 0, x = 0; 
  unsigned long hi, lo; 
  struct cprof_tbl_s *last; 
  char c; 
  u64_t start; 
 
  /* Procentry is not reentrant. */ 
  if (cprof_locked) return; else cprof_locked = 1; 
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  /* Read CPU cycle count into local variable. */ 
  read_tsc(&start._[U64_HI], &start._[U64_LO]); 
 
  /* Run init code once after system boot. */ 
  if (init == 0) { 
 cprof_init(); 
 init++; 
  } 
 
  /* Announce once. */ 
  if (init > -1 && init++ == cprof_announce) { 
 /* Tell kernel about control structure and table locations. 
 * 
 * In user-space processes, the library function profile_register 
 * will be used. This function does a kernel call (sys_profbuf) to 
 * announce to the kernel the location of the control struct and 
 * hash table. The control struct is used by the kernel to write 
 * a flag if resetting of the table is requested. The location of 
 * the table is needed to copy the information to the user process 
 * that requests it. 
 * 
 * Kernel-space processes don't use the library function but have 
 * their own implemention that executes logic similar to sys_profbuf. 
 */ 
 profile_register((void *) &control, (void *) &cprof_tbl); 
 init = -1; 
  } 
 
  /* Only continue if sane. */ 
  if (control.err) return; 
 
  /* Check if kernel instructed to reset profiling data. */ 
  if (control.reset) reset(); 
 
  /* Increase stack. */ 
  if (++cprof_stk_top == CPROF_STACK_SIZE) { 
 printf("CPROFILE error: stack overrun\n"); 
 control.err |= CPROF_STACK_OVERRUN; 
 return; 
  } 
 
  /* Save initial cycle count on stack. */ 
  cprof_stk[cprof_stk_top].start_1._[U64_HI] = start._[U64_HI]; 
  cprof_stk[cprof_stk_top].start_1._[U64_LO] = start._[U64_LO]; 
 
  /* Check available call path len. */ 
  if (cpath_len + strlen(name) + 1 > CPROF_CPATH_MAX_LEN) { 
 printf("CPROFILE error: call path overrun\n"); 
 control.err |= CPROF_CPATH_OVERRUN; 
 return; 
  } 
 
  /* Save previous call path length on stack. */ 
  cprof_stk[cprof_stk_top].cpath_len = cpath_len; 
 
  /* Generate new call path string and length.*/ 
  if (cprof_stk_top > 0)  /* Path is space separated. */ 
 cpath[cpath_len++] = ' '; 
  while ((c = *(name++)) != '\0') /* Append function name. */ 
 cpath[cpath_len++] = c; 
  cpath[cpath_len] = '\0';  /* Null-termination. */ 
 
  /* Calculate hash for call path string (algorithm: ELF). */ 
  for (i=0; i<cpath_len; i++) { 
  hash = (hash << 4) + cpath[i]; 
  if ((x = hash & 0xF0000000L) != 0) { 
   hash ^= (x >> 24); 
   hash &= ~x; 
  } 
  } 
  hash %= CPROF_INDEX_SIZE; 
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  /* Look up the slot for this call path in the hash table. */ 
  for (cprof_slot = idx[hash]; cprof_slot != 0; cprof_slot = cprof_slot->next) 
 if (strcmp(cprof_slot->cpath, cpath) == 0) break; 
 
  if (cprof_slot) 
 cprof_slot->calls++; /* found slot: update call counter */ 
  else { 
 /* Not found: insert path into hash table. */ 
 if (control.slots_used == cprof_tbl_size) { 
  printf("CPROFILE error: table overrun\n"); 
  control.err |= CPROF_TABLE_OVERRUN; 
  return; 
 } 
 /* Set values for new slot. */ 
 cprof_slot = &cprof_tbl[control.slots_used++]; 
 strcpy(cprof_slot->cpath, cpath); 
 cprof_slot->calls = 1; 
 
 /* Update index. */ 
 if (idx[hash] == 0) { 
  /* No collision: simple update. */ 
  idx[hash] = cprof_slot; 
 } else { 
  /* Collision: update last in chain. */ 
  for (last = idx[hash]; last->next != 0; last = last->next); 
  last->next = cprof_slot; 
 } 
  } 
  /* Save slot on stack. */ 
  cprof_stk[cprof_stk_top].slot = cprof_slot; 
 
  /* Again save CPU cycle count on stack. */ 
  read_tsc(&cprof_stk[cprof_stk_top].start_2._[U64_HI], 
  &cprof_stk[cprof_stk_top].start_2._[U64_LO]); 
  cprof_locked = 0; 
} 
 
 
PUBLIC void procexit (name) 
char *name; 
{ 
  u64_t stop, spent; 
 
  /* Procexit is not reentrant. */ 
  if (cprof_locked) return; else cprof_locked = 1; 
 
  /* First thing: read CPU cycle count into local variable. */ 
  read_tsc(&stop._[U64_HI], &stop._[U64_LO]); 
 
  /* Only continue if sane. */ 
  if (control.err) return; 
 
  /* Update cycle count for this call path. Exclude time spent in procentry/ 
   * procexit by using measurements taken at end of procentry and begin of 
   * procexit (the "small" difference). This way, only the call overhead for 
   * the procentry/procexit functions will be attributed to this call path, 
   * not the procentry/procexit cycles. 
   */ 
 
  /* Calculate "small" difference. */ 
  spent = sub64(stop, cprof_stk[cprof_stk_top].start_2); 
  cprof_stk[cprof_stk_top].slot->cycles = 
 add64(cprof_stk[cprof_stk_top].slot->cycles,  
  sub64(spent, cprof_stk[cprof_stk_top].spent_deeper)); 
 
  /* Clear spent_deeper for call level we're leaving. */ 
  cprof_stk[cprof_stk_top].spent_deeper._[U64_LO] = 0; 
  cprof_stk[cprof_stk_top].spent_deeper._[U64_HI] = 0; 
 
  /* Adjust call path string and stack. */ 
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  cpath_len = cprof_stk[cprof_stk_top].cpath_len; 
  cpath[cpath_len] = '\0'; 
 
  /* Update spent_deeper for call level below. Include time spent in 
   * procentry/procexit by using measurements taken at begin of procentry 
   * and end of procexit (the "big" difference). This way the time spent in 
   * procentry/procexit will be included in spent_deeper and therefore, since 
   * this value is substracted from the lower call level, it will not be 
   * attributed to any call path. This way, pollution of the statistics 
   * because of procentry/procexit is kept to a minimum. 
   */ 
 
  /* Read CPU cycle count. */ 
  read_tsc(&stop._[U64_HI], &stop._[U64_LO]); 
 
  /* Calculate "big" difference. */ 
  spent = sub64(stop, cprof_stk[cprof_stk_top].start_1); 
  cprof_stk_top--;     /* decrease stack */ 
  if (cprof_stk_top >= 0)     /* don't update non-existent level -1 */ 
 cprof_stk[cprof_stk_top].spent_deeper = 
  add64(cprof_stk[cprof_stk_top].spent_deeper, spent); 
  cprof_locked = 0; 
} 
 
 
PRIVATE void cprof_init() { 
  message m; 
  int i; 
 
  cpath[0] = '\0'; 
  cpath_len = 0; 
  cprof_stk_top = -1; 
  control.reset = 0; 
  control.err = 0; 
  cprof_tbl_size = profile_get_tbl_size(); 
  cprof_announce = profile_get_announce(); 
  clear_tbl(); 
 
  for (i=0; i<CPROF_STACK_SIZE; i++) { 
 cprof_stk[i].cpath_len = 0; 
 cprof_stk[i].slot = 0; 
 cprof_stk[i].start_1._[U64_LO] = 0; 
 cprof_stk[i].start_1._[U64_HI] = 0; 
 cprof_stk[i].start_2._[U64_LO] = 0; 
 cprof_stk[i].start_2._[U64_HI] = 0; 
 cprof_stk[i].spent_deeper._[U64_LO] = 0; 
 cprof_stk[i].spent_deeper._[U64_HI] = 0; 
  } 
} 
 
 
PRIVATE void reset() 
{ 
  clear_tbl(); 
  control.reset = 0; 
} 
 
 
PRIVATE void clear_tbl() 
{ 
  int i; 
 
  /* Reset profiling table. */ 
  control.slots_used = 0; 
  for (i=0; i<CPROF_INDEX_SIZE; i++) idx[i] = 0; /* clear index */ 
  for (i=0; i<cprof_tbl_size; i++) {   /* clear table */ 
 memset(cprof_tbl[i].cpath, '\0', CPROF_CPATH_MAX_LEN); 
 cprof_tbl[i].next = 0; 
 cprof_tbl[i].calls = 0; 
 cprof_tbl[i].cycles._[U64_LO] = 0; 
 cprof_tbl[i].cycles._[U64_HI] = 0; 
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  } 
} 
 
#endif /* CPROFILE */ 
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APPENDIX C – RESULTS 

STATISTICAL PROFILING 

Example output from sprofalize.pl on a data file created during make clean install in 

/usr/src/commands/. After the distribution of ticks the aggregation of highest scoring 

functions is shown followed by the individual results of system task, FS and PM. 

 
 
Building indexes from symbol tables: kernel ds fs inet is pm rs service at_wini  
bios_wini cmos dp8390 dpeth floppy fxp lance log memory pci printer random rescu 
e rtl8139 sb16_dsp sb16_mixer ti1225 tty. 
 
Showing processes and functions using at least 0.8% time. 
 
================================================================================ 
Data file: profile.stat.make_clean_commands.out 
================================================================================ 
 
  System process ticks:      94358 ( 23%) 
    User process ticks:     135400 ( 33%)          Details of system process 
       Idle time ticks:     181570 ( 44%)          samples, aggregated and 
                        ----------  ----           per process, are below. 
           Total ticks:     411328 (100%) 
 
-------------------------------------------------------------------------------- 
Total system process time                                          94358 samples 
-------------------------------------------------------------------------------- 
  system _phys_co *******************************************************  23.8% 
  system fill_sta ***********************************                      15.0% 
  system __receiv *******************                                       8.1% 
      fs _get_ino **************                                            5.8% 
      fs __receiv ************                                              4.8% 
      fs __sendre ***********                                               4.6% 
      fs   __send ***********                                               4.5% 
      fs _search_ *******                                                   2.8% 
      pm __sendre *****                                                     2.0% 
      pm    _main *****                                                     1.9% 
  system _lock_se *****                                                     1.8% 
      fs _get_blo ****                                                      1.4% 
  system _isokend ****                                                      1.4% 
      pm __receiv ***                                                       1.2% 
      pm   __send ***                                                       1.0% 
            <0.8% **********************************************           19.9% 
-------------------------------------------------------------------------------- 
total                                                                     100.0% 
 
-------------------------------------------------------------------------------- 
system                                           54.2% of system process samples 
-------------------------------------------------------------------------------- 
_phys_co ****************************************************************  43.9% 
fill_sta *****************************************                         27.7% 
__receiv **********************                                            15.0% 
_lock_se *****                                                              3.3% 
_isokend ****                                                               2.7% 
_clear_e **                                                                 1.3% 
_sys_tas **                                                                 0.8% 
   <0.8% ********                                                           5.3% 
-------------------------------------------------------------------------------- 
system                                                                    100.0% 
 
-------------------------------------------------------------------------------- 
fs                                               34.2% of system process samples 
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-------------------------------------------------------------------------------- 
_get_ino ****************************************************************  16.9% 
__receiv ******************************************************            14.0% 
__sendre ****************************************************              13.5% 
  __send ***************************************************               13.3% 
_search_ ********************************                                   8.2% 
_get_blo *****************                                                  4.2% 
 compare *********                                                          2.3% 
_read_wr *********                                                          2.1% 
_new_ico *******                                                            1.6% 
_get_wor ******                                                             1.5% 
  slword ******                                                             1.4% 
_unsuspe *****                                                              1.1% 
_read_ma ****                                                               1.0% 
_parse_p ****                                                               0.9% 
_get_sup ****                                                               0.9% 
_select_ ****                                                               0.9% 
   _main ****                                                               0.8% 
_advance ****                                                               0.8% 
__taskca ****                                                               0.8% 
   <0.8% ****************************************************              13.8% 
-------------------------------------------------------------------------------- 
fs                                                                        100.0% 
 
-------------------------------------------------------------------------------- 
pm                                                9.3% of system process samples 
-------------------------------------------------------------------------------- 
__sendre ****************************************************************  22.1% 
   _main ***********************************************************       20.2% 
__receiv **************************************                            12.9% 
  __send ******************************                                    10.3% 
_get_fre ********************                                               6.7% 
_find_sh ******************                                                 6.2% 
_pm_isok *******                                                            2.3% 
_do_wait *****                                                              1.4% 
_do_exec ****                                                               1.3% 
__loadna ****                                                               1.2% 
_pm_exit ****                                                               1.1% 
 _adjust ***                                                                1.0% 
_swap_in ***                                                                1.0% 
_do_fork ***                                                                1.0% 
__taskca ***                                                                1.0% 
_get_wor ***                                                                1.0% 
 _do_brk ***                                                                0.8% 
   <0.8% *************************                                          8.5% 
-------------------------------------------------------------------------------- 
pm                                                                        100.0% 
 
-------------------------------------------------------------------------------- 
processes <0.8% (not showing functions)           2.3% of system process samples 
-------------------------------------------------------------------------------- 
total                                           100.0% 
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CALL PROFILING 

This notice is printed when cprofalyze.pl is run: 

 
Notes: 
- Calls attributed to a path are calls done on that call level. 
    For instance: a() is called once and calls b() twice. Call path "a" is 
    attributed 1 call, call path "a b" is attributed 2 calls. 
- Time spent blocking is included. 
- Time attributed to a path is time spent on that call level. 
    For instance: a() spends 10 cycles in its own body and calls b() which 
    spends 5 cycles in its body. Call path "a" is attributed 10 cycles, 
    call path "a b" is attributed 5 cycles. 
- Time is attributed when a function exits. Functions calls that have not 
  returned yet are therefore not measured. This is most notable in main 
  functions that are printed as having zero cycles. 
- When "profile reset" was run, the actual resetting in a process happens 
  when a function is entered. In some processes (for example, blocking 
  ones) this may not happen immediately, or at all. 
- Time is in milliseconds. 

 

The following listings are the results of profiling runs during make clean install in 

/usr/src/commands/, showing totals per function, sorted by time spent. The differences in 

absolute times between the runs are explained by the fact that for each run different sets 

of files were compiled with –Rcem-p, which affects performance. 

 

All Kernel-Space Processes 

 

These are the results of compiling everything in kernel/ with the –Rcem-p option (meas-

uring KERNEL, CLOCK and SYSTEM). 
 
-------------------------------------------------------------------------------- 
kernel                                                              75 functions 
-------------------------------------------------------------------------------- 
     calls         msecs  function 
-------------------------------------------------------------------------------- 
    523333       2879.00  virtual_copy 
      5519       1728.94  do_memset 
   4425770       1614.96  sys_call 
   3664081        840.24  mini_send 
   3651605        787.03  enqueue 
   3714055        716.77  mini_receive 
   3657116        503.28  dequeue 
   8830260        486.25  isokendpt_f 
   7301952        420.09  pick_proc 
   4423274        290.99  deadlock 
    521428        202.22  do_copy 
   1120596        194.75  lock_send 
   3651605        144.33  sched 
   1423496         92.32  umap_local 
     79279         80.87  do_getinfo 
    241035         68.72  do_umap 
      4903         68.59  clear_endpoint 
     82118         35.60  do_devio 
     55283         34.52  do_newmap 
      3417         33.90  do_vdevio 
     55295         23.02  alloc_segments 
     43906         18.72  mini_notify 
     84725         18.53  do_times 
     41410         16.57  lock_notify 
    110703         12.87  sdesc 
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     23464         11.10  set_timer 
     55296         10.59  init_codeseg 
     23294         10.25  do_setalarm 
    174259         10.21  get_uptime 
     16861          9.41  clock_handler 
      4927          9.28  do_fork 
      2179          9.21  do_irqctl 
     16773          8.02  do_clocktick 
     55407          7.76  init_dataseg 
     22191          6.58  intr_handle 
      5519          6.39  do_exec 
     16861          5.93  load_update 
      4903          4.53  clear_proc 
      5330          3.60  generic_handler 
     19223          2.59  cause_alarm 
      7343          2.31  lock_enqueue 
         2          1.89  do_cprofile 
      4903          1.83  reset_timer 
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FS 

 

An example showing the 35 most often occurring call paths in FS, sorted by number of calls. 
 
-------------------------------------------------------------------------------- 
fs                                                               1587 call paths 
-------------------------------------------------------------------------------- 
     calls         msecs  path 
-------------------------------------------------------------------------------- 
   1015798         40.65  main do_open common_open eat_path parse_path advance get_inode rw_inode new_icopy conv4 
    778652         32.39  main do_stat eat_path parse_path advance get_inode rw_inode new_icopy conv4 
    569243     224364.67  main get_work 
    558091       8902.77  main reply 
    416052         16.91  main do_close put_inode rw_inode new_icopy conv4 
    290228         12.47  main do_open common_open eat_path parse_path advance get_inode rw_inode new_icopy conv2 
    262291         14.72  main do_read read_write rw_chunk rahead get_block rm_lru 
    262291         56.64  main do_read read_write rw_chunk rahead get_block 
    258173         16.96  main do_read read_write rw_chunk put_block 
    258173         36.01  main do_read read_write rw_chunk rahead get_block_size 
    258173         69.25  main do_read read_write rw_chunk rahead 
    258173       9181.87  main do_read read_write rw_chunk 
    258117         54.04  main do_read read_write rw_chunk read_map 
    222472         10.64  main do_stat eat_path parse_path advance get_inode rw_inode new_icopy conv2 
    196742          7.96  main do_access eat_path parse_path advance get_inode rw_inode new_icopy conv4 
    176803          8.18  main do_read read_write get_filp 
    176803       4926.87  main do_read read_write 
    176803         29.29  main do_read 
    147090          5.92  main do_exit free_proc do_close get_filp 
    147090         21.10  main do_exit free_proc do_close 
    137484          7.09  main do_stat eat_path parse_path advance search_dir put_block 
    137484          6.86  main do_stat eat_path parse_path advance search_dir get_block rm_lru 
    137484         36.22  main do_stat eat_path parse_path advance search_dir get_block 
    137484         13.02  main do_stat eat_path parse_path advance search_dir read_map 
    123977          6.21  main do_open common_open eat_path parse_path advance search_dir put_block 
    123977          5.71  main do_open common_open eat_path parse_path advance search_dir get_block rm_lru 
    123977         27.36  main do_open common_open eat_path parse_path advance search_dir get_block 
    123977         11.53  main do_open common_open eat_path parse_path advance search_dir read_map 
    121458        278.13  main do_stat eat_path parse_path advance get_inode 
    121187        261.47  main do_open common_open eat_path parse_path advance get_inode 
    118872          5.72  main do_close put_inode rw_inode new_icopy conv2 
    111655          9.15  main do_stat eat_path parse_path put_inode 
    111655         42.56  main do_stat eat_path parse_path advance 
    111655         14.44  main do_stat eat_path parse_path get_name 
    111653         10.68  main do_stat eat_path parse_path advance search_dir forbidden 
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APPENDIX D – APPROXIMATION 

The following tables are supporting material for paragraph 5.2.  

 

Removal of IPC Time 

 
1: unaltered results of a profiling run     

2: IPC functions set to 0%      

3: percentages normalized      

        

 1 2 3     

        

_phys_co 43.9% 43.9% 51.6%       
System 
Task 

fill_sta 27.7% 27.7% 32.6%      

__receiv 15.0% 0.0% 0.0%      

_lock_se 3.3% 3.3% 3.9%      

_isokend 2.7% 2.7% 3.2%      

_clear_e 1.3% 1.3% 1.5%      

_sys_tas 0.8% 0.8% 0.9%   SYSTEM's part of MINIX 3 time 54.2% 

<0.8% 5.3% 5.3% 6.2%   IPC part of SYSTEM taken out 15.0% 

       Of MINIX 3 time this is 8.1% 

  100.0% 85.0% 100.0%     SYSTEM's part of MINIX 3 time after 46.1% 

        

        

_get_ino 16.9% 16.9% 28.5%       FS 

__receiv 14.0% 0.0% 0.0%      

__sendre 13.5% 0.0% 0.0%      

__send 13.3% 0.0% 0.0%      

_search_ 8.2% 8.2% 13.9%      

_get_blo 4.2% 4.2% 7.1%      

compare 2.3% 2.3% 3.9%      

_read_wr 2.1% 2.1% 3.5%      

_new_ico 1.6% 1.6% 2.7%      

_get_wor 1.5% 1.5% 2.5%      

slword 1.4% 1.4% 2.4%      

_unsuspe 1.1% 1.1% 1.9%      

_read_ma 1.0% 1.0% 1.7%      

_parse_p 0.9% 0.9% 1.5%      

_get_sup 0.9% 0.9% 1.5%      

_select_ 0.9% 0.9% 1.5%      

_main 0.8% 0.8% 1.4%      

_advance 0.8% 0.8% 1.4%      

__taskca 0.8% 0.8% 1.4%   FS' part of MINIX 3 time 34.2% 

<0.8% 13.8% 13.8% 23.3%   IPC part of FS taken out 40.8% 

       Of MINIX 3 time this is 14.0% 

  100.0% 59.2% 100.0%     FS' part of MINIX 3 time after 20.2% 
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__sendre 22.1% 0.0% 0.0%       PM 

_main 20.2% 20.2% 36.9%      

__receiv 12.9% 0.0% 0.0%      

__send 10.3% 0.0% 0.0%      

_get_fre 6.7% 6.7% 12.2%      

_find_sh 6.2% 6.2% 11.3%      

_pm_isok 2.3% 2.3% 4.2%      

_do_wait 1.4% 1.4% 2.6%      

_do_exec 1.3% 1.3% 2.4%      

__loadna 1.2% 1.2% 2.2%      

_pm_exit 1.1% 1.1% 2.0%      

_adjust 1.0% 1.0% 1.8%      

_swap_in 1.0% 1.0% 1.8%      

_do_fork 1.0% 1.0% 1.8%      

__taskca 1.0% 1.0% 1.8%      

_get_wor 1.0% 1.0% 1.8%      

_do_brk 0.8% 0.8% 1.5%   PM's part of MINIX 3 time 9.3% 

<0.8% 8.5% 8.5% 15.5%   IPC part of PM taken out 45.3% 

       Of MINIX 3 time this is 4.2% 

  100.0% 54.7% 100.0%     PM's part of MINIX 3 time after 5.1% 

        

      Total IPC time taken out, as  

      percentage of MINIX 3 time 26.3% 

 

Introduction of Kernel Task Time 

 
1: unaltered results of a profiling run   

2: results after taking out IPC time due to interrupt delay 

3: setting kernel task time to system task time  

4: percentages normalized and rounded   

5: percentages normalized   

      

1 2 3 4   

      

54.2% 46.1% 46.1% 38%  System task 

0.0% 0.0% 46.1% 38%  Kernel task 

34.2% 20.2% 20.2% 17%  FS 

9.3% 5.1% 5.1% 4%  PM 

2.3% 2.3% 2.3% 2%  Other 

      

100.0% 73.7% 119.8% 100.0%   

      

IPC out   5   

      

0.0% 8.1%  6.8%  System task 

0.0% 14.0%  11.7%  FS 

0.0% 4.2%  3.5%  PM 

      

0.0% 26.3%  22.0%   

 


