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Chapter  1. Introduction 

 

The general issue of multimedia retrieval, storage and transmission has become an important 

research subject in the past two decades. It continues to be so, as more and more applications 

make use of multimedia content in one way or another. In this thesis, we look at fulfilling the 

requirements of multimedia applications in the context of the MINIX 3 microkernel operating 

system. 

 

1.1. Problem definition 

 

So far, there has not been much experience with MINIX 3 as a multimedia platform. We pose 

the following questions: can MINIX 3 be made suitable for basic multimedia file serving, 

which changes would this require, and what advantages would be obtained from such an 

approach? To find answers, this project presents an effort to add multimedia-oriented 

capabilities to MINIX 3. 

 

In order to keep the project within reasonable bounds, a number of simplifications had to be 

made. There are three main bottlenecks of multimedia processing: the disk, the CPU and the 

network. This project only concentrates on the first two: the disk and the CPU. In addition, we 

fully focus on retrieving multimedia from disk, rather than also storing multimedia on it. That 

restriction, however, is limited to the file server part of the project. Finally, given MINIX’  

limited hardware support, we concentrate on commodity systems. As such we do not take into 

account setups with multiple hard disks. 

 

Thus, this project is mainly concerned with retrieving multimedia from a hard disk, and 

delivering it to a locally running application. We define three main goals: 

1. To let multimedia applications spend as little time on periodic data retrieval as possible. 

2. To optimize the multimedia data retrieval from disk to get the most out of the system. 

3. To isolate multimedia applications from both each other and nonmultimedia workloads. 

Combined, these points enable optimal performance of multimedia applications. The results 

can then be used in a variety of contexts and with varying external conditions. 
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In the process, the project allows us to experiment with a number of novel things in the 

context of MINIX 3. In particular, the new VFS/FS split, user-space threads, and 

asynchronous message passing. 

 

 

1.2. Our approach 

 

In practice, the first goal translates into a minimal duration of periodic read() calls from 

applications on multimedia files. We achieve this by prefetching all data before the read() call 

is made. The prefetching approach also allows for disk retrieval optimizations, and together 

with optimized data placement on disk, that fulfills the second goal. The third goal is related 

to the first goal, and implies that other workloads on the system must not affect the duration 

of the read() calls. It also covers CPU scheduling. 

 

The microkernel architecture of MINIX, and in particular the implementation of its various 

system servers, pose various challenges in achieving these goals.  Figure 1.1 illustrates the 

current situation. It shows the chain of processes involved in serving a single read() request 

for data from the hard disk made by a user process. 

 

First, the user process makes a request to the Virtual File System (VFS) system server. This 

server acts as the main gateway for all file operations. It relays the request to the actual file 

system (FS) server, which in turn makes a request to the disk driver. The disk driver then 

starts retrieval of the data from disk. Once finished, it returns the results to the FS, which in 

turn reports back to VFS. Finally, VFS replies to the user process. Note that all these 

processes are reside in user space. The MINIX kernel is only used for message passing 

between the processes. There is currently only one FS server that is part of MINIX 3: the 

MINIX File System (MFS) server. 

 

Figure 1.1: the path of disk retrieval 
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Early tests showed that the actual disk access is by far the dominating factor in the whole path 

of data retrieval. VFS, MFS and (for the most part) the disk driver are implemented as 

blocking processes. They can only handle one request at a time, and like the user process, they 

do nothing while waiting for a reply from the next part in the chain. This leaves VFS, MFS 

and the driver blocked waiting for the disk to fulfill requests, and by extension all processes 

concurrently making VFS requests. 

 

The blocking nature of VFS prohibits development of a FS server that can deal with multiple 

requests at the same time. For example, a file server cannot effectively delay replying to a 

single read request until data becomes available, without also blocking VFS. Moreover, a 

nonmultimedia process that performs many heavy disk operations will block all multimedia 

processes immediately at the VFS level. This it makes it impossible to fulfill our first and 

third goal. 

 

The first part of this project therefore consists of changing VFS to allow multiple outstanding 

user process requests to various FS servers. In other words, VFS is “unblocked” . The 

advantages of unblocking VFS extend beyond multimedia retrieval. For instance, it also 

provides necessary ground work for networked file systems and nonprivileged file system 

processes. A significant part of this project has therefore gone into unblocking VFS in a 

generic way, rather than hacking in support to achieve our goals. To avoid having to rewrite 

VFS from the ground up, our approach to the problem involves user-space threads. This 

allows much of the VFS code to remain untouched. 

 

The separation of VFS and MFS in MINIX is a recent development. Instead of extending 

MFS, we decided to develop a new file server for multimedia retrieval, along with a new file 

system format. This allows us to make multimedia-specific disk placement optimizations, and 

experiment with the new VFS/FS interface. Unlike MFS, the new file server will be able to 

handle multiple concurrent requests from VFS. It uses guaranteed prefetching to let read() 

calls take as short as possible. Throughout this thesis we will refer to the new file server as 

MMFS: the multimedia file server. The original MFS remains (mostly) untouched. 

 

The disk driver requires explicit support for multimedia as well. It is only here that both 

multimedia and nonmultimedia requests arrive at a single point. We extend MINIX’  generic 
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disk driver framework to cooperate with MMFS instances. Throughout the whole process, 

various changes have to be made to the relevant message protocols. 

 

Finally, we implement a periodic-task aware CPU scheduler on top of the standard MINIX 

CPU scheduler. The MINIX scheduler already works well for interactive and CPU-intensive 

processes; our extension adds support for the different demands of periodic multimedia 

processes. Its goal is to prevent deadline misses caused by other heavy CPU loads, thereby 

allowing multimedia processes to run more or less in isolation. 

 

The rest of this thesis is laid out as follows. Chapter 2 describes the background of relevant 

previous research concerning multimedia. Chapter 3 documents the changes made to VFS and 

the VFS/FS protocol, and chapter 4 describes the implementation of the VFS and file system 

part of the new MMFS server. Chapter 5 then documents the extensions made to the FS/driver 

protocol, and the changes made to the driver. The implementation of the multimedia streams 

part of the MMFS server follows in chapter 6. Chapter 7 describes the CPU scheduling 

extension. Chapter 8 documents our testing efforts and outcomes. Chapter 9 concludes this 

thesis and lists possible future work. 
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Chapter  2. Background 

 

Multimedia applications have fundamentally different requirements with respect to system 

resource usage than nonmultimedia applications. Operating system support is necessary in 

order to fulfill the requirements, especially if the resources are shared by nonmultimedia 

applications. Section 2.1 gives an overview of various aspects that play a role in multimedia 

retrieval from an operating system point of view. In section 2.2, we briefly discuss the MINIX 

3 operating system. 

 

 

2.1. Multimedia 

 

Typical multimedia application areas include local video serving, where a video stream is 

retrieved and displayed on the local system, and video-on-demand servers, where video 

streams are sent over the network to remote clients, as well as video editing, security video 

surveillance, digital libraries and distance learning [8]. Two main characteristics are shared by 

all multimedia applications [23]: 

 

1. Continuous retrieval and storage of data. 

2. Large data sizes, both in transfer and storage. 

 

The first characteristic implies multimedia applications expect a more or less constant stream 

of data over time. This practically translates into periodic retrieval, storage and/or processing 

of data, and results in periodic deadlines before which each piece of work has to be done. 

 

Unlike in realtime systems, however, multimedia deadlines are soft: it is not critical that all 

deadlines are met in every case. For example, in the case of video, missed deadlines would 

cause brief display stalls. Obviously this does degrade the end user experience and should 

preferably not occur at all, or at most very irregularly. Multimedia streams should therefore 

strive to sustain a steady rate with minimal delay and jitter. 

 

Combined with the second characteristic, multimedia can use a significant amount of 

resources. The following subsections outline the relevant aspects. 
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2.1.1. Disk scheduling 

 

The main bottleneck in the path of retrieval from and storage onto a hard disk by an 

application is the hard disk itself. The main factors determining disk speed are disk arm 

movement (seek) times, rotational delay, and data transfer time [10]. Attempts to minimize 

the disk latency have led to the development of disk scheduling algorithms that reduce seek 

times and rotational delay as much as possible. The most well-known and widely used disk 

scheduling algorithm is SCAN, also known as the elevator algorithm. Given a batch of disk 

requests, this algorithm reduces disk latency by sorting the requests by their disk position 

relative to the current arm position. Many slight variations to SCAN have been developed. A 

simple example is CSCAN, which lets the disk arm move into only one direction per batch 

rather than two [31]. 

 

However, SCAN reorders and processes requests in an arbitrary order from the point of view 

of multimedia requirements. That makes it unsuitable for use in a multimedia supporting 

system. In contrast, the Earliest Deadline First (EDF) algorithm [15] orders and execute disk 

requests based on their associated deadlines. It is guaranteed to serve all requests in time if all 

deadlines can possibly be met at all. However, EDF orders the requests in arbitrary order from 

the point of view of disk positioning, resulting in high disk seek times and rotational 

overhead. It is therefore typically not used alone. 

 

The SCAN-EDF algorithm [24] combines the advantages of both these two algorithms. It uses 

EDF to order requests by deadline, and applies SCAN to sets of requests that have the same 

deadlines. The optimization gained from applying the SCAN algorithm depends on how often 

requests with equal deadlines arrive. To actually force that to happen, all deadlines can be 

deferred to match a periodic interval. That results in a system of rounds or cycles [12,24]. 

Within each time-bound round, the requests can be SCAN-sorted. Rounds are typically set to 

take from one second up to several seconds [20]. 

 

The downside of deferring deadlines to match the round’s period is that it can take a long time 

for requests to be served: the SCAN sorting can lead to a maximum of two rounds between 

the arrival of a request and its result [12]. This is illustrated in figure 2.1. If all stream data is 
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to be available in advance, a stream may have to wait up to two rounds after it is opened. This 

is the stream’s startup time. 

 

The approach of using rounds for disk requests has become widely used [20]. Both round-

robin and SCAN ordering of requests within rounds are used in practice. In this respect, an 

even more finetuned tradeoff between round durations on one hand and disk latency reduction 

on the other, is found in the Group Sweeping Strategy (GSS) approach [34]. In GSS, rounds 

are partitioned in groups and requests belonging to a single stream are always put in the same 

group. Per group, an algorithm like SCAN can be applied. The choice of the number of 

groups determines the tradeoff between the maximum duration between two subsequent 

requests, and the benefits resulting from the use of SCAN. 

 

Typically, a system will occasionally have to process nonmultimedia requests as well. 

Different policies can be used to establish a balance between multimedia and nonmultimedia 

requests within each round [20,26]. Three desirable performance goals can be defined in this 

respect [26]: 

 

1. Multimedia requests are all able to meet their deadlines. 

2. Nonmultimedia requests are served with small average response times. 

3. Starvation of nonmultimedia requests is avoided. 

 

At the very least, nonmultimedia requests should be served whenever there are no multimedia 

requests. In general, a disk scheduling algorithm is called work-conserving when it never goes 

idle if there are any requests pending at all [29]. 

 

2.1.2. Disk and file placement 

 

Figure 2.1: worst case of a request taking two rounds 
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The ability to optimize on disk latency also depends on the placement of the data on disk. If 

pieces of data have a high probability of being retrieved consecutively, then the retrieval will 

be faster as the pieces are located more closely to each other on disk. On one side, arbitrary 

locations can be used for data blocks belonging to a single file; this is the typical approach of 

nonmultimedia file systems. On the other side, multimedia files can be laid out contiguously 

on disk, minimizing the disk latency for the retrieval of consecutive data from a single file 

[31]. Completely contiguous placement is however rather inefficient for read-write file 

systems. To provide a more suitable tradeoff between efficient reading and efficient writing, 

alternatives such as constrained placement [3] and log-structured placement [16] have been 

developed [23]. 

 

Within a single multimedia file, there are various approaches to mapping actual file data to 

disk blocks, especially if a large disk block size is chosen [5,31]. Internally, multimedia files 

typically consist of many individual frames. A multimedia file can be stored as any other file 

by completely filling up individual disk blocks with data, but blocks may also be used to store 

a number of whole frames. The last approach can prevent single frames from spanning 

multiple disk block boundaries, and even to let each disk block represent a certain playout 

time. This comes at the cost of wasting the remaining part of each block. 

 

To exceed the retrieval rate of a single disk, several schemes combine multiple disks. These 

schemes typically rely on generic multi-disk approaches to speed up multimedia retrieval 

[10,20]: for example by striping, where the disks operate together to turn several physical disk 

sectors into one larger logical sector, and interleaving, where consecutive file data blocks are 

stored on different disks that operate independently. Many video-on-demand systems have 

been developed specifically around the use of multiple disks [4,13,28]. 

 

Both with a single disk and with multiple disks, a main architectural choice is whether or not 

to integrate multimedia and nonmultimedia files, on disk as well as in working memory. Both 

approaches have their own advantages [27]. Examples of integrated systems can be found in 

[18,28], separated systems can be found in [3,13]. 

 

2.1.3. Memory buffers 
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Memory consumption is another point of concern. Multimedia data retrieval from disk can be 

viewed as a basic producer/consumer problem. On one side, the disk “produces”  data. On the 

other side, the application process “consumes”  this data. The data must be stored in a memory 

area. As data is necessarily retrieved from disk in blocks, we can say that such a memory area 

is made up of several block buffers. The minimum retrieval block size is a single disk sector 

(typically 512 bytes), but retrieving data in larger blocks allows the disk to read consecutive 

data at an overall higher speed. Combined with the high data rate of multimedia streams, this 

leads to block sizes of tens to hundreds of kilobytes. Block sizes may be, but are not 

necessarily, related to the size of individual data frames within the multimedia file. 

 

The simplest model uses a single block buffer for both production and consumption. First the 

disk fills the buffer, then the application consumes the data, and the process repeats. Given 

that retrieval from disk is not instant, this inherently lets block retrieval duration determine a 

part of the application speed. A better approach is a minimum of two buffers per stream [24]: 

while the application process consumes the data in one buffer, the disk is requested to 

prefetch data into the other buffer. The buffers’  roles are swapped when both are done. This, 

however, requires that producer and consumer are synchronized, which may be inconvenient. 

To let the application make read requests that are not aligned to the buffer size used, three 

buffers per stream are preferred. This has the additional advantage of allowing further disk 

retrieval optimizations [24]. 

 

The continuous availability of data can then be guaranteed if the production rate at least 

equals the consumption rate for each stream in every disk retrieval round. This approach is 

called work-ahead augmenting [3]. The explanation above assumes that a static number of 

blocks is retrieved for each active stream per round. If data rates vary between streams, 

higher-rate streams can be modeled as multiple lower-rate streams in terms of memory and 

disk bandwidth requirements. The minimum number of available buffers is then a function of 

the maximum number of minimum-rate streams, where the minimum rate of a stream is a 

function of the round duration and the block size used. 

 

2.1.4. Prefetching, caching and sharing 
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If a static number of buffers is allocated for use by streams, it can be highly desirable to 

prefetch beyond the two or three buffers per stream if more buffer space is available. This 

allows streams to deviate more from the actual stream rates. 

 

Buffers that have been consumed but not yet reused make up the buffer cache. The Least 

Recently Used (LRU) cache replacement is policy is not effective for multimedia [22]. 

Instead, the linearity of stream progression allows for prediction of when a certain block from 

one stream is likely to be reused by another stream, and a distance-based caching policy can 

be derived from this [22]. Blocks that have the largest time or data distance from the current 

streams’  positions, are evicted first. The more general concept of Interval Caching potentially 

allows the admission of more streams in total, if some streams are guaranteed to have their 

data available purely from the cache this way [7]. 

 

Such sharing may happen by chance, but it can also be forced. For example, in the case of 

video-on-demand, it is likely that multiple clients will be reading from the same file. If their 

playback can more or less be synchronized, then a wide range of clients can be supported with 

a minimal amount of disk access and memory requirements. Several ways to achieve client 

synchronization have been developed [11]: for example, besides application of the Interval 

Caching approach (bridging), batches of streams can be forced to start at the same time 

(batching), or have their rate adjusted to have one catch up with another (piggybacking). 

 

2.1.5. Admission control 

 

Deadlines can only be guaranteed to be met if resource overutilization is avoided. For 

example, deadlines will be missed if the currently active streams combined require a higher 

data rate than the hard disk can provide. To avoid that resource overutilization, an admission 

control system determines whether a new stream can be admitted or not. Besides not applying 

admission control at all, there are two main classes of admission control: deterministic and 

statistical [6,12]. 

 

Deterministic admission control applies a known worst-case upper bound to the use of the 

resource (e.g., hard disk), and refuses to admit a new stream if the resource maximum is 

exceeded after adding the new stream’s worst-case utilization to the current worst-case 

utilization. This approach guarantees that all deadlines be met in all cases, but will not use the 
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system resources to the fullest extent if the average utilization is less than the worst-case 

utilization, which it almost always is. 

 

In contrast, statistical admission control admits streams with a certain probability for the 

requests to meet their deadlines. No hard guarantees are made any more, but the overal system 

utilization can be closer to its maximum in the average case. Statistical admission control is 

typically measurement-based, basing its decision on current system performance rather than 

the theoretically worst case. Some systems use a combination of deterministic and statistical 

admission control, by statistically admitting a number of streams on top of deterministically 

admitted streams [12]. To maintain the deterministic guarantees, the requests belonging to the 

deterministically admitted streams are always served first. 

 

2.1.6. Variable bit rates 

 

To make the most of available storage space and transmission bandwidth, multimedia files are 

typically stored and transmitted in compressed form. The applicability of compression 

depends on the multimedia content, and can result in different compression levels for various 

parts of the stream. These compressed streams are then constant in their time rate but not in 

their data rate. Such streams are called variable-bitrate (VBR) multimedia streams, as opposed 

to constant-bitrate (CBR) streams. 

 

With a time-based continuity over time, the data rate of a VBR stream may fluctuate 

significantly [17]. This leads to concerns similar to those of admission control, but on a per-

stream basis. Admitting a VBR stream with its maximum bitrate is the only way to guarantee 

that it will always meet its deadlines, but such an approach makes poor use of resources on 

average. Admitting a VBR stream with its average bitrate would lead to better total resource 

usage, but may cause missed deadlines during bitrate peaks. 

 

Variable bit rates make the problem of continuous retrieval inherently harder. Many solutions 

have been proposed in this area. One generic technique is to make up for stream rate 

irregularities by using buffer space and prefetching, thereby “smoothing” retrieval [2]. More 

accurate techniques can be developed with specific knowledge of stream parameters, frame 

boundaries and/or the current client state [1,17]. 
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2.1.7. CPU scheduling 

 

Besides the hard disk, the CPU can also form a bottleneck. The presence of many CPU-

intensive processes – multimedia processes as well as nonmultimedia – may lead to a fight for 

CPU time that can also result in multimedia processes missing their deadline. Once again, 

multimedia processes do not require high interactivity or constant CPU time, but rather 

periodic execution with minimal jitter. 

 

Early attempts to accommodate for such processes involved adding realtime priorities to the 

basic UNIX priority based scheduling. This turned out to work poorly, especially on 

overloaded systems [21]. Since then, new CPU scheduling systems have been applied to 

match the periodic nature of multimedia applications more closely. These are based on 

periodic-task scheduling algorithms such as the Rate Monotonic (RM) algorithm [15] and 

EDF, either as an extension to priority-based scheduling [19,33] or as a completely new base 

for scheduling [14]. Admission control is used to avoid allocation beyond the system’s 

maximum. 

 

Such scheduling algorithms are classified as reservation based, as opposed to proportional-

share resource allocation algorithms [30], where each process gets a relative part of the 

available resources, and allocation therefore depends on the number of other processes present 

in the system. This approach allows for more flexibility and fairness, but cannot provide 

guarantees to processes. 

 

 

2.2. MINIX 3 

 

The platform of our choice, MINIX 3, is a microkernel OS designed for reliability, flexibility 

and security [36]. A detailed description of its architecture and implementation can be found 

in [32]. MINIX 3 is made up of a small kernel and a number of system processes that reside in 

user-space. In particular, the kernel only takes care of process scheduling, hardware 

interrupts, interprocess communication which is mostly implemented as message passing, and 

a small number of other tasks that can be performed in kernel space only. All other tasks, such 

as memory management, file management, and all drivers are implemented as user-space 

system processes. 
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MINIX is not a realtime operating system. Some efforts have been made to turn it into a 

realtime operating system though. One example is RT-MINIX [25], where MINIX 2 was 

extended to include realtime support for resource-constrained platforms. These efforts are 

concerned with hard guarantees and do not include disk I/O. 
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Chapter  3. Unblocking VFS 

 

In this chapter, we describe our efforts to turn VFS from blocking into nonblocking with 

respect to requests towards file server (FS) instances. We write a new threading library to 

facilitate this, and change VFS to make use of it. After making a minimal set of changes to the 

protocol between VFS and FS instances, we apply a model of mutual exclusion to VFS for 

correct operation. 

 

Section 3.1 explains the choice for a (new) threading library, and section 3.2 describes this 

library. Section 3.3 outlines how the library is applied to make VFS multithreaded. Section 

3.4 describes changes in the VFS/FS protocol necessary to allow a nonblocking VFS. Section 

3.5 describes the design and implementation of our mutual exclusion model for VFS. Section 

3.6 evaluates the results. 

 

 

3.1. Rationale 

 

The original design of VFS involves one main loop that receives a system call message from a 

user process, processes this message, and sends a reply. The main issue is that the system call 

operation in VFS could make one or more blocking sendrec() calls to file server (FS) system 

processes. To let VFS continue with other tasks while it is waiting for the response, the 

blocking sendrec() call has to be replaced with a new message passing approach. This new 

approach must allow VFS to continue on other work in the meantime. 

 

Figure 3.1: VFS and neighbor processes 
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VFS will therefore have to suspend the system call operation when it sends a request message 

to a FS, and resume the operation when the reply message from the FS comes in. To be able 

to resume the operation later, all state of the operation must be saved somewhere. There are 

two basic approaches to solve this: continuations and threads. 

 

3.1.1. Continuations versus threads 

 

The continuations approach involves explicitly saving all of the state into a structure 

associated with the suspended operation. This already happens in various places within VFS, 

but analysis of the VFS code shows that applying this system to unblock the FS calls would 

involve a lot of work. There about fifty different locations that make a request call to a FS 

process, and many more different execution paths that lead up to these calls. With 

continuations, all of them have to be covered explicitly. Moreover, we need to ensure mutual 

exclusion of various objects in many calls, and this adds many more places where the current 

operation may be suspended and resumed later. In addition, there would be a substantial risk 

that the resulting code becomes completely unreadable, because a new function would have to 

be called every time an operation is resumed. In any case, the continuations approach would 

only be feasible if a large part of VFS were completely rewritten from the ground up with all 

this in mind, and that was not an option for this project. 

 

In contrast, threads can solve this problem by blocking only one thread that is waiting for a 

reply, letting other threads do other work. On the code level, this would leave most code in 

place, and only a mutual exclusion model would need to be added to it. Highlevel calls can 

almost completely hide the thread suspension/resumption and state saving details. This 

approach would therefore involve much less work, and result in much more readable code. 

We have therefore chosen this approach. 

 

3.1.2. A new threading library 

 

MINIX 3 does not support kernel threads at this time. It also does not support interruption of 

running system processes. In user processes, signals can be used for that purpose, but in 

system processes, signals are sent as messages which have to be received explicitly. For 

system processes, the only threading system possible is therefore one built around 
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nonpreemptive user-space threads, also known as cooperative threads or coroutines. 

Fortunately, this is sufficient for our goal. 

 

We decided to develop our own “systhread”  threading library that exactly suits our needs. 

Although it may have been possible to find and port an existing nonpreemptive user-space 

threading library, additional requirements follow from the goal of using the library in a 

MINIX system server. In particular, a small memory footprint for the actual implementation is 

desired, and a MINIX-specific stack allocation issue needs to be addressed. Writing a library 

from scratch instead was deemed (and indeed proved to be) sufficiently simple. 

 

 

3.2 The threading library 

 

This section describes the new “systhread”  nonpreemptive user-space threading library. 

Although it has been developed with VFS in mind, it is generic enough to be used in any other 

system or even user process. Subsections 3.2.1 and 3.2.2 discuss the creation of thread stacks 

and threads. Subsections 3.2.3 and 3.2.4 describe the basic usage and API of the library. 

Subsection 3.2.5 and 3.2.6 discuss practical aspects of the actual use of the threading library. 

 

3.2.1. Thread stacks 

 

One very basic problem is the allocation of virtual stack space for each thread. Although this 

is a general problem that is hard to do in a portable way [9], a further restriction stems from 

MINIX’  memory model. In MINIX, each process is allocated a static (process-specified) 

memory area. This memory area is resident in memory at all times throughout the lifetime of 

the process, and it is not resizable at runtime. As a result, a process has a “gap”  between its 

data segment and its stack segment, allowing both parts to grow and shrink towards each 

other (but not collide!) based on the process’s data and stack usage (figure 3.2a). While data 

space has to be allocated explicitly using a call to the Process Manager system server, the 

current stack usage of the process is determined based on its Stack Pointer CPU register. 

 

MINIX refuses to allocate memory or call signal handlers if this stack pointer points into the 

data segment. This is generally a good thing, as it facilitates detection of data/stack segment 

collision. However, it also implies that allocating and using stack space in the data section 
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stops the process from allocating more memory. System servers must be able to allocate more 

memory in the data section, and allocating thread stacks on the data segment is therefore 

impossible, even though this is the most common approach taken by existing thread libraries 

(figure 3.2b). 

 

Our implementation solves the problem by subdividing the process stack into mini-stacks for 

the threads (figure 3.2c), by artificially advancing the stack pointer to skip a section of the 

stack during the creation of a thread. This effectively reserves the skipped stack section for 

use by that thread. In practice, this is a very straightforward process: if a function declares a 

simple array as local variable, then calling that function will cause the stack pointer to be 

advanced by the size of the array. We use this to artificially build virtual thread stacks, albeit 

using the alloca() API call to allocate stacks with a size as specified by the application. 

 

3.2.2. Thread preallocation 

 

Another implication of the MINIX memory model is that there is no point in supporting 

dynamic thread allocation. The “gap”  memory is allocated to the process anyway, and using 

more stack space does not actually consume more global system memory. To avoid a 

data/stack segment collision in the worst case, a certain amount of stack space must be 

reserved for threads. There is then no reason not to preallocate all threads statically. 

 

The allocation process can now take place only once, on startup. The thread library is started 

with an init() call that has three parameters: the number of threads, the stack size that each of 

the threads gets, and a pointer to the procedure that gets executed as “main thread”. The 

threading system initializes a new thread with _setjmp(), then calls alloca() to allocate the 

stack space reserved for the thread, and recursively creates the next thread from the advanced 

Figure 3.2: process memory layout 



– 24 –
 

stack pointer in the same way. When a thread is resumed with _longjmp() from its 

initialization point, it will have the reserved stack space available to it, without knowing that 

the stack space is reserved for a function that will never be returned to. 

 

Once the startup routine has recursively allocated the specified number of threads, the 

application-defined main thread procedure is called. At the moment that this procedure 

returns, the whole threads system terminates and returns from the original init() call. 

 

3.2.3. Thread usage 

 

Once the thread system has been started, the application can spawn worker threads using the 

start() call at any time. The first two parameters of this call specify the thread’s procedure 

entry point and a user-specified parameter. When the thread runs, this procedure will be called 

with the given parameter. The thread terminates when the procedure returns, after which it 

resets and becomes free to be reused. 

 

It is possible, and allowed, that the application attempts to start more threads at once than 

there are threads allocated. In such cases, the thread library uses the third and last parameter 

to the start() call, a pointer to an opaque store_t structure, to queue the request until a thread 

becomes available. The start() call returns immediately, but the given structure must remain 

available to the thread system until the thread has actually been started. It is up to the 

application to determine how to allocate and maintain these structures. The idea is that the 

application has some way to link concurrently executing threads to existing data structures, so 

that each of those can have its own store_t structure. In return, the application does not have 

to worry about actual thread allocation. 

 

A thread is runnable if it is in use and not blocked by a synchronization primitive (see the next 

subsection). The internal scheduler executes runnable threads in round-robin order. Threads 

can call yield() to let other threads run first. Exactly one thread is allowed to call yield_all() to 

wait for all other threads to run until they block, typically before it makes a process-blocking 

call such as the receive() primitive. 

 

3.2.4. Synchronization 
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The library supports two basic types that can be used for thread synchronization: mutexes and 

events. 

 

A mutex (mutex_t) provides mutual exclusion between threads. Only one thread can lock a 

mutex at a time. Other threads that attempt to lock a mutex while it is locked by a thread, will 

be suspended. When the thread holding the lock unlocks the mutex, the next suspended thread 

in the queue is resumed. The queue is a simple FIFO list of threads. A thread can lock a mutex 

using the mutex_lock() call, and unlock it using the mutex_unlock() call. If a thread wants to 

acquire a lock only when doing so will not block the thread, it can use mutex_trylock(). 

Mutex objects must be initialized using the mutex_init() call before they can be used. 

 

An event (event_t) provides a way for a thread to suspend itself waiting for another thread to 

wake it up. A thread can suspend itself on an event object using the event_wait() call; another 

thread can wake it up using the event_fire() call. An event object must first be initialized 

using event_init(). At this time, the implementation only supports one single waiting thread 

per event, and requires that event_fire() be called only on event objects that have a thread 

waiting on them. 

 

The header file that contains the exported structures and functions of the library is provided in 

appendix A.1. Note that the “systhread_”  prefix is used for all public structures and functions 

to avoid conflict with any naming scheme used in the application using the library. 

 

3.2.5. Runtime overhead 

 

As indicated, the _setjmp() and _longjmp() C library calls are used to actually switch between 

threads. These are the only high-level intraprocess context switch functions that MINIX offers 

at this time. The calls save and restore only a minimal set of core CPU registers, and therefore 

have a negligible impact on overall execution speed. 

 

Being based on FIFO queues, all of the scheduling and synchronization operations are of 

complexity O(1) in the number of threads. The only exception is yield_all(), which must wait 

for all other threads to suspend themselves in some way first. The yield_all() operation is the 

only basic operation for which the implementation contains a loop in its code at all. 
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3.2.6. Picking a stack size 

 

One problem is choosing the size of the stacks used for the worker threads. This size has to be 

chosen carefully. On one hand, if a thread exceeds the given stack size, it will overwrite a part 

of another thread’s stack, with disastrous consequences. On the other hand, the minimum 

memory requirement of the library is a function of not only the number of threads but also this 

stack size. As such, it is highly desirable to lower the stack size as far as possible, especially 

for memory-resident servers. However, it is usually far from trivial to estimate the actual 

maximum stack usage of a certain execution path, and even more difficult to estimate the 

maximum stack size of all execution paths combined. 

 

The library includes functionality to determine the maximum stack usage empirically. Starting 

with a relatively large stack size, the library fills each thread’s stack with known values before 

starting the thread. When the thread terminates, the library determines the actual stack usage 

based on what part of these known values are still present afterwards. The maximum stack 

usage is then the maximum over all such measured stack usages of all threads. Although not 

perfect, it provides a good indication when used for a long time. Performing such stack checks 

is a computationally expensive operation, and it can be turned off at compile time. 

 

The library can be used in nonsystem processes as well. However, if the process uses custom 

signal handlers, then the threads’  stack sizes must be large enough to hold all the kernel-

stored stack data and other stack space necessary for invocation of the signal handler. This 

comes on top of the normal maximum thread stack usage: the kernel uses the current stack 

pointer as starting point when firing a signal handler, and it cannot be predicted which thread 

will be active when the signal handler is fired. 

 

 

3.3. VFS threading 

 

With this new threading library, it is now possible to make VFS multithreaded. At this point, 

we are only concerned with the basic threading model for VFS. Communication changes and 

mutual exclusion are subject of later sections. 
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This section defines the new VFS threading model (subsection 3.3.1) and its exceptions 

(3.3.2), explains how global variables are dealt with (3.3.3), and briefly outlines the resulting 

implementation changes (3.3.4). 

 

3.3.1. Process-based threads 

 

The new approach for VFS consists of one main thread and a number of working threads.  

The main thread receives messages and spawns a worker thread for each messsage. The 

worker thread performs the operation requested in the message, and sends the reply when 

done. During the operation, each worker thread may send a request to a FS process, 

suspending itself until the main thread receives a reply for that request and wakes up the 

thread. It appears to the thread as if it made a blocking call. 

 

The next question is how to fit threads into the VFS model. One important observation is that 

a user process can never make more than one system call to VFS (or any other system process 

for that matter) at any time. Thus, each thread can be bound to a process, and we can simply 

put all data associated with threads in the process table. 

 

This makes it easy to thread all the basic calls that VFS offers to user processes. Also, as only 

one thread can be active for a single process, by far most operations affecting a single process 

are automatically serialized. Mutual exclusion is therefore not necessary for most data 

belonging to a single process. 

 

The flip side of the coin is that there could potentially be hundreds of processes on the system. 

The per-thread maximum stack usage obtained from actual tests is only about 1 kilobyte (after 

dealing with a special case described later), but creating one thread per process could lead to 

unacceptable amounts of memory consumption for the stack space alone. It must therefore be 

possible to have fewer threads allocated than there are processes. This is not a problem with 

our threads library: it merely involves adding the store_t structure to each process table entry 

in VFS. 

 

However, having fewer threads than processes also implies that VFS’s old concept of 

suspending a process (for example, because it made a blocking read() call on a pipe) cannot 

be replaced with new thread synchronization primitives. It takes another process to resume a 
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suspended process (for example, by writing to the pipe). With fewer threads than processes, a 

sufficient amount of suspended processes could take up all threads and deadlock the system. 

 

Specifically for this project, it should be noted that although we have implemented the support 

for such a limited number of threads, the multimedia nature of the rest of the project requires 

that a sufficient number of threads be present to avoid that time-critical multimedia calls are 

blocked in VFS after all. The number of threads, as well as the stack size, as passed to the 

thread library, are compile-time constants in VFS. 

 

3.3.2. Non user-initiated calls 

 

The main thread must be able to continue receiving replies and resuming worker threads at all 

times, so it must never make a blocking call to a FS itself. This means that every piece of code 

that makes calls to FS processes must be called from a worker thread. 

 

In this regard, we have to make one important exception to the model of associating every 

system call with a thread linked to the user process that makes the call. The reason is that the 

Process Manager (PM) system server relays certain duties to VFS. These duties are special 

PM-only request messages, and although PM is already nonblocking in this regard, the current 

PM-VFS interface relies on quick processing of at least some of them. 

 

We moved most of the code that handles the PM requests into a dedicated thread that is 

activated whenever a “ there is work pending”  notification from PM comes in, and then 

retrieves and processes the PM requests. This was not sufficient for all cases: the PM_EXEC, 

PM_EXIT, PM_DUMPCORE, PM_UNPAUSE and PM_REBOOT requests (to perform the VFS part of 

the exec(), normal exit, coredump exit, signal-caused call abort, and reboot functionality, 

respectively) can make FS requests on behalf of a certain process. In the case of PM_EXEC, a 

process can never make a call to VFS while it is blocked making an exec() call to PM. The 

PM thread then launches a process-associated thread to perform the call as if it came from the 

destination process. 

 

The same does not apply to PM_EXIT and PM_DUMPCORE: it is possible that a process is killed 

by a signal from another process while it is making a call to VFS itself, so these requests may 
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arrive while a process already has a thread. Handling those calls in parallel is not possible, as 

this would break the per-process call serialization that we rely on for consistency. 

 

Instead, the PM_EXIT or PM_DUMPCORE request message is stored separately in the process 

table, and a dummy thread is launched for the process if it it does not have a thread associated 

with it when the PM request arrives. Upon return from the (VFS-call or dummy) thread, the 

process table is checked to see if a PM request message is present. If so, it is handled at that 

point. No special care has to be taken to store new requests originating from the process while 

the process’s thread is dealing with one of those two PM messages: both PM messages kill the 

process, so when the thread is done, the process no longer exists. 

 

The PM_UNPAUSE request is stored as a flag in the ‘ fproc’  structure. The VFS thread stub 

function alternatingly executes a thread procedure and processes this flag if it is set, as long as 

there is work to do. If no thread was spawned for this process yet, a dummy thread is spawned 

instead. The same approach is taken for device notification messages from privileged driver 

processes. Since both these message types can be translated to a single flag, it was not deemed 

useful to let each thread have a generic message queue. 

 

A different approach had to be taken for the PM_REBOOT call, because it iterates over all 

processes and closes some of their resources (e.g. open files) on their behalf, and only replies 

to PM once it is done. A mutex was added in each fproc structure to mutually exclude the 

reboot call from process threads (which also lock their mutex while active). Being mutually 

exclusive from process threads, the calls made by the PM_REBOOT code can be viewed as 

made by each process’s thread. 

 

Finally, there are two more cases where functions can make blocking calls without being 

associated with a specific process: the mounting process upon initialization, and the 

processing of timer messages for select() timeout code. Both of these were changed to be 

handled in threads that are asssociated with VFS’s own ‘ fproc’  process entry. 

 

3.3.3. Global variables 

 

All state that is necessary for the correct operation of a thread, must remain present across 

thread suspension and resumption (i.e., across thread-blocking calls). The majority of the 
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thread’s state is present on the thread’s stack, but a part of it is stored as global variables. 

These global variables have to be dealt with, by instead associating them with threads 

somehow. We only consider basic global variables that are actually part of the threads’  state 

at this point. Shared global structures require forms of mutual exclusion, and that is the 

subject of section 3.5. Although all function-local variables declared ‘static’  are also global 

variables, no such variables were found to be a danger in any way. 

 

The resulting set of global variables that we are concerned with are listed in table 3.1. These 

are not the only basic global variables; the remaining global variables are not listed as they do 

not represent thread-specific state (for example, ‘susp_count’  that counts the number of 

processes suspended on a pipe). 

 

Variable Type Descr iption 

fp struct fproc * Pointer to the process making the current call. 

m_in message The request message as received from the calling process. 

m_out message The reply message being constructed for the caller process. 

who_p int The process table number of the caller process. 

who_e int The process endpoint number of the caller process. 

call_nr int The number of the current call. 

super_user int A flag indicating whether current process has root UID. 

user_fullpath char [] An array to store paths in. 

cum_path_processed int An offset into the user_fullpath buffer. 

err_code int Error number carried across calls. 

 

The ‘user_fullpath’  and ‘cum_path_processed’  are variables used only in path lookups, and 

were eliminated by saving them on the stack instead; more about this in subsection 3.4.5. The 

‘m_out’  and ‘err_code’  variables turned out not to be used across blocking calls or 

synchronization primitives at all, and could therefore remain as is. This is one of the main 

advantages of the nonpreemptiveness of the threading model, and we will use this many times 

more later. 

 

The remaining variables are stored as global variables mostly for fast access, and there is a 

high level of redundancy between them. In particular, the remaining integer variables can be 

Table 3.1: global variables containing thread-local state 
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fully expressed in terms of the two variables ‘ fp’  and ‘m_in’ , and were replaced with #define 

directives (table 3.2). 

 

Variable Redefined as 

who_p ((int)(fp - fproc)) 

who_e (fp->fp_endpoint) 

call_nr (m_in.m_type) 

super_user (fp->fp_effuid == SU_UID ? TRUE : FALSE) 

 

This leaves us with two essential global variables: ‘ fp’ , the pointer to the process table entry 

of the process associated with the current thread/operation, and ‘m_in’ , the message 

containing the user process system call number and data. These two variables are retained 

across blocking thread calls by placing them onto the stack whenever the thread is about to be 

suspended on a blocking call, restoring them whenever the thread is resumed. 

 

This was the simplest approach possible. The ‘ fp’  process entry pointer needs to be present at 

all times to allow other thread-specific data to be associated with the thread. Other than being 

saved and restored as global variable, it could be passed as variable between function calls, 

but this would add overhead to every single function call and require a large part of the 

existing functions and function calls to be changed. 

 

Also, the ‘m_in’  message structure could be saved in the process table instead of on the stack. 

However, this would mean that every access to any of the fields of ‘m_in’  would require a 

pointer dereference, and there are many of those. Instead, we further optimized the current 

approach by letting all mutex lock operations use the thread library’s mutex_trylock() call 

first. If this is successful, ‘ fp’  and ‘m_in’  need not be saved and restored at all. 

 

Some further changes were necessary for this approach. In particular, the do_fslogin(), 

free_proc() and unpause() functions altered the current ‘ fp’  pointer on the fly. These functions 

were changed to perform their tasks without (permanently) changing the ‘ fp’  variable. Using 

#define’s to redefine variables also means that shadowing variables is not possible any more, 

and some functions had to be changed to use differently named local variables and parameters 

in order to avoid conflicts with the ‘#define’s. 

Table 3.2: redefinitions of some global variables 
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3.3.4. Implementation 

 

Most of the basic thread functionality is confined to a new ‘ thread.c’  module. This includes 

starting and terminating of threads, and saving and restoring of the global ‘ fp’  and ‘m_in’  

variables. 

 

Some extra process-associated state is required to ensure that at most one thread per process is 

active. A substantial part of the ‘main.c’  code was rewritten to spawn threads for every 

operation rather than to perform the operation immediately. Other changes include 

initialization of the threads library from the main() entry point, and the insertion of a call to 

the yield_all() threading library API call before the call to receive(), in order to never block 

the whole VFS process while there are still threads that are runnable. 

 

To facilitate the creation and maintenance of threads along with all their thread state, the 

fields listed in table 3.3 were added to the ‘struct fproc’  structure. The use of some of them 

will become apparent in section 3.5 when we discuss mutual exclusion. 

 

 

Field Descr iption 

store_t fp_store; Place to store data for a pending but not yet executing process thread in. 

message fp_msg; Call request message from the user process, also stored in ‘m_in’  while the 

process thread is running. 

void (*fp_proc)(void); Pointer to the procedure that is to process the ‘ fp_msg’  message. 

message fp_msg_pm; Call request message from PM (see subsection 3.3.2). 

void 

(*fp_proc_pm)(void); 

Pointer to the procedure that is to process the ‘ fp_msg_pm’  message. 

message fp_msg_fs; Request message to, or reply message from, a file system (FS) process. 

endpoint_t fp_fs_e; Endpoint of the FS process to send the request to and receive a reply from. 

int fp_thread; Flag indicating whether a thread has already been started for this process. 

int fp_unblock; Flag indicating whether the process should be unblocked after the current 

call. 

int fp_notified; Flag indicating that the (privileged) process has sent a notification. 

struct fproc Pointer to the next process in the FIFO queue that this process is in. 
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*fp_q_next; 

int fp_q_type; The optional requested lock type for queues as part of a lock (see subsection 

3.5.3). 

event_t fp_event; Generic event used to wake up the thread after it has been suspended waiting 

in a queue, for a lock or a message. 

mutex_t fp_mutex; Process mutex, acquired by the process thread and the PM_REBOOT PM call. 

 

 

3.4. VFS – FS communication changes 

 

With the basic threading model in place, we can move on to the communication between VFS 

and FS processes. One subgoal here was to keep the protocol changes to a bare minimum. 

This avoided having to change large parts of not only VFS, but also the MFS file server, 

which is currently the only FS implementation that is a part of MINIX. The changes made to 

the protocol would therefore have to allow for multiple concurrent pending requests to new 

FS servers (in particular, instances of our new MMFS), while allowing only one pending 

request to each individual MFS process for backwards compatibility. 

 

Subsection 3.4.1 describes how the global behavior of VFS was changed from blocking to 

nonblocking. Subsection 3.4.2 describes the message passing primitive used for this, and 3.4.3 

describes the implications for the message protocol. Subsection 3.4.4 describes how 

backwards compatibility with MFS is maintained. Subsection 3.4.5 describes the only other 

protocol change that was needed to allow VFS to be multithreaded. Subsection 3.4.6 describes 

one more VFS/FS protocol change that was made, although not related to multithreading.  

 

3.4.1. From blocking to nonblocking 

 

Previously, VFS used a simple blocking sendrec() call to send a message to a FS, and block 

until the FS replies with another message. This call was already wrapped in a fs_sendrec() call 

to implement a driver recovery mechanism. Only the implementation of this fs_sendrec() call 

had to be changed to turn the VFS behavior towards FS processes from blocking to 

nonblocking. 

 

Table 3.3: fields added to the ‘ fproc’  structure 
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Our new implementation of the fs_sendrec() call executes a mechanism to send the request 

message to the FS, after which the calling thread suspends itself waiting for an event stored in 

the thread’s associated process table entry (‘ fp_event’ ). When the main thread receives the 

corresponding reply from the FS process, it both stores the reply, and fires the event, in the 

suspended threads’s process table entry. The suspended thread then continues and returns 

from the fs_sendrec() call with the reply message. All of this is implemented in a new 

‘ fscom.c’  FS communication module, along with a somewhat altered implementation of 

driver recovery. The fscom module will be described further in subsection 3.5.11. 

 

3.4.2. Asynchronous send primitive 

 

The actual sending process was changed to use the new senda() asynchronous send primitive 

that was introduced in a fairly recent SVN version of MINIX 3. There are two main reasons to 

use this approach instead of the send() primitive: 

 

- The send() primitive blocks until the message is delivered to the receiving process. 

This means all of VFS would be blocked sending a message to a FS if that FS process 

is temporarily busy with something else. With senda(), the message is kept in an array 

at the sending process until the message is delivered, after which it is marked as 

delivered. This is done by the kernel, allowing the process to continue with other work 

while the message is pending. 

- With multiple concurrent requests, it can occur with send() that VFS and a FS process 

attempt to send a message to each other at the same time, leading to a deadlock 

situation. Although this case is detected by the MINIX kernel, a system that involves 

retrying the send() after random intervals is hardly ideal. Other, notification-based 

solutions are possible, but they would always require extra protocol overhead (more 

messages sent). Senda() avoids this problem by not blocking the sending process while 

sending the message. 

 

These reasons are sufficient to choose senda() for VFS, but the use of this primitive is not 

without implications. At least the current senda() kernel implementation does not maintain the 

order in which multiple messages are sent to a single other process, that is, senda() provides 

asynchronous, non-FIFO communication. As we will see later, this imposes a fundamentally 

stricter mutual exclusion model on VFS. 
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With high rates of messages sent asynchronously by one process to one other process, it could 

potentially even lead to a single message arriving much later than other messages sent after it. 

This is not an issue as long as the receiver can receive faster than the sender can send, and we 

have not observed any such effect to be noticeable in our tests. Improvement of the senda() 

primitive in this respect could be subject of future work. 

 

VFS’  implementation of the senda() call is in ‘asyn.c’ . One call queues a single message for 

asynchronous sending to a FS process. Another call notifies the kernel (using the actual 

senda() call) that new messages are to be sent asynchronously. To minimize overhead, the 

latter is called only immediately before VFS makes the blocking receive() call in its main 

loop, rather than right after each individual message is sent. The asyn.c implementation was 

later reused in MMFS and libdriver as well. 

 

3.4.3. Message IDs 

 

With the combination of multiple concurrent outstanding requests and non-FIFO 

communication to single FS servers, VFS needs to have some way to link replies from FS 

servers to the requests sent to them. Without such a mechanism, VFS would not be able to 

determine which suspended thread to resume and pass a reply to. The solution to this problem 

is to include a certain value (or combination of values) in the reply that are unique to the 

request, typically using a unique identifier (ID) value present in request and reply. 

 

Unfortunately it turned out that messages were already “ full” : several VFS/FS request 

messages use all the fields in the message. To make things worse, both request and reply 

messages come in two different internal layout formats (types m2 and m6 [32]). This makes it 

impossible to establish a location for an ID value in the message structure that is consistent 

across both the message structure’s m2 and m6 unions. Although the basic message structure 

could be expanded to make room for an ID value, that would make all messages used 

throughout the whole MINIX operating system bigger, and add more overhead to every single 

call involving messages. 

 

A better solution resulted from the observation that the (32-bit) m_type field of the messages 

was not used to the fullest extent in the VFS-FS protocol. In this field, requests carry the 
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request type (a small number), and replies carry the result code (either a zero “OK”  value or a 

negative, small error number). This allows the m_type field to be split in two, using the lower 

bits of the field to store the original request and error codes, and the higher bits of the field to 

carry the message ID. The split we used is 16/16 bits, although this could easily be changed 

later. Addition, retrieval and removal of the message ID are done with three simple macros. 

The first one returns the ID, the last two return a new m_type value. 

 

#define GET_ID(type) ((type) & 0xffff) 

#define ADD_ID(type, id) (((type) << 16) | ((id) & 0xffff)) 

#define DEL_ID(type) ((short)((type) >> 16)) 

 

VFS then attaches a message ID to each message, which the FS process retrieves, removes 

and saves. When the FS process replies, it attaches the same message ID to the reply message, 

allowing VFS to link the reply to the request. The message ID is opaque to the FS process. 

For maximum simplicity, efficiency and convenience, the ID that VFS actually uses is the 

process table index of the requesting thread. 

 

3.4.4. Maximum  number of concurrent requests 

 

To retain backwards compatibility with MFS, VFS needs to distinguish between FS servers 

that are capable of handling multiple concurrent requests and servers that are not. The FS 

server must therefore be able to specify this property. 

 

To this end, the REQ_READSUPER handshake was slightly modified; specifically, the reply 

message layout was extended to include a new RES_MAXREQS field. When sending the reply, 

the FS process fills the RES_MAXREQS field with the maximum number of concurrent requests 

that it can handle. 

 

To enforce this maximum, the “send”  part of the changed fs_sendrec() routine does not 

actually always send the message to the FS right away. Instead, it keeps a per-FS counter of 

outstanding requests. More on this in subsection 3.5.11. 
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MFS was changed to send the RES_MAXREQS value ‘1’  to VFS. This ensures that MFS only 

receives one request at a time, so that MFS does not need to support asynchronous 

communication at all. 

 

3.4.5. The shared path buffer 

 

Another issue that had to be resolved, was the use of a global shared buffer for path lookups. 

A path lookup is the process of resolving a file path string to a specific file entry (inode) on a 

file system. During a path lookup, VFS asks one or more FS servers to resolve a part of the 

path. It does this in a loop, sending a REQ_LOOKUP request to each FS server that has to 

resolve the next part. 

 

During the resolution, a FS server may encounter a symbolic link. If so, the lookup may have 

to continue on the contents of the symbolic link. The FS server then has to inform VFS where 

to continue next. It copies the unresolved part of the symbolic link to a buffer in VFS' address 

space, and sends back a special ‘ESYMLINK’  error code. That buffer in VFS is the 

‘user_fullpath’  variable mentioned in subsection 3.3.3. There is only one such buffer; it is 

shared amoung all FS servers. Its address is specified by VFS to each FS process once, in the 

initial REQ_READSUPER handshake request. 

 

As long as only one lookup takes place at a time, this approach works. With multiple 

concurrent lookups, however, the integrity of the buffer contents cannot be guaranteed any 

more. To let multiple concurrent path lookups take place, this global buffer had to be 

eliminated. 

 

Each REQ_LOOKUP request already contains an address for another buffer: the buffer 

containing the part of the path string that is still to be resolved. This buffer is on the stack of 

the requesting thread, and therefore safe from all other concurrent lookups. The REQ_LOOKUP 

protocol was changed so that FS processes now copy the contents of a symbolic link to that 

buffer on the stack, instead of the global buffer. 

 

The REQ_LOOKUP request message layout had to be changed for this. Previously, VFS passed 

the unresolved part of the path string in the request as a <pointer into stack buffer, remaining 

length> pair. The pointer could be far into the buffer, leaving too little room for a FS process 
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to store the contents of the symbolic link in. The <pointer into stack buffer, remaining length> 

fields were replaced with <stack buffer base, offset into buffer, remaining length> fields in the 

request. For the offset, the unused short integer field 'm6_s3' was used. 

 

The global ‘user_fullpath’  buffer could now be eliminated, and the REQ_READSUPER protocol 

message was changed not to include its address any more. 

 

3.4.6. Ability to query file systems 

 

One more protocol change was made, although not related to threading. As will be described 

later, our approach requires that user processes can specify a stream rate to MMFS. This 

requires a direct communication from a user process to a FS server. We therefore introduced a 

new call, “ QUERYFS” . 

 

Instead of adding a new request type to the VFS/FS protocol, we extended the current 

implementation of fstatfs(). This system call lets a user process retrieve information about the 

file system that an open file resides on. The system call specifies a file descriptor and a buffer 

address. When processing the call, VFS passes the inode number of the open file and the 

given buffer to the corresponding FS process. The FS process fills the buffer with the 

corresponding information. 

 

The function and request were extended to allow the user process specify a subcall type and 

the size of the buffer. One subcall type is for FSTATFS, turning fstatfs() into a subcall of the 

new queryfs() call. Another subcall type will be introduced for MMFS later. With the explicit 

specification of the buffer size, every subcall can have its own arbitrary buffer layout. 

 

The header file of the new queryfs() API is included in appendix A.2. 

 

This concludes the changes made to the VFS-FS protocol – the remaining changes now 

concern VFS only. In particular, MFS did not have to be altered beyond the small set of 

changes outlined so far. 
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3.5. VFS locking 

 

With all basic issues related to threading VFS out of the way, the most complicated and 

important issue remains: that of mutual exclusion. It is clear that at least some form of mutual 

exclusion is required: the request calls to file systems that previously blocked VFS, now only 

block the current (process-bound) thread, and these requests are by no means atomic or 

independent from everything else that happens in the VFS process. This section addresses the 

complete issue. 

 

Subsection 3.5.1 defines a set of requirements for the mutual exclusion model, both to correct 

operation and for the minimal blocking required by our MMFS. Subsection 3.5.2 discusses 

which VFS objects (i.e., structure elements) require mutual exclusion. The most important 

objects are vmnts, vnodes and filps. Subsections 3.5.3 and 3.5.4 define basic rules and 

systems used for these three objects, and subsections 3.5.5 to 3.5.7 discuss the mutual 

exclusion systems for each of them in detail. Subsections 3.5.8 to 3.5.10 look at the other 

objects. Subsections 3.5.11 to 3.5.13 discuss remaining serialization issues. 

 

Appendix B lists the resulting locking requirements of all calls to VFS, and the locks that are 

active during VFS’  requests to FS processes. 

 

3.5.1. Requirements 

 

The locking model that we apply to VFS must guarantee correct functioning even with several 

threads executing semi-concurrently and in any arbitrary order. The latter point is imposed by 

the fact that requests and replies use non-FIFO communication, and by the fact that FS 

instances may take an arbitrary time to process the requests. 

 

This leads to the following five requirements. The first two are essentially a result of the fact 

that the state of the FS processes cannot be accessed and modified directly by VFS. The last 

three are mostly the result of use of mutual exclusion to solve the first two. 
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• Consistency of replicated values. Various VFS system call operations rely on having the 

latest data values on the object they are dealing with. These values may be a replica or 

representation of state in a FS process, and updating them involves a request to a FS 

process. To make sure VFS always uses the correct value present on the FS process, 

mutual exclusion must be used. For example, it is important that VFS knows the correct 

file size of open files at all times. If not, read calls may operate on an old file size, and for 

example fail to read the whole file. Worse, write calls that append to the file may end up 

overwriting earlier write calls. Worse yet, in the case of pipes, this may even lead to 

deadlocking of processes. To prevent this, system calls that update the file size (i.e., 

writes) must be mutually exclusive from system calls that use it (reads and other writes). 

• Isolation of system calls. Even in the absence of replicated state, many system call 

operations involve more than one request to a FS process. Concurrent requests from other 

processes must not cause an otherwise impossible outcome of the system call. It is 

therefore important to identify such cases and provide a sufficient level of mutual 

exclusion for them. We make one necessary relaxation which results in an isolation level 

which is not entirely “serializable” . That is, in rare cases, the outcome of one of two 

concurrently made system calls may be different than in the original blocking VFS. We 

will discuss this later. 

• Integrity of objects. From the point of view of threads, acquiring mutual exclusion is a 

potentially blocking operation as well. The integrity of any objects used across such a 

blocking call must be guaranteed, and this may require extra mutual exclusion. For 

example: even though file positions into open files are maintained only in VFS, the ‘ filp’ 

objects that keep such file positions are used across blocking calls. To keep the file 

position correct even with multiple threads concurrently accessing the same object, mutual 

exclusion is needed for ‘ filp’  objects. Such additional protection can easily lead to an 

avalanche of recursively required locking of objects, and we will heavily rely on the 

nonpreemptiveness of the threading model to prevent this where possible. 

• No deadlock. No two or more concurrent calls may cause all of them not to complete. 

Deadlock situations are typically the result of two threads that each hold exclusive access 

to one resource and that want exclusive access to the resource held by the other thread. 

The resources are data objects in VFS’  case. Conflicts between locking of different types 

of objects can be avoided by keeping a locking order of object types: objects of different 

types must always be locked in the same order, so that the conflict scenario cannot occur. 
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If multiple objects of the same type are to be locked, then first a “common denominator”  

must be locked which is higher up in the locking order. 

• No lockout (starvation). Even in the absence of deadlocks, VFS must guarantee that every 

system call can complete within finite time. For example, where reads and writes conflict, 

an infinite stream of multiple read calls must not be able to block a single write call 

forever. The FIFO-based scheduling and synchronization of our threading library 

simplifies prevention of lockout. However, we will show later that strict use of FIFO 

everywhere (e.g., “a pending write would always block new reads” ) could lead to 

deadlock situations, so we have to be careful to guarantee both requirements at the same 

time. Lockout is a much more important issue for VFS than it is for asynchronous sending 

(see the note in subsection 3.4.2), as blocking calls in VFS can potentially take much 

longer and do not depend solely on communication speed. 

 

All this has to be combined with the requirements that we have for the MMFS multimedia file 

server. In particular, the read() calls to a multimedia file must be able to complete virtually 

instantly, regardless of any other activity on both that file system and on other file systems. 

Only then, the read calls are independent from other process activity. This translates into the 

following points: 

 

• A request to one FS process must not block access to other FS processes. This means that 

most forms of locking cannot take place at a global level, and must at most take place on 

the file system level. 

• An operation that does not affect a certain file on disk, must not block a read() call to that 

file. This means that not all locking can take place on the file system level, and may have 

to take place on the file level. 

• No read-only operation on a regular file must block an independent read call to that file. In 

particular, (read-only) open and close operations may not block such reads, and multiple 

independent reads on the same file must be able to take place concurrently. In this context, 

independent reads are reads that do not share a file position between their file descriptors. 

 

3.5.2. Objects 

 



– 42 –
 

We now turn to the relevant objects in VFS. Table 3.4 lists the dynamic data structures (object 

types) that may require a form of locking. 

 

Structure Object descr iption Discussed in 

fproc Process; most notably, this includes the process’s file descriptors. Section 3.3. 

vmnt Virtual mount: a currently mounted file system. Subsection 3.5.5. 

vnode Virtual node: an open file. Subsection 3.5.6. 

filp File position into an open file. Subsection 3.5.7. 

lock File region locking state for an open file. Subsection 3.5.8. 

select State for an in-progress select() call. Subsection 3.5.9. 

dmap Mapping from major device number to a device driver. Subsection 3.5.10. 

 

The threading model already revolves around mapping threads to processes, and section 3.3 

has covered the implications of this for the ‘ fproc’  structure. Of the remaining structures, the 

vmnt, vnode and filp structures are the most important ones. We will consider these first. 

 

A vmnt object is a mounted file system. Vmnt objects can be created with a mount() call, and 

destroyed with an umount() call. To prevent unmounting of file systems that are in use, the 

unmounting call counts the number of in-use vnodes on that file system. A vmnt object 

always has a device number (‘m_dev’ ) and a file system endpoint (‘m_fs_e’ ). Both are unique 

for that object: a file system always operates on a device (typically a hard disk partition) and 

this device may never be mounted twice. Also, there always is a single FS process handling 

the file system. 

 

A vnode object is the VFS representation of an open inode (file entry) on a file system. In  

this context, “open”  means that it has a nonzero reference count on the FS. The object also has 

a reference count within VFS (‘v_ref_count’ ) of processes and filp objects using this vnode. 

The VFS reference count is nonzero iff the reference count as known by the FS server 

(‘ v_fs_count’ ) is nonzero, although the two counts may not always be equal. Vnodes are 

created as a first process opens or creates the corresponding file on the FS, and destroyed as 

the last process closes it. A vnode’s identity is based on the combination of a FS server 

endpoint (‘v_fs_e’ ) and the inode number on that file system (‘v_inode_nr’ ). Additionally, a 

Table 3.4: VFS object types 
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vnode contains a number of file properties that are replicated from the FS, for example its file 

size. 

 

A filp object contains a file position within an open file. After creation, the object is always 

linked to one vnode throughout its lifetime, although not all vnodes are linked to by filp 

objects. A file descriptor always links to a single filp. The filp has a reference count 

(‘ filp_count’ ) which is equal to the number of file descriptors referring to it. A filp object does 

not have a unique identity and cannot be opened, only created (whenever a file is opened or 

an anonymous pipe is created) and later duplicated as a result of a dup() or fork() call. As 

such, it is not necessarily in use by only one process. 

 

3.5.3. Locking order and basic integrity rules 

 

From the requirements we defined, it follows that we need locks for the vmnt, vnode and filp 

objects. The first two need more than one type of locking granularity. We start by defining an 

initial locking order: 

 

vmnt > vnode > filp 

 

That is, no thread may lock a vmnt while holding a vnode lock, and no thread may lock a 

vnode while holding a filp lock. This is the only order possible: creation of a new vnode 

object requires access to a vmnt, and creation of a new filp object requires access to a vnode. 

 

The next issue is then a good and safe definition of the objects’  identity, state of being in use, 

and lock. We look at the very narrow definition of the object as a structure that is an element 

in an array in VFS at this point, and do not yet consider what the object actually represents. 

 

If an object has an identity, then no two objects must be created with the same identity. 

However, after destruction, an object may still be locked by the party that is destroying it. it 

may not yet be reused at that point because it is still locked. To prevent all kinds of problems 

resulting for this, the following rules are defined for vmnt, vnode and and filp objects: 

 

1. An object that has an identity (vmnt/vnode) must have separate fields for identity and 

for being in use. 



– 44 –
 

2. An object is free for reuse if its fields indicate that it is not in use, and its lock is 

completely cleared. 

3. If after acquiring a lock, the object is not in use any more, then the lock is exclusive 

for that object, regardless of the requested access (lock type). 

 

Retrieving/creating an object based on a given identity, which is a very common operation, 

can then use the following pseudocode: 

 

object *get_object(identity, lock_type, do_not_create) 

{ 

obj_ptr = find_object(identity); 

 

if (obj_ptr == NIL_OBJ) { 

  if (do_not_create) 

   return NIL_OBJ; 

 

  obj_ptr = get_free_object(identity); 

  } 

 

lock_object(obj_ptr, lock_type); 

 

return obj_ptr; 

 } 

 

The first call always finds the object if an object was present with that identity, in use or not 

(rule 1), locked or not. If not found, a free object has to be found (using rule 2) and given the 

new identity. The next step is to lock the object. If a free object had to be acquired, locking 

always succeeds immediately (rule 2). The resulting object may or may not be marked as in 

use afterwards; of course, it is certainly not in use if a free object had to be acquired. 

However, it is locked exclusively if it is not in use (rule 3), which means the caller can mark it 

in use and fill in any further fields as desired. 

 

This scheme is simple, and works for both creation and mere retrieval. Moreover, it allows the 

object to be destroyed in an arbitrary way, as long as destruction takes place while a lock is 

held on the object. To prevent that any activity taking place during the destruction can 

interfere with a concurrent creation, it is desirable (but not strictly required) to use mutually 

exclusive lock types for creation and destruction. 
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This is the basic scheme we use for vmnt and vnode objects. Filp objects have no identity, but 

rules 2 and 3 are used for finding and locking free entries there as well. The 

nonpreemptiveness of the threading library is used to avoid having to acquire (for example) a 

global lock for each object type first. 

 

Table 3.5 lists the definitions of the properties of the three mentioned object types that were 

chosen. They are mostly derived from the old situation, but required several changes to the 

code to actually hold everywhere. 

 

Object Property Choice 

Identity m_dev 

In use iff m_fs_e != NONE 

vmnt 

Lock Three-level lock 

Identity v_fs_e + v_inode_nr 

In use iff v_ref_count > 0 

vnode 

Lock Three-level lock 

Identity - 

In use iff filp_count > 0 

filp 

Lock Systhread mutex 

 

3.5.4. The three-level lock 

 

From the requirements discussion of subsection 3.5.1, it is clear that for vmnts and vnodes, at 

least two locking types are required. Simply put, read and write. Concurrent reads are 

allowed, but writes are exclusive both from reads and from each other. This is the classic 

readers/writer lock. It turns out that it is more convenient (and sufficient) to define three 

locking types, for both vmnt and vnode objects. We developed a simple generic three-level 

lock datatype for VFS that supports maximum concurrent access, falls back on exclusive 

access for not-in-use objects (as per the last subsection), and guarantees no lockout. Their 

actual application will be described in the following subsections. 

 

The three locking types are concurrent (TLL_CONCUR), serialized (TLL_SERIAL) and exclusive 

(TLL_EXCL). The concurrent type, similar to the “ read”  primitive above, allows an unlimited 

Table 3.5: properties for main objects 
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number of other threads to hold the lock with the same concurrent type (N *  concurrent). The 

serialized type similarly allows an arbitrary number of concurrent accesses at the same time, 

but only one thread can get serialized access to the lock at a time (1 *  serialized + N * 

concurrent). The exclusive type provides full mutual exclusion, similar to the mentioned 

“write”  primitive (1 *  exclusive). Figure 3.3 illustrates this. In figure 3.3a, horizontal lines 

represent threads having access to the lock. Figure 3.3b shows the same example, adding gray 

areas to indicate mutual exclusion from new access requests for each of the locking types. 

 

If there are no concurrent access requests, the serialized type is essentially equal to the 

exclusive type, but in the absence of exclusive access requests, the serialized type never 

blocks concurrent access. 

  

It is possible for a thread to upgrade its serialized access to exclusive access while holding the 

lock. In that case, it waits for all threads with concurrent access to finish (if any), while any 

new concurrent threads are queued. As we will show, this is necessary for vmnt objects. A 

thread can also downgrade its access from exclusive to serialized or concurrent, without 

having to block. However, it is impossible to upgrade from concurrent to serialized, as that 

would effectively involve releasing and then reacquiring the lock. 

 

The implementation requires two queues. Access to the lock can be seen as batches of 

combined concurrent and serialized access, separated by exclusive access (requiring one 

queue). Each batch allows all concurrent access to take place in parallel but grants the 

serialized access one by one (requiring another queue with higher priority). The use of FIFO 

queues guarantees no lockout: an exclusive access request/upgrade blocks any subsequent 

Figure 3.3: example lock access with different locking types 
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access requests of any type, and a serialized access request always blocks any subsequent 

serialized and exclusive access requests. 

 

Finally, if the three-level lock module is informed that the object that the lock operates on is 

not in use (this is a parameter in all calls), it will treat all queued requests as exclusive requests 

for the time being. Maximum parallel access is reallowed once the object becomes in use 

again. Outstanding concurrent access cannot be revoked once the object stops being in use, 

but this is not an issue in practice: it cannot happen for either vmnts or vnodes. 

 

Table 3.6 lists the structure field used for the three-level lock structure (‘struct tll’ ). 

 

Field Descr iption 
int t_type; Current locking level type: TLL_CONCUR, TLL_SERIAL or TLL_EXCL. 
int t_count; Number of TLL_CONCUR accesses currently active (0 if TLL_EXCL). 
struct fproc * t_owner; The owner of the lock if the level is TLL_SERIAL or TLL_EXCL. 
int t_upgrading; If set, the owner is upgrading and wants an event when t_count reaches 0. 
struct queue t_excl_q; The main queue of threads that are waiting for the lock. 
struct queue t_seri_q; The priority queue of TLL_SERIAL threads that are waiting for the lock. 

 

The queue structure, which maintains a simple FIFO list of ‘ fproc’  structures, requires two 

fields in the ‘ fproc’  structure of each queued thread. One field is needed to store the requested 

lock type (‘ fp_q_type’ ), and another is needed to store a pointer to the next process in the 

queue (‘ fp_q_next’ ). This is sufficient, as a thread can never be in more than one queue at any 

time. 

 

3.5.5. Vmnt (file system) locking 

 

With the proper mechanisms in place, the next step is to decide which FS operations require 

which level of vmnt locking. Besides fulfilling the list of requirements, it is obviously 

desirable to let as many FS operations take place in parallel as possible. We therefore start off 

from the point of locking as little as possible, and with the lowest locking level. Then we 

apply restrictions to increase the locking to a necessary minimum level. 

 

Table 3.6: fields of ‘ tll’  structure 



– 48 –
 

In this subsection, we first identify and classify the system calls that need vmnt locking. Then 

we look at the main complicating factor: path lookups. Finally, we assign appropriate locking 

types to the classified system calls. 

 

Vmnt locking cannot be seen completely separately from vnode locking. The reason is that 

the unmounting process already fails if there are still in-use vnodes (i.e. vnodes with a 

positive FS reference count, and therefore a positive local reference count), which means that 

FS requests only involving in-use vnodes do not have to acquire a vmnt lock. On the other 

hand, the FS requests that do not involve in-use vnodes do have to acquire a vmnt lock. 

 

This leads to a very important assertion: of the system calls that VFS offers to processes, the 

calls that involve a file descriptor, by definition, operate on an open file and thus on an in-use 

vnode (following the path fd à  filp à  vnode). None of those operations therefore need a 

vmnt lock. On the other hand, all other operations that make requests to a FS always need (at 

least) a vmnt lock. 

 

We start by classifying all these calls in several distinct groups, including the pseudocode that 

outlines their operation in the original VFS. See table 3.7. For now, we ignore specific details 

that must be solved at another level. 

 

Group System calls VFS pseudocode  

File open operations 

(non-create) 

open(), exec(), 

chdir(), chroot() 

file_fs, file_ino = lookup(input_path, EAT_PATH); 

if (!(vp = find_vnode(file_fs, file_ino))) { 

 res = fs_open(file_fs, file_ino); 

 vp = create_vnode(file_fs, file_ino, res); 

} 

/ *  ‘ vp’  r epr esent s an i n- use vnode her e * /  

File create-and-open 

operations 

(may open only 

instead) 

open(O_CREAT

E), creat() 

fs, ino, err, file_name = 

 lookup(input_path, EAT_PATH); 

if (err == does not  exi st ) { 

 / *  t he r et ur ned f s,  i no ar e t he l ast  di r  * /  

 fs, ino, res = fs_create(fs, ino, file_name);  

 vp = create_vnode(fs, ino, res); 

} 

else / *  l i ke open( )  above,  usi ng ‘ f s ’  and ‘ i no’  * / ; 

File create-unique-and-

open operations 

pipe() file_fs, file_ino, res = fs_create_unique(); 

vp = create_vnode(file_fs, file_ino, res); 

File create-only mkdir(), dir_fs, dir_ino, file_name = 

 lookup(input_path, LAST_DIR); 



– 49 –
 

operations mknod(), 

slink() 

fs_call(dir_fs, dir_ino, file_name); 

File information 

retrieval or 

modification (not 

replicated) 

stat(), lstat(), 

access(), 

rdlink(), 

utime() 

file_fs, file_ino = lookup(input_path, EAT_PATH); 

fs_call(file_fs, file_ino); 

File modification 

(possibly replicated) 

chmod(), 

chown(), 

trunc() 

file_fs, file_ino = lookup(input_path, EAT_PATH); 

res = fs_call(file_fs, file_ino); 

if ((vp = find_vnode(file_fs, file_ino))) 

 modify_vnode(vp, res); 

File link operations link() src_fs, src_ino = lookup(src_input_path, EAT_PATH); 

dst_dir_fs, dst_dir_ino, dst_file_name = 

 lookup(dst_input_path, LAST_DIR); 

/ *  make sur e t hat  sr c_f s equal s dst _di r _f s * /  

fs_call(src_fs, src_ino, dst_dir_ino, dst_file_name); 

File unlink operations unlink(), 

rmdir() 

file_fs, file_ino = lookup(input_path, EAT_PATH); 

if ((vp = find_vnode(file_fs, file_ino))) 

 / *  per f or m cer t ai n checks on t he vnode * / ; 

dir_fs, dir_ino, file_name = 

 lookup(input_path, LAST_DIR); 

fs_call(dir_fs, dir_ino, file_name); 

File rename operations rename() old_dir_fs, old_dir_ino, old_file_name = 

 lookup(old_input_path, LAST_DIR); 

new_file_fs, new_file_ino = 

 lookup(new_input_path, EAT_PATH); 

if (new f i l e al r eady exi st s && 

 (vp = find_vnode(new_file_fs, new_file_ino))) 

 / *  per f or m cer t ai n checks on t he vnode * / ; 

new_dir_fs, new_dir_ino, new_file_name = 

 lookup(new_input_path, LAST_DIR); 

/ *  make sur e ol d_di r _f s == new_di r _f s * /  

fs_call(old_dir_fs, old_dir_ino, old_file_name, 

 new_dir_ino, new_file_name); 

Non-file operations sync(), stime() fs_call(); 

 

The calls that actually involve FS requests are marked in bold. For clarity’s sake, the above 

pseudocode uses different names for most calls than VFS does. For example, ‘ fs_open’  is 

actually called ‘ req_getnode’  in VFS, and ‘ fs_create_unique’ is actually ‘ req_pipe’ . 

 

The first thing to notice is that there is typically a “gap”  between a path lookup and the use of 

the results of the lookup. During this gap, another system call may be issued that operates on 

the same path, and may perform an arbitrary number of operations in between. A prime 

Table 3.7: classification of non file descriptor based process calls in VFS 
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example scenario: between the FS processing the ‘ lookup’  and the subsequent ‘ fs_open’  calls 

of a file open operation, the inode resulting from the lookup may be deleted and its inode 

number may be reused for another file created immediately after. The wrong file would then 

be opened. Only VFS can prevent this situation from occurring, for example by making entire 

file delete operations mutually exclusive from file open operations. 

 

A second observation is that file system requests operate on one file system only. In fact most 

calls that VFS offers to user processes involve only one FS process at a time. An important 

exception is that in the case of the file link/unlink/rename operations, there are multiple FS 

lookups leading to a single FS call. During these operations, the results of the first lookup 

must remain valid until the last FS call finishes. Preserving the isolation of these operations 

while also preventing deadlock proves to be difficult, and that is the direct result of these 

multiple lookups. Lookups are an important aspect of most of the groups, and deserve special 

attention. 

 

Path lookups take arbitrary (absolute or relative) paths as input. They may therefore visit 

arbitrary file systems in an arbitrary order, start and end at an arbitrary file system, and 

possibly visit the same file system more than once. Each file system resolves the next piece of 

the path, so the path itself determines the order in which the file systems are visited. VFS can 

never tell in advance at which FS the lookup will end. All this has the following crucial 

implications for the locking model: 

 

- In the lookup process, only one file system must be locked at a time. When going from 

one FS to the next, the lookup process must unlock the last FS before locking the next. 

This prevents concurrent lookups deadlocking each other. Serializing all lookups 

globally would violate the first requirement for MMFS, and effectively disallow a 

multimedia process from immediately opening a multimedia file in its working 

directory just because other lookups are going on elsewhere. With networked file 

systems, the effect of this would be even worse. 

- The lookup process must lock each visited file system with a lock type that is equal to, 

or can be upgraded to, the lock type desired by the caller for the destination file 

system. After all, it does not know whether the file system it queries is the destination 

file system. The lookup process may therefore not use a concurrent lock type if the 

desired lock type is serialized (see subsection 3.5.4). 
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- Despite locking, two lookups on the same path may result in different results each 

time. Although the first lookup may lock the destination file system, this lock does not 

prevent concurrent calls from making changes on other file systems responsible for 

resolving earlier parts of the path. In particular, after these changes, the second lookup 

may resolve to another file on the same destination file system. The second of two 

lookups for one single path may therefore never visit an unlocked file system. 

 

The last point led us to restructure the file unlink and rename operations. Instead of 

performing two full lookups for a single pathname (one for the full path to perform certain 

vnode checks, one for the containing directory for the actual operation), it now uses a newly 

added “ ADVANCE”  lookup that continues on (and never leaves) the currently locked file 

system, starting from the containing directory that was the result of the first lookup. This 

results in the replacement scheme in table 3.8. 

 

Group System calls VFS pseudocode  

File unlink operations unlink(), 

rmdir() 

dir_fs, dir_ino, file_name = 

 lookup(input_path, LAST_DIR); 

file_fs, file_ino = lookup(file_name, ADVANCE,  

    dir_fs, dir_ino); 

if ((vp = find_vnode(file_fs, file_ino))) 

 / *  per f or m cer t ai n checks on t he vnode * / ; 

fs_call(dir_fs, dir_ino, file_name); 

File rename operations rename() old_dir_fs, old_dir_ino, old_file_name = 

 lookup(old_input_path, LAST_DIR); 

new_dir_fs, new_dir_ino, new_file_name = 

 lookup(new_input_path, LAST_DIR); 

/ *  make sur e ol d_di r _f s == new_di r _f s * /  

new_file_fs, new_file_ino = 

 lookup(file_name, ADVANCE, new_dir_fs,  

     new_dir_ino); 

if (new f i l e al r eady exi st s && 

 (vp = find_vnode(new_file_fs, new_file_ino))) 

 / *  per f or m cer t ai n checks on t he vnode * / ; 

fs_call(old_dir_fs, old_dir_ino, old_file_name, 

 new_dir_ino, new_file_name); 

 

Slightly getting ahead of ourselves, file locking will need to be of the exclusive type for these 

two groups of calls, to prevent the open vs delete+recreate scenario mentioned earlier. The 

exclusive lock will prevent files from being opened on the same FS at all, and that also 

Table 3.8: new pseudocode for rewritten unlink/rename operations 
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prevents the scenario that a vnode is opened between the vnode checks done in these 

operations, and the final FS request of the operation. 

 

The requirement for an exclusive lock for in particular rename() has implications for avoiding 

deadlocks. If a lookup is followed by another independent lookup, then the first lookup must 

never obtain an exclusive lock: two threads doing this concurrently would then deadlock on 

their second lookups. The first lookup must also not obtain a concurrent lock if the second 

lookup obtains a serialized lock which it then later upgrades to exclusive: this may similarly 

deadlock if another thread tries to upgrade its own resulting serialized lock to exclusive after 

the first thread’s concurrent lookup has finished but before the serialized lookup has finished. 

 

The only way to end up with a serialized or exclusive lock after multiple lookups, avoiding 

deadlocks altogether, is to let the first lookup obtain a serialized lock. After that, the 

remaining lookups are concurrent. Once the operation will not make any more lookups, the 

serialized lock can be upgraded to exclusive. However, the concurrent-type lookups must 

never be queued behind a exclusive lock request (this would still lead to deadlocks), so 

queued exclusive lock requests must not exist at all. All other system calls that require an 

exclusive vmnt lock, also first have to acquire a serialized lock, and then upgrade it to 

exclusive afterwards. In the cases where such upgrades are not explicit, we take care of this 

transparently in the new lock_vmnt() call in our implementation. 

 

It is here that we have to make a relaxation from the “serializable”  isolation model, as 

mentioned in subsection 3.5.1. Operations that involve two different paths (i.e. link and 

rename) are not necessarily atomic with respect to the two path lookups. Between the 

lookups, changes may take place that affect the second lookup. This concerns lookups on 

different paths only, and is allowed by POSIX. 

 

This concludes the considerations with respect to path lookups. What remains is the 

assignment of a locking type to all groups. As starting point, it is desirable to let open() calls 

that will not create the file if it does not exist, run fully in parallel. In combination with the 

requirements already defined for MMFS, this means that two or more processes opening (the 

same or different) multimedia files in parallel would essentially take just as long as a single 

process opening a single file. This turns out to be possible. The direct implication is that an 
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exclusive lock is needed for all other calls that potentially conflict with these open() calls on 

the vmnt level. 

 

Table 3.9 lists the lock types for vmnts, based on the locking levels of the three-level lock. 

 

Lock type Mapped to Used for  

VMNT_READ TLL_CONCUR Read-only operations and fully independent write operations. 

VMNT_WRITE TLL_SERIAL Independent create and modify operations. 

VMNT_EXCL TLL_EXCL Delete and dependent write operations. 

 

Note that the “write”  lock in this context differs from the “write”  used in the definition of a 

readers/writer lock, because single simple write operations are allowed to take place in 

parallel with multiple read operations. 

 

Table 3.10 summarizes the various lock types that we have applied to all operations in each of 

the groups, along with the main motivation why this lock type was chosen. Replication of 

state concerns vnodes, and will be discussed in the next subsection. 

 

Group Lock type Motivation 

File open operations 

(non-create) 

VMNT_READ These operations do not interfere with each other, as 

vnodes can be opened concurrently, and open operations 

do not affect replicated state. 

File create-and-open 

operations 

(may open only 

instead) 

VMNT_EXCL for 

create; 

VMNT_WRITE 

for open. 

As will be shown in the next subsection, file create 

operations require mutual exclusion from concurrent file 

open operations. If the file already existed, the 

VMNT_WRITE lock that is necessary for the lookup is not 

upgraded. 

File create-unique-and-

open operations 

VMNT_READ These create nameless “ limbo” inodes which cannot be 

opened by means of a path. Their creation therefore does 

not interfere with anything else. 

File create-only 

operations 

VMNT_WRITE These operations do not affect any VFS state (and are as 

such fully atomic), and can therefore take place 

concurrently with open operations. They must however 

Table 3.9: vmnt lock types 
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not take place during the upgrade from the writelock of 

file create-and-open operations to exclusive, or the create 

may for example result in an “already exists”  error even 

if the file should have been opened otherwise. 

File information 

retrieval or 

modification (not 

replicated) 

VMNT_READ These operations do not interfere with each other, do not 

modify replicated state, and the actual FS operations after 

lookup are atomic. 

File modification 

(possibly replicated) 

VMNT_WRITE 

or VMNT_EXCL 

These may conflict with file open operations due to 

seeing resulting replicated values out of order. An 

exclusive vmnt lock must be acquired if no vnode can be 

locked. See the next subsection. 

File link operations VMNT_WRITE Other than the double path lookup, equal to “ file create-

only” .  

File unlink operations VMNT_EXCL These must not interfere with file open operations, in 

order to avoid the scenario where inode numbers could be 

reused immediately. A second reason is that these calls 

perform necessary checks on currently existing vnodes. 

File rename operations VMNT_EXCL Same as for the “ file unlink” operations. 

Non-file operations VMNT_READ The update calls that make up this group, particularly 

sync(), are atomic at the file server itself, and therefore 

do not need to be protected from any other calls. 

 

Following the lock type restrictions mentioned above to avoid deadlock, a VMNT_EXCL lock 

of a file operation always involves a VMNT_WRITE lookup followed by an upgrade. In the case 

of multiple lookups, the first one is always of type VMNT_WRITE and the subsequent ones are 

of type VMNT_READ, eventually then followed by an upgrade of the first VMNT_WRITE lock to 

VMNT_EXCL. 

 

Table 3.10 only lists the main motivation for the lock type as resulting from our initial 

approach. If a different starting point were chosen, many other considerations could result. A 

simplifying aspect is that most of the actual FS calls are atomic themselves, which is why 

relatively few operations can interfere with eachother purely at the vmnt level. Apart from the 

path lookups, the isolation requirement is therefore fairly easily fulfilled. 

Table 3.10: vmnt lock types used for non file descriptor based process calls in VFS 
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Missing from the tables are mount and unmount operations. Although it appears that both 

involve two vmnt locks (for the parent and the child FS), this is not true. Mounting only 

involves locking one existing file system (the parent). Unmounting only involves locking the 

file system to be unmounted (the child), as notifying the parent of the unmount process 

merely involves releasing a vnode. Both are safe if a VMNT_EXCL lock is used on the parent 

(for mount) or the child (for unmount). 

 

Besides changing the vmnt calls to adhere to the new object scheme described in subsection 

3.5.2, we had to add the lock_vmnt(), unlock_vmnt() and upgrade_vmnt_lock() calls to the 

vmnt management. There are only twelve calls to lock_vmnt() in the resulting VFS code, 

because locking usually happens in the centralized path lookup function. There are eight 

upgrade_vmnt_lock() and 91 unlock_vmnt() calls, the latter mostly due to multiple exit paths 

within single calls as a result of error handling. 

 

3.5.6. Vnode (open file) locking 

 

Vnodes, or VFS’s representation of open files, are the next objects in VFS. In this subsection, 

we look at locking requirements with respect to field replication and creation/destruction of 

vnodes. We then define locking rules, and discuss opening, creation, and modification in more 

detail. 

 

Vnodes are complicated from a threading point of view. Not only do our MMFS requirements 

impose a very flexible locking model on them (stating that read() calls must not be blocked by 

other read-only operations on that vnode), but vnodes replicate a whole number of file 

properties from the corresponding file system inode as well. As mentioned, these replicated 

fields must remain “ in sync”  with the file system at all times. The replicated fields are listed 

in table 3.11. The first five make up the so-called “node details”  of a vnode. 

 

Field Description 

v_size The file size. 

v_mode The file’ s access mode. This includes the file type (regular, 

directory, block special, character special, pipe). 

v_uid The user ID that owns the file. 
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v_gid The group ID that owns the file. 

v_dev The device number, for block and character special files. 

v_fs_count The number of on-FS references of this file, that is, the number of 

times that this inode is opened according to the file server. 

 

However, compared to the vmnt locking, the strategy of vnode locking can be fairly 

straightforward: all read-only access that merely uses the vnode and its fields is allowed to be 

concurrent, and from this follows that all access that can modify any of the vnode’s replicated 

fields must be exclusive. That only leaves the creation and destruction of vnodes, and 

modification of its reference counts: both the number of times that the file is open on VFS 

(‘v_ref_count’ ), and the replicated on-FS reference count (‘v_fs_count’ ). 

 

As we already mentioned in subsection 3.5.2, the first process that creates or opens a file, 

creates a vnode object. Subsequent processes that also open the file, merely increase the 

vnode’s reference count. When processes close the file, the reference count is decreased. 

When the reference count hits zero, the vnode object is destroyed. 

 

Creation and destruction of vnode objects cannot interfere with other access, because of one 

important fact: one process can never have its files closed by another process. Or, restated 

from the point of view of individual processes, any filp or vnode that has been opened by a 

process will remain open (i.e., in use) at least until that same process closes it. This means 

that once a process has opened a file, its VFS threads never have to perform checks later to 

make sure that the corresponding vnode object still exists. 

 

To stay close to the original “ the vnode reference count is nonzero iff the on-FS inode 

reference count is nonzero”  assertion from subsection 3.5.2, we serialize all vnode open/close 

operations (and thereby creation and destruction as well). This makes the reference changes 

atomic, so that they never interfere with each other. In particular, this means that the scheme 

from subsection 3.5.3 can be used. No special attention needs to be paid to the order of 

increasing or decreasing the reference counts, before or after making an actual FS request that 

changes the on-FS reference count. 

 

Table 3.11: vnode fields replicated from FS processes 
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With the three-level lock type, we can use the serialized locking type to serialize all such 

actions. That allows concurrent (i.e., read-only) actions to take place in parallel. This is safe 

because as mentioned, a thread that performs a read-only action on a vnode, can be assured 

the vnode will have, and keep, a nonzero reference count during the operation. The complete 

independence is also necessary, because our MMFS requires that read-only open and close 

operations on files on disk do not interfere with basic read operations on those files. 

 

As a result, we have used the three locking types listed in table 3.12 to implement vnode 

locking in VFS. 

 

Lock type Mapped to Used for  

VNODE_READ TLL_CONCUR Read access to previously opened vnodes. 

VNODE_OPCL TLL_SERIAL Creation, opening, closing and destruction of vnodes. 

VNODE_WRITE TLL_EXCL Write access to previously opened vnodes . 

 

This time, “ reads” and “writes”  are indeed mutually exclusive. Write operations consist of all 

operations that can modify the replicated fields listed in table 3.11 (except ‘ v_fs_count’ ). For 

example, this includes the basic write() call because it may end up increasing the file size. 

Although the calls involving vnodes are too diverse to be grouped, the above scheme is 

sufficient to determine the required locking type for all system calls involving vnodes. There 

are no operations that require that two vnodes be locked at the same time, so avoiding 

deadlock is trivial in this case. 

 

It can now be shown that concurrent opening of files is safe, and ends up making only one 

vnode object in any case. Opening of a file always starts with a lookup performed on a path, 

which results in a <file system, inode number> identity. The first thread opening the file finds 

no vnode object for this identity so it creates one, and locks it while it opens the file on the FS 

(retrieving the details of the node at the same time, using the REQ_GETNODE FS request – we 

called this “ fs_open”  in the last subsection). Another thread opening the same file performs 

the same procedure, but it will find the newly created vnode object, and be suspended 

acquiring a lock on it. Once the original thread finishes retrieving the details (and completes 

the operation on the vnode), it will unlock the vnode. The suspended thread then resumes, and 

finds that the vnode (to which it now holds a lock) has a positive reference count already. It 

Table 3.12: vnode lock types 
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does not have to perform the REQ_GETNODE FS query itself, it can just increase the in-VFS 

vnode reference count and continue immediately. 

 

Creation of a file (on the FS, not just the vnode) is slightly different. The REQ_CREATE FS 

request (referred to as “ fs_create”  in table 3.7) creates a new inode on the FS, opens it, and 

returns its details all in one go. Therefore, no vnode can be locked in advance of the create 

request, because the full identity is not known beforehand. This explains why creating a file 

requires an exclusive lock on the vmnt: between the create call being performed by the FS, 

and the subsequent reply arriving at VFS, another thread might open the newly created file, 

change some of its details (e.g. write to it, increasing its file size), and close it. Once the 

delayed REQ_CREATE reply is received and handled, the node details from this reply are then 

not up to date any more. This is prevented by making sure that during the creation process, no 

open takes place. Opening files only takes VMNT_READ access, so creating files is set to 

require VMNT_EXCL access. An alternative solution would be to lock the created vnode 

afterwards and then perform another REQ_GETNODE call to get the latest details (throwing 

away the node details from the REQ_CREATE reply), but this involves more message overhead 

even in the best case. 

 

A somewhat similar problem is that there are certain system calls that can make changes to 

files based on their path rather than on their vnode. These calls make up the “ file modification 

(possibly replicated)”  group from table 3.7. In these cases, the modifications still have to be 

replicated properly in VFS. In the original VFS implementation, these calls would just look 

for a vnode and update the vnode details if one was found. This approach now poses a risk 

with respect to consistency: modifications that are made based on a file descriptor (e.g., 

fchown()) only lock the vnode and not the vmnt during the actual REQ_CHOWN FS call, and 

modifications based on a path (e.g., chown()) only lock the vmnt and not the vnode. This 

means the modifications are not serialized at the VFS level, so that the replies to their FS 

requests may cross each other, resulting in a wrongly replicated value. 

 

This has been solved by changing the trunc/chown/chmod calls to find a vnode for the file 

that is about to be modified, based on the lookup results. If no vnode is found at first, the file 

system is locked exclusively rather than just writelocked. After acquiring the exclusive lock, 

the operations try to find the same vnode again. If the vnode now exists, it can be locked. If it 

does not, then no vnode will be created for this inode until the whole modification operation 
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completes, because the exclusive lock prevents files from being opened in parallel. An 

alternative here would be to open the file on the FS when making path-based modifications, 

and and to close it when done. This would again introduce more message overhead. 

 

There is one last issue in the interaction between vmnts and vnodes, which is that vnodes are 

also used for working and root directories of processes. There are several places in VFS that 

iterate over all processes, performing a check on their working and root directory. For 

example, the unlink() call fails if someone’s working/root directory is being deleted. Such 

checks must always be mutually exclusive to processes changing their own working/root 

directory. That is, from the point of view of other processes, every process must have valid 

and up-to-date a working and root directory at all times. This required small changes to 

various pieces of code. 

 

We have now covered vnode creation, destruction, and modification, as well as vmnt/vnode 

interaction, for vnodes that represent normal files and directories. For pipes (both anonymous 

and named), character-special files and block-special files, additional considerations and 

restrictions apply. These will be covered bit by bit in later subsections. 

 

For practical reasons, we have implemented different vnode calls for opening and creating 

files: ‘get_vnode()’  and ‘attach_vnode()’ . The former requests the inode’s details using a 

REQ_GETNODE call if the vnode object is created for the first time. The latter takes the inode 

details as input, and assumes that no vnode exists for the newly created file. The final 

implementation has five ‘get_vnode()’  and six ‘attach_vnode()’  calls. Besides these two new 

calls, there are ‘ lock_vnode()’ , ‘unlock_vnode()’  and ‘upgrade_vnode_lock()’ . The last one is 

only used for pipes in the open() implementation. There are only five calls to ‘ lock_vnode()’ . 

This is because of centralized locking of vnodes and filps, which will be discussed in the next 

subsection. There are 40 calls to ‘unlock_vnode()’ . 

 

3.5.7. Filp (file position) locking 

 

The third object type is the ‘ filp’  object type. The main fields of a ‘ filp’  object that are shared 

between various processes (and therefore, between threads) and can change after the creation 

of the object, are ‘ filp_count’  and ‘ filp_pos’. The former is the reference count of the filp 

object. The latter is the position within the file that the filp refers to. The file reference is 
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stored in ‘ filp_vno’  as a pointer to a vnode object. As stated before, like vnodes, filp objects 

cannot disappear if the current thread’s process opened them. 

 

Changes to, and reads from, the ‘ filp_pos’  must be mutually exclusive, as every call must see 

the latest version even across FS calls. The calls that change ‘ filp_pos’  include the basic 

read() call, as this call advances the file position. This means that two read() calls that share 

the same filp object must not take place concurrently. It is therefore not useful to introduce 

multiple locking levels for filp objects. Instead, we use a simple mutex (as offered by the 

threading library) to make all access to filp objects mutually exclusive. 

 

System calls that involve a file descriptor most often access both the filp that the file 

descriptor links to, and the vnode that that filp links to. The locking order imposes that vnodes 

be locked before filps. We take care of this at the filp level. Whenever a filp is obtained based 

one of a process’s own file descriptors, the corresponding vnode is locked with a certain 

requested vnode locking level first. 

 

This has all been hidden away behind a single ‘get_filp()’  call. This call takes a file descriptor 

number and vnode locking type as input. It finds the filp object based on the file descriptor 

number and the current process’s ‘ fproc’  structure. If the file descriptor was indeed valid, the 

call locks the filp’s associated vnode with the desired locking type, and locks and returns the 

filp. The filp can be unlocked later, at which point the vnode  is unlocked as well, if 

requested. Our analysis indicated that locking the filp and not the corresponding vnode was 

not desirable, so this is not possible either. 

 

The last point has an additional advantage: whenever a vnode is locked exclusively (that is, 

locked with the VNODE_WRITE lock type), all corresponding filps are implicitly locked as well. 

This is particularly useful because multiple filps may need to be locked at the same time, 

namely in the case of pipes: 

 

- When opening a named pipe, VFS must make sure that there is at most one filp for the 

reader end and one filp for the writer end. 

- Pipe readers and writers must be suspended in the absence of (respectively) writers 

and readers. 
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- To keep the file size of pipes low, the file position of both the reader filp and writer 

filp is reset to zero whenever possible. This can in fact happen after a read(). 

 

In all three cases, both the reader and the writer filp may need to be locked in an arbitrary 

order. However, these two filps are always linked to the same vnode (after all, they are for the 

same pipe). Therefore, deadlocks are avoided by always exclusively locking the 

corresponding vnode first. 

 

This does mean that even during read() calls, vnodes for pipes have to be locked with the 

VNODE_WRITE type. To do this semi-transparently, the ‘get_filp()’  call supports a special flag 

indicating that if a VNODE_READ or VNODE_OPCL lock is requested on the vnode, and the 

vnode is a pipe, a VNODE_WRITE lock is acquired instead. This flag is used in the 

implementations of the open(), read() and close() calls. 

 

The resulting VFS code has 20 calls to the extended implementation of ‘get_filp()’ . The 

newly added ‘ lock_filp()’  code has only four calls to it, but one of them is from ‘get_filp()’ . 

There are 51 calls to the new ‘unlock_filp()’ . 

 

3.5.8. Lock locking 

 

The remaining object types listed in subsection 3.5.2 are the ‘ lock’ , ‘select’  and ‘dmap’  

structures. 

 

The ‘ lock’  structure keeps information about locking of file regions; they are not to be 

confused with the threading type of locking. For the ‘ lock’  objects, it was determined that no 

mutual exclusion was required to maintain object integrity: none of the functions that access 

these objects make calls that can block the executing thread anywhere. As our threading 

model is nonpreemptive, this means that all access to those structures is already fully atomic. 

 

The other two structures do not share this property, and we will discuss these in the following 

two subsections. 

 

3.5.9. Select locking 
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A single select() call may request the status of multiple file descriptors, and therefore multiple 

filps, after each other at once. If a select() call cannot be fulfilled immediately, all information 

pertaining the select() call is stored in a ‘select’  structure to allow for resumption later. 

Callbacks from other parts of the VFS code may cause such resumption when the status of 

one of the filps changes or when a timeout occurs. 

 

Providing mutual exclusion for the ‘select’  structure proved to be difficult. The individual 

filps can be locked one by one without problem. However, the structure of the select 

implementation makes it impossible to apply per-object locking of the ‘select’  objects: there 

are several routines that operate on one ‘select’  object and then make calls to routines that 

iterate over all other ‘select’  objects. 

 

Short of a full rewrite of the select code, the only solution is to use one global mutex covering 

all of the select code. The select code requires access to filp structures, so this select mutex 

must always be locked before filps, that is, it is higher up in the locking order: 

 

select > filp 

 

The next problem is that VFS makes certain callbacks to the select code while holding locked 

filp objects. To prevent deadlock, the select mutex must always be locked before a filp 

whenever a callback to the select code can be made. Fortunately, this problem is restricted to 

pipes. The only places from where such callbacks can be made, are also the places that can 

access both reader and writer filps for a single pipe. The writelock-vnode-if-pipe flag feature 

of ‘get_filp()’  from the last subsection was therefore extended to acquire the select mutex if 

the requested vnode is a pipe. An extra field, ‘ filp_select_mutex’ , was added to the filp 

structure. This field indicates whether a lock to the select mutex was acquired, so that the 

corresponding ‘unlock_filp()’  call can then unlock the select mutex. 

 

Although this is a suboptimal solution, it only affects pipes. Pipe operations therefore do not 

benefit from our unblocking of VFS. Of course, it also does not make the current situation 

worse. The requirements for this project do not involve pipes at all, so we consider the 

solution to be acceptable. 
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3.5.10. Devices and drivers 

 

This leaves the ‘dmap’  objects, and for that matter, all code concerning devices and drivers in 

general. Communication with character device drivers was blocking before, and this was left 

as is. Unlike block device drivers, character device drivers already had the possibility to 

suspend a process performing a call on a character-special file. All other character device 

driver calls are expected to be short. 

 

Unfortunately, the calls involving devices, drivers, and the ‘dmap’  structure are so diverse and 

widespread that no locking system could possibly adhere to the locking order established so 

far. To maintain object integrity anyhow, all blocking calls were eliminated from that code 

instead, resulting in all ‘dmap’  access being atomic. The blocking calls in this part of the code 

were limited to the ‘clone_opcl’  and ‘newdriver’  FS requests. 

 

The ‘clone_opcl’  (REQ_CLONE_OPCL) request is made when opening certain character-special 

files. It creates an inode on the root device, with a new minor device number, as an instance of 

a device (e.g., a specific TCP socket as an instance of “ /dev/tcp” ). The call making this 

request turned out to be sufficiently detached from the rest of the device code that no special 

care had to be taken here. However, the implementation of this call had to be rewritten in such 

a way that it would not violate the locking order. We also had to make the assumption that a 

cloned device can not be reopened after a device crash. This is at least currently a valid 

assumption, as the new driver will not have the required state to do anything meaningful with 

the minor device number. 

 

The ‘newdriver’  (REQ_NEWDRIVER) request is used for recovery from driver crashes. It 

notifies FS processes that there is a new driver endpoint for a block device. All data transfer 

from and to block device drivers goes through FS processes, whether the block device is 

mounted or not. If the device is mounted, the communication goes through that FS process; if 

not, it goes through the file server mainaining the root device (both using the 

REQ_BREADWRITE FS call). To make the ‘newdriver’  messages nonblocking, the driver update 

requests were turned from blocking FS calls into an update system that is integrated into the 

fs_sendrec() level as mentioned in subsection 3.4.1. This will be discussed in the next 

subsection. 
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3.5.11. Recovery from driver crashes 

 

Besides making the device code nonblocking, there is another argument for dealing with 

‘newdriver’  messages at a lower level: driver updates are critical and as such deserve high 

priority. Whenever a crash occurs in a block device driver, the FS servers operating on any of 

its devices will cease to function as well. There is therefore no point in sending more requests 

to a FS server that is operating on a device with a crashed driver. At least, not until a new 

driver has been loaded and the FS server has been told about it. 

 

Crash detection can come from two sides. The FS process itself could detect failure in 

communication with the driver, in which case it will reply to the corresponding request from 

VFS with special “driver died”  error codes – at least in theory, this has not been fully 

implemented in MFS yet. Or, the MINIX Reincarnation Server (RS) could detect a crashed 

driver, launch a new one, and tell VFS about it. 

 

It is therefore desirable for VFS to queue further requests to a FS server whenever that server 

has reported a driver crash. Once a new driver has been loaded and the FS server has been 

informed about it, it should resend all queued requests. Even if the FS server has not reported 

a crash yet, it is desirable that those ‘newdriver’  messages be sent with a higher priority than 

normal requests. 

 

This has been implemented in the ‘ fscom’ layer, on a per-FS basis. It operates right under the 

vmnt locking layer. The relevant state is saved as a separate structure within each vmnt 

structure. The threading approach allows alls its details to be hidden away from the layers 

above. Only the ‘ fs_sendrec()’  and the ‘ fs_newdriver()’  calls are exposed to worker threads. 

The former call will put the calling thread to sleep until the message has been sent and replied 

to. The latter call must not block, and merely queues the REQ_NEWDRIVER request for later 

sending. This queue has been implemented as a bitmap of major device numbers rather than a 

real queue. Only the latest driver endpoint for each major device number has to be sent, so 

there is no need to queue multiple newdriver requests for a single device. 

 

The ‘ fscom’ module then distinguishes between two types of requests to the FS process: basic 

requests, that is, all the normal FS requests, and ‘newdriver’  requests, i.e. the 

REQ_NEWDRIVER requests. The module limits the number of concurrent basic requests to the 
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value specified by the FS (see subsection 3.4.4). It puts to sleep threads that cannot yet send 

their requests. Only one ‘newdriver’  request is allowed at a time, to prevent multiple updates 

for the same device from crossing each other. The single ‘newdriver’  requests are mutually 

exclusive from (potentially many concurrent) basic requests. No new basic requests are sent 

when there is a ‘newdriver’  request that has not been replied to yet. 

 

If a basic request results in a “driver died”  error code, the FS is marked as having no valid 

driver. All basic requests are then queued until a ‘newdriver’  request has been made, sent and 

acknowledged. The basic request that resulted in a “driver died”  error code is simply put back 

into the queue of basic messages, and resent whenever a new driver has been installed this 

way. It is the file server’s responsibility to make sure that calls that fail with a “driver died” 

error can be resent later without any side effects. 

 

Table 3.13 lists the fields used in the ‘struct fscom’ structure that is a part of every vmnt 

structure. 

 

Field Description 

int fsc_max_reqs; The maximum number of concurrent requests allowed to this 

FS, as specified by the FS server (see subsection 3.4.4). 

int fsc_nr_reqs; The current number of outstanding requests to this FS. 

int fsc_error; Flag indicating whether a previous FS request has resulted in 

a “driver died”  error, stopping any basic requests if set. 

int fsc_driver_req; Flag indicating whether there is a ‘newdriver’  request 

currently pending at the FS server, stopping any basic 

requests if set. 

int fsc_driver_bits; The number of ‘newdriver’  requests that have yet to be sent. 

bitchunk_t fsc_bitmap 

[BITMAP_CHUNKS(NR_DEVICES)]; 

The bitmap for major device numbers, each bit indicating 

whether a ‘newdriver’  request must be sent about that 

device’s driver. 

struct queue fsc_queue; The queue of processes that want to send a basic request. 

 

There is a high degree of similarity between this system and a basic readers/writer type lock, 

but to be able to accommodate for the specific needs of the fscom layer (the maximum on 

Table 3.13: fields of ‘ fscom’ vmnt substructure 
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concurrent basic requests, and the special way the ‘newdriver’  requests are queued), we did 

not use the three-level lock here. 

 

3.5.12. Block-special files 

 

As mentioned, the individual file servers are responsible for the block data transfer from and 

to the device that they are mounted on. This has another implication: mounting and 

unmounting may cause the FS endpoint handling the block transfer to a device to change. The 

FS server used for the block transfer might also be different from the FS that owns the vnode 

of the corresponding block-special file. As such, locking the vnode does not prevent 

concurrent unmounting of that FS. To prevent conflicts, the system calls involving the 

endpoint of the FS server responsible for that device (stored in the vnode as the ‘v_bfs_e’ 

field) must be mutually exclusive from mount and unmount operations. 

 

A global ‘bfs’  mutex was added to serialize all operations involving block-special devices. 

This however presented an issue with respect to the locking order. The operations on a block-

special file always take place while holding a vnode lock, whereas the mounting process 

involves creation and retrieval of vnodes. Fortunately, the latter never involves vnodes for 

block-special files. To maintain the locking order, an exception was made for the ‘bfs’  mutex, 

splitting in two the ‘vnode’  part of the locking order: 

 

block-special vnode > bfs > non-block-special vnode 

 

Although a finer-grained lock would be preferred, the use of block-special files is not that 

common. The complete mutual exclusion does have the side effect of serializing all mount 

and unmount requests as well. The handling of vmnts already was safe from concurrent 

operations, so this is not necessary. On the other hand, mounting and unmounting are not very 

common operations either. 

 

3.5.13. Exec locking 

 

One final global lock had to be added to keep the stack usage of individual threads down to a 

minimum (see subsection 3.3.1). A single local variable was identified to be solely 

responsible for increasing the stack size requirement from about one kilobyte to over four 
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kilobytes: the four-kilobyte ‘buf’  buffer put on the stack by the ‘patch_stack()’  function as 

part of the exec() implementation. This buffer was therefore made static, essentially making it 

a global variable. To protect multiple concurrent exec() calls from interfering with each other 

while using this buffer, an additional global ‘exec’  mutex was introduced. This mutex covers 

all of the exec() implementation code. It is therefore higher up in the locking order than any 

other object that can be locked by the exec code: 

 

exec > vmnt > vnode 

 

The result is that only one program execution can take place at a time. 

 

 

3.6. Evaluation 

 

Even though it took much more work than expected, the resulting multithreaded VFS locking 

implementation fulfills the stated requirements, provides the concurrency desired for the 

MMFS layer created on top of it, works perfectly in this regard, and leaves the actual VFS 

code fairly readable. In that sense, our efforts were successful, even though there are still a 

number of rough edges (for example, the global select and bfs locks). 

 

However, due to time constraints we have been able to do only limited testing. In general, 

testing and debugging has become much harder with these changes. Needless to say, this is 

the downside of multithreading any program – even with nonpreemptive threading, the 

number of states that VFS can be in grows exponentially. It is no longer feasible to test all 

possible combinations of thread execution paths, even with just two threads. As such, we can 

not fully eliminate the possibility that we have introduced new bugs. 

 

Also, the modifications have made VFS much more “ read-only.”  As we have shown, many of 

the decisions for the current locking model involved many simplifying assumptions. Although 

these were necessary to keep the unblocking effort feasible for this project at all, many of the 

assumptions may change as a result of future code changes and additions. This might 

subsequently require rethinking of the whole locking model. In addition, many subtleties of 

the current locking model are not at all apparent from the code. For example, the locking 
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order is neither obvious nor enforced at the code level in any way. This way, even small 

modifications could have a large impact on the correct functioning of VFS as a whole. 
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Chapter  4. MMFS par t 1: the file system side 

 

At this point, it makes sense to discuss the first part of the MMFS multimedia file server. This 

first part consists of the VFS-FS protocol implementation and file system aspects. First, we 

define the file system format as stored on disk (section 4.1). Then, we address how the MMFS 

implementation handles the requests from VFS, and we cover the practical aspects of creating 

and mounting a MMFS partition (section 4.2). Chapter 6 will cover how MMFS handles 

multimedia streams and communication with the disk driver. 

 

The choice of making MMFS read-only simplifies many issues regarding the design of the 

file system format. This allows the actual format and the resulting implementation to be as 

simple and efficient as possible. The types of applications that could make use of the result 

are those that require no more than read-only access, for example local video serving 

applications, video-on-demand servers, and digital libraries. 

 

4.1. The file system format 

 

In the following subsections, we will establish the MMFS file system format. Simplifications 

and other practical aspects result from contiguous layout of files (subsection 4.1.1), 

independence from the internal format of files (4.1.2), and the lack of a need to store file 

metadata (4.1.3). Subsection 4.1.4 will then define the actual file system format. 

 

4.1.1. Contiguous file layout 

 

Optimizing on data retrieval from hard disks has become harder as disks have become more 

complex over the years. In many cases, the phyiscal disk layout and parameters of modern 

disks are not known to the operating system at all any more. MINIX does not even try. 

Instead, the low-level communication protocol between the operating system and the disk 

makes use of Logical Block Addressing (LBA), where disk blocks are accessed by a single 

Figure 4.1: the MMFS process, part 1 
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block number rather than by physical disk position. This allows the disk to define its own 

mapping from block numbers to physical disk locations. 

 

We make the assumption that LBA blocks that have block numbers close together, will 

typically be physically close to each other on disk as well. This allows for optimization by 

grouping together requests with similar block numbers using an algorithm like SCAN. 

 

On the disk, we therefore group related data close together. This minimizes the time it takes to 

retrieve a large chunk of such related data at once. With the file system being read-only 

during operation, the layout of files can be chosen fully in advance (i.e., “offline” ). The 

optimal choice is then to lay out all files fully contiguously on disk. 

 

Quite possibly, actual file access by end users will follow a Zipf-based distribution in practice 

[31]. This means that it is advantageous not only to have all blocks of a single file grouped 

close together, but also to have the most popular files grouped together. This leads to an 

optimal disk layout by following the “organ pipe”  approach [31] if the relative popularity (i.e., 

relative frequency of use) of the files is known at file system creation time. In this approach, 

the files are sorted by popularity. The first, most popular file is placed in the middle of the 

disk, after which the second and third files are placed on the left and right side of the first file, 

the next two on the left and right side of the second and third, and so on. Figure 4.2 illustrates 

this. 

 

4.1.2. Independence from file formats 

 

We have made the file system format, and subsequently the implementation of the MMFS 

server, completely independent from the actual internal file format of the files used. This 

Figure 4.2: “ organ pipe”  file positioning 
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gives maximum flexibility in the actual use of the file system. The next chapter will show that 

frame boundaries inside multimedia files become irrelevant with sufficiently coarse-grained 

prefetching. We therefore simply ignore frame boundaries at the file system level, at the cost 

of more memory consumption by MMFS. 

 

One side effect of this approach is that implementing high-level video functionality in MMFS 

like fast-forwarding in multimedia streams becomes impossible. Without knowledge about 

individual frames, no effort can be made to retrieve a small subset of those frames at a higher 

rate. One possible solution, should one be desired, is to generate a separate fast-forward file 

for each multimedia file in advance. That file contains only the frames necessary for fast-

forward. This avoid the problem altogether, at the cost of having each multimedia stream 

require more disk space [5]. 

 

4.1.3. Absence of file metadata 

 

The actual file system will always be only a part of a larger system providing multimedia 

streams to interested parties, so there is no need for the file system to be fully self-contained. 

We assume that any file-specific metadata of the multimedia files is available elsewhere, for 

example on the same partition as the applications that read from the multimedia files. 

 

File names are therefore not necessary at all: the file system can use a simple numbering 

scheme for all file nodes, and base the names on the node numbers. The file system does not 

have to store the file names anywhere, and the path resolution in MMFS can be simplified as 

well. This scheme has been implemented in MMFS in the form of strings containing six-digit 

decimal numbers for all file names, i.e. “000000”  for the first file, “000001”  for the second, 

and so on. Note that in this context the first file is the first file as sorted by frequency of use, 

not as sorted by its position on disk (see also subsection 4.2.2). 

 

The file system does not hold information such as stream rates either. Picking a stream rate is 

left up to the applications reading from streams, and that allows several applications to pick 

different stream rates for a single file. As we will show in chapter 6, this is useful for our 

approach to variable-bitrate files. 
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4.1.4. Resulting file system format 

 

We can now define the resulting file system format. The first block of partition contains a 

small ‘superblock’  structure at the very start. This structure contains information about the 

whole file system: a unique identifier for the file system, followed by the number of file nodes 

and the total partition size (table 4.1). Directly following this structure is an array with 

information about all the ‘sb_nodes’  nodes. Each array element contains the position and size 

(both specified in bytes) of a single file (table 4.2). The file naming/numbering scheme is 

implicit: the node number and name of each file are based on its index into the array. 

 

Field Size Descr iption 

sb_magic 32-bit File system identifier, always set to 0x4d4d3141 (“MM1A”). 

sb_nodes 32-bit The number of nodes (files) on the file system. 

sb_size 64-bit The total size of the partition, in bytes. 

 

 

Field Size Descr iption 

fn_pos 64-bit The position of the start of the file on the partition, in bytes. 

fn_size 64-bit The total size of the file, in bytes. 

 

 

It can be expected that large hard disk and partition sizes will be used to keep multimedia files 

on. For this reason, both the design and the implementation fully support 64-bit disk and file 

sizes. All values are stored in big-endian format. In our implementation code, the 64-bit 

values are stored as two 32-bit values, with the upper 32 bits first, followed by the lower 32 

bits. 

 

The format deliberately makes no statements or assumptions about block sizes. This is not 

necessary: any implementation reading from the file system can make its own decision 

regarding how to map bytes to blocks (if at all). With contiguous file layout as a given, this is 

not a file system format issue. In principle, the file system format even allows that the end of 

one file and the start of another file fall within the same disk sector. MMFS does assume that 

all files are aligned to the block size that MMFS uses internally, but that is merely for 

implementation simplicity. 

Table 4.1: the superblock structure 

Table 4.2: the file node structure 
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4.2. Implementation 

 

The following two subsections discuss the implementation of the VFS side of MMFS 

(subsection 4.2.1) and the way MMFS partitions can be created and mounted/unmounted 

(subsection 4.2.2). 

 
4.2.1. Handling of VFS calls 

 

The simplicity of the file system format allows all node data to be stored in memory. Upon 

receiving the initial REQ_READSUPER request from VFS, MMFS fetches the superblock and 

node data from the start of the disk, validates it, and stores the list of files in an array. With 

two exceptions, all subsequent calls can be processed immediately and without having to 

block the calling user process due to required interaction with the disk driver. 

 

The exception are REQ_READ and REQ_QUERYFS. These two calls will be covered in more 

depth in chapter 6. For now, it is relevant that saving and resuming state for these calls in 

MMFS is relatively simple. The use of threads was therefore not deemed useful for MMFS. A 

form of continuations is used instead: the state of pending calls is stored in “stream”  objects 

(see chapter 6). This allows MMFS to continue serving other requests in the meantime. 

 

Many of the VFS requests are write operations which fail right away. Some other operations 

are not implemented because they are not relevant. Access control was not of any concern in 

this project. The root directory is readable and searchable by everyone (access mode 555 

octal), and all files are readable by everyone (access mode 444 octal). The root directory and 

all files are owned by MMFS’ own process user ID (typically root). All file times are set to 

zero. 

 

Table 4.3 summarizes the MMFS implementation of the various VFS requests. 

 

Request Action 

REQ_GETNODE Increase the given node’s reference count and return its node details. 

REQ_PUTNODE Decreases the given node’s reference count. 
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REQ_PIPE Return the ‘ENOSYS’  error. MMFS must not be the root device and 

therefore does not need to support creation of anonymous pipes. 

REQ_READ Fulfill the given read request, suspending the call until data is available if 

necessary. See chapter 6. 

REQ_WRITE Return the ‘EROFS’  error, as this is a write operation. 

REQ_CLONE_OPCL Return the ‘ENOSYS’  error, MMFS may not be the root device and therefore 

does not need to support virtual device cloning. 

REQ_FTRUNC Return the ‘EROFS’  error, as this is a write operation. 

REQ_CHMOD Return the ‘EROFS’  error, as this is a write operation. 

REQ_CHOWN Return the ‘EROFS’  error, as this is a write operation. 

REQ_ACCESS Test the given access mask against the given node’s generated access mode, 

and return ‘OK’ or an error code based on the outcome. 

REQ_MKNOD Return the ‘EROFS’  error, as this is a write operation. 

REQ_MKDIR Return the ‘EROFS’  error, as this is a write operation. 

REQ_INHIBREAD Return ‘OK’ , this call is on node basis rather than file descriptor basis, so 

nothing useful can be done as a result of it. 

REQ_STAT Fill a buffer with basic information about the given node and copy the result 

to the user process’s address space. Of the fields filled in, only the ‘ st_dev’ , 

‘st_ino’ , ‘st_mode’  and ‘st_size’  fields do not contain hardcoded values. 

REQ_CREATE Return the ‘EROFS’  error, as this is a write operation. 

REQ_UNLINK Return the ‘EROFS’  error, as this is a write operation. 

REQ_RMDIR Return the ‘EROFS’  error, as this is a write operation. 

REQ_UTIME Return the ‘EROFS’  error, as this is a write operation. 

REQ_QUERYFS If the subcall is FSTATFS, copy out the block size used to the user process’s 

address space. If the subcall is STREAMCTL, pass it on to the stream module. 

See chapter 6. 

REQ_LINK Return the ‘EROFS’  error, as this is a write operation. 

REQ_SLINK Return the ‘EROFS’  error, as this is a write operation. 

REQ_RDLINK Return the ‘ENOSYS’  error, as symbolic links are not supported. 

REQ_RENAME Return the ‘EROFS’  error, as this is a write operation. 

REQ_MOUNTPOINT Return the ‘ENOSYS’  error, as mounting on top of MMFS is not supported. 

REQ_READSUPER Read the superblock data from disk. When the reply arrives, validate and 

store its contents, and reply to the VFS call. 

REQ_UNMOUNT Refuse to unmount if any of the nodes still have a positive reference count.  

Otherwise, simply return ‘OK’ . 

REQ_TRUNC Return the ‘EROFS’  error, as this is a write operation. 
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REQ_SYNC Return ‘OK’ , nothing needs to be done. 

REQ_LOOKUP Process ‘ /’ -delimited path components, allowing each component to be “ .” , 

“ ..”  or a string representation of a node number. Return the details of the 

resulting node or the root directory, or an appropriate error or pseudo-error 

code if the lookup fails or continues in the parent file system. 

REQ_STIME Return ‘OK’ , nothing needs to be done. 

REQ_NEWDRIVER Driver crash recovery. See chapter 6. 

REQ_BREAD Return the ‘ENOSYS’  error, raw block reads are not supported at this time. 

REQ_BWRITE Return the ‘ENOSYS’  error, raw block writes are not supported at this time. 

REQ_GETDENTS Fill the requested portion of the buffer with ‘dirent’  structures, starting with 

“ .”  and “ ..” , followed by the string representations of all node numbers. 

REQ_FLUSH Return ‘OK’ , nothing needs to be done. 

 

4.2.2. File system creation and mounting 

 

To create a MMFS file system on a disk partition, a special ‘mkfs’  utility was written: 

 

 mkfs-mmfs <device> <listfile> <blocksize> 

 

It takes a partition or subpartition device path (e.g. “ /dev/c0d0p1s0” ), and will automatically 

determine the partition size from this device. To determine which files to put on the partition, 

it also takes a file containing a list of file paths (one per line). This list is assumed to be sorted 

by relative frequency of use, most popular first. The mkfs utility uses the organ pipe approach 

to position as many files on the partition as can fit. Once mounted by MMFS, the resulting file 

numbering scheme of the partition is in the same order as this input file. The given block size 

is used for alignment of the start of files to blocks, which is expected by our MMFS 

implementation. 

 

To mount and unmount a MMFS file system, another pair of utilities was added: 

 

 mount-mmfs <device> <path>  

 umount-mmfs <device> 

 

Table 4.3: MMFS implementation of VFS requests 
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The mount utility mounts the (sub)partition identified by the given device on the given path 

and launches a MMFS instance to operate on it in read-only mode. The umount utility 

unmounts such a mounted MMFS instance. The executable path and label used for mounting 

and unmounting file systems is currently hardcoded to ‘MFS’  in the mount() and umount() 

calls that are part of the MINIX C library. These utilities are therefore a simple adaption of 

that code that replaces the path and label of MFS with MMFS. Extension of mount() and 

umount() to accept arbitrary file server executables and labels would be subject of future 

work. 



– 77 –
 

Chapter  5. A dr iver  that supports multimedia 

 

As stated in the introduction, applications must be able to read data from a multimedia file at 

a specified rate, without spending time in the individual read() calls for longer than strictly 

necessary. The VFS changes in chapter 3 already make sure that read() calls can not be 

blocked by other VFS operations. This fulfills in part the first and third goal of this project. 

 

On top of VFS, MMFS minimizes read() latency by prefetching all data before it is read by 

the multimedia application. As such, MMFS acts as a buffer between the application and the 

disk, in a better way than the application itself ever could. This fulfills the remaining part of 

the first goal. 

 

To let MMFS provide guarantees to applications, the prefetching itself must be guaranteed to 

finish in time in all cases. MMFS is then work-ahead augmenting. MMFS will not be the only 

file server on the system, so this requires support from the disk driver. The prefetching 

approach also has an advantage: the prefetch requests are available ahead of time, and that 

allows the driver to reorder the retrieval requests for minimal disk latency. This in turn allows 

more multimedia applications to be active at the same time, fulfilling the second goal. 

 

Section 5.1 presents the basic model that we will use for MMFS and the disk driver. It 

establishes a division of tasks between MMFS and the driver, and describes the implications 

of this division. Section 5.2 translates the results into a set of FS/driver protocol extensions. 

Section 5.3 describes the implementation of these extensions in the disk driver. The MMFS 

implementation will be the subject of chapter 6. 

 
 
 
5.1. Architectural decisions for  the MMFS – dr iver  protocol 

 

To guarantee timely prefetching and minimize disk latency, we use the well-established 

model of data retrieval in rounds, based on the SCAN-EDF principle. In subsection 5.1.1 and 

5.1.2, we elaborate on the model’s general explanation of chapter 2 with details relevant for 

our case. Subsection 5.1.3 then divides the subtasks of this model between MMFS and the 

disk driver. Subsections 5.1.4 to 5.1.7 describe various requirements resulting from this 

particular division. These requirements form the base for the actual FS/driver protocol 
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extension which will be described in section 5.2 later. Subsections 5.1.8 to 5.1.11 describe the 

conceptual implications of the split for MMFS. Finally, subsection 5.1.12 discusses 

alternative task divisions that we rejected. 

 

5.1.1. Mapping from streams to requests 

 

We define a stream as a continuous (forward) flow of data from a file on the disk, to a user 

process (the “stream reader” ) that is interested in retrieving consecutive data from the file at a 

certain specified guaranteed rate. Each stream has a window of data that has been prefetched 

from the disk, but not yet read by the stream reader. Prefetching is not instant, so each stream 

also has a window of data that has been requested but is not yet retrieved. Combining these 

two windows, we get a larger window with a split. The head of the whole window moves 

forward as new prefetch data is requested from the disk. The split of the window moves 

forward as requested data arrives. The tail moves forward as the stream reader makes read() 

calls. 

 

Contrary to what figure 5.1 shows, moving forward of the stream’s head, split and tail is not 

continuous. A stream reader will typically read one multimedia frame at a time, and the 

frames are usually not all of equal size. The prefetching process is not truly continuous either, 

as retrieval of data from disk can only be done in blocks. The prefetching for a stream is 

therefore broken up into individual block requests, one for each whole block. Figure 5.2 

shows this. 

 

Each block request carries the disk position of the block, the block size, and a destination 

buffer address at the very minimum. We are concerned with prefetching, so the destination 

Figure 5.1: basic stream progress 
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buffer cannot be in the actual stream reader’s address space. Either MMFS or the driver will 

have to maintain these buffers. 

 

The rate of the stream is guaranteed if the split of the stream stays ahead of the tail at all 

times. In that case, read() calls need never be delayed until the data is available. This gives all 

block requests a deadline: the time at which the stream reader is expected to read the data. 

 

5.1.2. Mapping from requests to rounds 

 

Our own tests (chapter 8) show that most speed gain at the disk can be obtained from 

retrieving disk blocks that are as large as possible. The maximum block size is bounded 

merely by the minimum number of streams that are to be supported. Sorting block requests in 

SCAN order then allows for further reduction of the total retrieval time. 

 

To allow for SCAN sorting, we use the concept of rounds. The prefetch requests of all 

streams are gathered in batches. Within one round, all the requests all have their deadlines at 

or after the end of that round. That way, reordering will not make any request miss its 

deadline. EDF is used to determine which set of requests to process in the next round. Within 

each round, the requests are sorted in SCAN order. 

 

There may also be nonmultimedia requests, originating from MFS instances. In the old 

situation, these are processed on in first-come-first-serve (FCFS) order. That is also applicable 

to the new model. A fraction of each round is reserved for nonmultimedia requests. This 

prevents starvation of such requests. 

 

Figure 5.2: realistic stream progress 
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The basic model then consists of multimedia streams that are broken up into single requests 

that each have a deadline. These requests are gathered into rounds, based on their deadlines by 

using EDF, along with other nonmultimedia requests on FCFS basis. Each resulting round is 

SCAN-sorted, and all requests in that round are processed by the disk driver in the SCAN 

order. 

 

Figure 5.3 shows the old and the new situation in this regard, limited to the file servers and 

the disk driver. The figure of the new situation deliberately leaves open the division of tasks. 

Combined, MMFS and the driver will have to maintain streams, buffers, requests, queues and 

rounds. The next step is the division of tasks and responsibilities between MMFS and the disk 

driver. 

 

5.1.3. Division of tasks 

 

In a microkernel operating system like MINIX, the file servers and the disk driver are 

different processes that can communicate only through message passing. Needless to say, the 

division of tasks has a large impact on the message protocol used between those processes, as 

well as the implementation of the processes. 

 

As a start, it is clear that at one end, MMFS instances must be in charge of determining where 

on disk the blocks are. File placement is an intrinsical part of a file system, and we have 

already defined this in chapter 4. The disk driver is not aware of the contiguous layout of files 

on disk, so MMFS must inform the disk driver of the position of individual blocks. 

Figure 5.3: the old (left) and new (right) situation 
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At the other end, the disk driver must be in charge of receiving both the multimedia requests 

and other requests originating from nonmultimedia file servers. Only at the disk driver level, 

requests from multiple file servers for one disk are gathered at all. Thus, only at this level can 

serialization of all requests into a desired order take place. 

 

To fill in the parts in between, we have chosen the most clean separation: the MMFS file 

server is responsible for managing streams and block buffers and for issuing individual 

requests on behalf of streams on a periodic basis, whereas the disk driver manages the request 

queues, rounds, and the various sorting levels. Figure 5.4 illustrates this. 

 

The chosen approach implies that MMFS is not aware of rounds, round boundaries and disk 

speed parameters. The driver manages all of this. The driver is also in charge of admission 

control. MMFS has to query the driver whenever it wants to add or delete a multimedia 

stream. The driver decides how many streams (and with which rates) can be actually 

admitted, making sure that the deadlines of all admitted streams can be met. 

 

Other architectural approaches are possible, subsection 5.1.12 lists some alternatives that we 

have considered. 

 

The following four subsections discuss the implications of the chosen division. The next 

subsection (5.1.4) looks at the practical aspect of round durations, with as result that static 

Figure 5.4: division of tasks 
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block sizes will be used. Static block sizes form the base for determining how far ahead of 

their deadline MMFS has to issue all requests (subsection 5.1.5). In turn, that defines how 

admission control must be done, and how far apart request deadlines for a stream must be 

(5.1.6). With these results, we can guarantee that all deadlines are met (5.1.7). 

 

5.1.4. Round durations and block sizes 

 

With the test results in mind, we pick a round duration in the order of magnitude of one 

second. This allows the driver to get a substantial gain out of SCAN sorting. With one-second 

rounds, each round has to cover a full second worth of data (in the form of block requests) for 

each of the active streams. 

 

Such a coarse granularity leads to significant buffering of prefetched data within MMFS. This 

saves MMFS from having to take into account the sizes of individual frames as they are read 

by the stream reader. For example, a stream reader may want to retrieve 25 frames per second, 

with differences in frame sizes of up to a factor 10. If the data for the stream reader is 

prefetched on a per-second granularity, then the factor 10 difference of individual frames is 

negligible as long as the maximum retrieval rate per second (i.e., the maximum sum of all 

frame sizes retrieved in any arbitrary period of one second) does not exceed the average 

retrieval rate. 

 

This is a simple form of smoothing. True VBR streams can deviate from the average stream 

rate much more heavily, and require prefetching beyond one second. See subsection 5.1.10 for 

more on this. 

 

With the prefetching granularity decoupled completely from the actual reading granularity of 

the stream reader, we can simplify by using a large static block size for all block requests of 

the stream, typically in the order of magnitude of hundreds of kilobytes. MMFS will use one 

static block size for all streams, to facilitate buffer assignment and sharing, but that is not a 

requirement of the protocol. 

 

5.1.5. Request deadlines and the work-ahead time 
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To make sure all the data is prefetched in time, MMFS has to send all the prefetch requests to 

the driver sufficiently far ahead of time. As mentioned in subsection 2.1.1, the maximum time 

it can take for a request to be served in the SCAN-sorted rounds model, is two times the 

maximum round time. Figure 2.1 already illustrated this: a request from MMFS may arrive at 

the driver just after a round has started, and must therefore be processed in the next round at 

the earliest. Because of SCAN-sorting, the result may come in only at the end of that round. 

The time difference between the arrival of the request and the result being delivered to 

MMFS, is equal to the duration of two full rounds. 

 

For MINIX, we have to add a small epsilon value to account for communication overhead. 

Let us call the sum of two rounds and this epsilon value the work-ahead time, because that is 

the minimum time that all requests have to be made in advance. Requests with a deadline 

nearer in the future than the work-ahead time, are not feasible, and may not be served before 

their deadline. Such requests must therefore not be sent. To this end, the driver must inform 

MMFS of the work-ahead time; that happens upon stream admission. 

 

This requirement automatically implies that all streams need a startup time of this same work-

ahead time. Each application opening a stream must wait this startup time before it can start 

reading from the stream. Figure 5.5 illustrates this. With rounds of one second, this is a two-

second delay. Subsection 5.1.9 will describe how this delay can be reduced under certain 

circumstances. 

 

5.1.6. Stream rate granularity and admission control 

 

Figure 5.5: startup time and worst-case arrival 
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For the following discussion, we assume a deterministic admission controller. Like EDF 

scheduling in general [15], round-based EDF-scheduling is only guaranteed to work if the 

total utilization is less than 1.0 per round. Or, in practical terms, if all blocks in a round can be 

retrieved within the round’s maximum duration. The admission controller therefore assigns a 

fraction of each round to each admitted stream. This fraction is based on the requested stream 

rate. If a new stream requests admission, and the sum of all current streams’  fractions plus the 

fraction of the new stream exceeds 1.0, then the stream is rejected. In practice, a value just 

under 1.0 is used to allow for nonmultimedia requests. 

 

Subsequently, the deadlines of requests of a single stream must never force the driver to 

exceed the stream’s fraction in any round. This has two key implications: 

1. For admission control, each stream rate used must be rounded up to the lowest matching 

per-round fraction. 

2. The deadlines of each two requests for a stream must be sufficiently far apart, to guarantee 

that EDF will not cause too many requests to be included in any round. 

 

Remember that all requests are for single blocks, all with the same size for each stream. As an 

example of the first point: a stream that has a user-requested stream rate equivalent to one 

block per three rounds, must be admitted with a stream rate equivalent to one block per round. 

Otherwise, the per-round stream fraction (1 block per round) may exceed the admitted overall 

stream fraction (1/3 block per round). Figure 5.6 shows this. 

 

The second point implies that if a stream is admitted with one block per round, no two 

requests must have their deadlines apart by less than a full round duration. Otherwise, the 

driver may be forced to include both requests into one single round (as EDF is used), and 

exceed the per-round stream fraction of 1 block per round. Figure 5.7 shows this: with no 

minimum time distance of a full round between deadlines, a round may end up including two 

Figure 5.6: possible per-round overutilization by one stream (1) 
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requests for the stream. MMFS is not aware of round boundaries, so it cannot tune the 

deadlines to round boundaries either. 

 

Generalized, streams can only be admitted with a stream rate rounded up to “N *  block_size / 

round_duration”  bytes per second, where N is a nonzero positive integer. All requests’  

deadlines must then be apart by at least “ round_duration / N”  seconds. The stream’s fraction 

can be expressed as N blocks per round. A practical restriction on the possible values of N 

comes from the MINIX clock frequency, but that will be discussed in subsection 5.2 when 

these points are put in practice. 

 

The block size is chosen by MMFS, and the round duration is chosen by the driver. The driver 

performs the admission control, so MMFS must inform the driver of the block size when it 

requests a stream’s admission. MMFS generates the block requests, so after admission, the 

driver must inform MMFS about the minimum time between each two request deadlines, in 

addition to the work-ahead time (see the last subsection). 

 

5.1.7. Guarantees 

 

Based on the previous subsections, we can now establish that a deterministic admission 

controller can guarantee that all deadlines of all requests be met. That follows from these 

points: 

 

• The current round must include all requests that have a deadline before the (worst-case) 

end of the round after it. The deadline, after all, represents the time at which the requested 

block should be available to the stream reader. 

Figure 5.7: possible per-round overutilization by one stream (2) 
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• Recursively, we can infer that there are no deadlines that are before the (worst-case) end 

of the current round. This holds as long as both the previous point is followed, and the 

deadline of every newly submitted request is at least two round times ahead (the work-

ahead time) of its submission time. The requests from the previous point are therefore the 

requests with the earliest deadlines, meaning they can be found with EDF sorting. 

• Consequently, the minimum set of requests that have to be included in a round consists of 

those that have a deadline between the (worst-case) end of that round and the (worst-case) 

end of the next round after it. 

• All deadlines are met if, in each round, the total time required to process the requests 

included in the round, is less than the (maximum) round time. All requests are then served 

before the end of this round, and the next round will start in time. 

• The driver’s admission controller admits a stream with two parameters: the block size 

used, and the requested stream rate. Based on this the driver determines maximum number 

of requested blocks per round, rounded up to an integer. Subsequently, the driver 

determines the (maximum) time fraction that it takes to retrieve these blocks in a round. 

• The admission controller makes sure that the total sum of all such time fractions of all 

admitted streams plus the new stream never exceeds the predetermined maximum round 

duration. This is the actual admission test. 

• The predetermined maximum round duration is divided by this number of blocks per 

round, to obtain a minimum time distance between the deadlines of each two requests for 

the stream that is tested for admission. The resulting time distance is sent to MMFS if the 

stream is admitted. 

• MMFS then sends requests with deadlines that each have this minimum time distance 

apart. MMFS is not aware of round times, so can not align these requests to rounds. 

• However, with this minimum time distance, in any randomly chosen time frame with the 

maximum duration of a round time, the number of requests for that stream with deadlines 

in that time frame, does not exceed the admitted number of blocks per round. 

• Therefore, at any time that the driver starts a new round, the number of requests from one 

stream that have deadlines that fall between the (worst-case) end of that round and the 

(worst-case) end of the next round, does not exceed the admitted number of blocks per 

round for that stream. 

• Therefore, retrieval of those blocks for that stream will never exceed the stream’s 

admitted time fraction. 
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• Therefore, with all streams following the minimum deadline distance for their block 

requests, the total time duration of each round is never exceeded, since the sum of the 

fractions never exceeds one. 

• Therefore, all deadlines are met. 

 

This concludes the heart of the MMFS/driver communication model resulting from the chosen 

division of tasks. The next four subsections will discuss the model from MMFS’ point of 

view, discussing block buffer requirements (subsection 5.1.8), an extension to reduce startup 

times (5.1.9), an extension to prefetch further than strictly necessary (5.1.10) and the 

implications of this “deep prefetching”  for the protocol (5.1.11). 

 

5.1.8. MMFS buffer requirements 

 

The number of blocks per round for a stream (N), together with the block size, represents an 

effective rate that is at least equal to the requested rate. Issuing requests at the same rate as the 

agreed-on time distance between deadlines is therefore sufficient for MMFS to keep the 

stream going at a continuous rate. The result is that issuing of requests starts to look like a 

perfect staircase. Each stair represents a single block, and each N stairs combined equal the 

maximum duration of one round (even though the requests are not aligned to round 

boundaries!). Again, stream reader’s progress is not assumed to be as regular. Figure 5.5 

already shows this perfect staircase, with N being two blocks per round. 

 

From this, we can determine the minimum number of buffers that MMFS needs for each 

stream. With N still being the number of blocks that the stream requests during each round 

duration, the resulting minimum number of buffers that have to be available for the stream 

equals 3N: 2N requests may be pending at the driver at any time in the worst case, and the 

data resulting from fulfilled requests has to be available for reading by the stream reader for 

some time as well. Figure 5.8 shows how the perfect staircase of requests (assuming one 

block per round in the figure) translates into each buffer being in use for three round times at 

worst. This leads to the minimum of three buffers. 

 

In terms of both driver admission control and MMFS buffer use, a single stream with N > 1 

blocks per round is equivalent to multiple streams of 1 block per round. The staircase is 
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simply steeper. The implication is that a MMFS instance that wants to support S streams, 

needs to have at least 3S block buffers in total. 

 

Note in the figure, however, there is no overlap between the availability of consecutive blocks 

to the stream reader (the dashed lines). This means that the reading behavior of the stream 

reader must equal a similar perfect staircase. Otherwise, a buffer could be kept in use for too 

long, and that would prevent the next request from being issued in time. 

 

Preferable would be 4S blocks in total: this allows the stream reader to make stream read 

requests that are not strictly aligned to the block size used in MMFS. Figure 5.9 shows the 

resulting progress; there is now overlap of the availability of filled buffers to the stream 

reader. 

Figure 5.9: four buffers per stream 

Figure 5.8: three buffers per stream 
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The increase by one block per stream from the requirements stated in subsection 2.1.3 is due 

to the fact that in our case, the requests have to be sent off far ahead of their deadline to match 

any potential round boundaries. 

 

5.1.9. Reducing startup times 

 

Subsection 5.1.5 described that the startup time of a stream is in principle equal to the work-

ahead time. If the disk is already being used to its maximum, this is unavoidable. However, in 

many cases the disk will be underutilized, and we can exploit that to reduce startup times.  

 

To start off a stream, enough data has to be available to MMFS to serve the read requests of 

the stream reader during the retrieval time of the next requests. Waiting for the work-ahead 

time fulfills this requirement, but the requirement is also fulfilled if all the data is available 

before the work-ahead time. 

 

Right after stream admission, MMFS can make requests for enough blocks to support the 

stream up to the work-ahead time. The deadlines of all but the first request will be further 

ahead than the work-ahead time. This gives the disk driver the opportunity to process all of 

the requests ahead of time, even though it does not have to. If the driver is fast enough in 

serving all the requests, we can reduce the stream startup time to a minimum. 

 

Figure 5.10 shows how retrieval of the first three blocks within a little over one round’s time 

can lead to the stream exhibiting the same pattern as figure 5.9 one full round earlier (the 

Figure 5.10: example of reduced startup time 
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arrows show the actual retrieval time in this case). In practice, it can be much shorter. On the 

other hand, if not all blocks arrive earlier than the work-ahead time, no optimization can be 

applied. 

 

5.1.10. Deep prefetching 

 

In princple, our chosen model limits prefetching for each stream to a minimum. However, it is 

highly desirable to prefetch further ahead whenever more buffer space is available. This 

provides extra buffering that overcomes the effects of stream readers that unintendedly 

deviate from their stream rate.  

 

Such “deep prefetching”  is also the approach that we use to deal with true VBR streams. It 

essentially consists of smoothing the VBR stream so that we can still use constant-bitrate 

retrieval [2]. The result is a statistical take on VBR streams: stream readers can request a 

stream rate that is (far) below the peak rate of the VBR file, and then rely on deep prefetching 

to cope with the peaks in the data stream. The lower the chosen rate is, the more streams can 

be admitted, but the more those streams rely on prefetching. It is up to the application to 

decide on the lowest rate that still gives an acceptable loss probability. 

 

To perform deep prefetching, MMFS instances can submit requests ahead of time. These 

requests then carry deadlines far in the future, and do not have to be served anytime soon by 

the disk driver. However, if the driver is not completely busy, the driver’s per-round EDF 

algorithm will automatically process requests relatively further ahead of their deadline. 

 

5.1.11. Buffer reuse and overriding/cancelling requests 

 

MMFS maintains the block buffers, and it may submit requests with deadlines far ahead to 

facilitate deep prefetching. This combination leads to new issues that need to be addressed: 

those of buffer reuse and request cancellation. 

 

With the deep prefetching described earlier, it is possible and even desirable that if a 

relatively small number of streams is active, these streams use up most available buffer space 

for prefetching. If the number of streams increases due to application demand, some of the 
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buffer space has to be reallocated to these new streams. There might not be sufficient buffer 

space available to support all new streams otherwise. 

 

The buffers most eligible for reuse are the ones that have the highest estimated use time 

distance (i.e. with the latest deadlines) for the originally active streams, as reusing those 

would limit the prefetch window of those streams by the smallest possible amount. Those 

buffers, however, are typically those that are waiting to be filled by the disk driver. 

 

Figure 5.11 illustrates this. It shows how there are two streams at first (on the left). As three 

new streams are created (on the right), the first two streams have to give up their last buffers, 

including those that were requested from the disk driver. This effectively reduces their 

window at the head side, and requires that the outstanding requests be dealt with somehow. 

 

The deadline of the request for which a buffer will be reused, will always be earlier than the 

deadline of the original request involving that buffer. This ensures fairness of buffer usage 

between streams; we will elaborate on this in chapter 6. A race condition emerges if a new 

request is simply sent off without taking care of the old request: if the driver serves the new 

request and reports this to MMFS, and then serves the old request immediately after (storing 

the result in the same buffer), the buffer contents would be indeterminate from MMFS’  

perspective. 

 

There are several ways to solve this. MMFS could wait until the request has been completed 

(i.e. the buffer has been filled) and only then reuse it, but that could literally take minutes if 

the given stream has built up a huge prefetch window. MMFS could also reserve an extra 

number of blocks to be able to support any streams that could possibly still be created, but this 

Figure 5.11: buffer reallocation to new streams 
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would be a huge waste of buffer space. A third option is to explicitly cancel pending requests 

at the driver with a deadline far ahead, and although this is a viable approach, there is a 

simpler alternative. 

 

As section 5.2 will show, each request contains parameters that uniquely identify the 

destination buffer. The driver can therefore identify which requests are for the same buffer 

within the same MMFS instance. Each request also contains a deadline, so the driver can 

consider the one with the later deadline as overridden by the one with the earlier deadline. 

This is regardless of the order in which these two requests arrive. Reusing buffers is now 

trivial for MMFS, and the message overhead for buffer reuse is kept to a minimum. 

 

Despite this request overriding system, explicit cancellation of block requests is still needed. 

When a stream is closing down on request of an application, all requests belonging to that 

stream must necessarily be fulfilled or cancelled before the driver can be told that the stream 

is deleted. If not, a new stream could be admitted in its place while requests for the closing 

stream are served in the same round, and that could lead to potential per-round overutilization. 

For this reason, the FS/driver protocol must support explicit request cancellation as well. 

 

5.1.12. Rejected alternatives 

 

Finally, we will discuss some rejected alternative divisions of tasks. In particular, one 

approach that was also considered, involves a single MMFS process that repeatedly issues 

batches of multimedia requests to the driver. It is then the MMFS process that uses EDF to 

determine which requests are included in the next round. MMFS sends off the whole round to 

the driver at once, waits for all requests’  replies (or perhaps one reply batch) to come in, and 

then determines and submits the contents of the next round. The result is shown in figure 5.12. 
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This simplifies block buffer management issues, because MMFS is responsible for both the 

buffers and the deadline management. Issues like buffer reuse and stream cancellation become 

nonexistent. On the other hand, MMFS then determines the duration of each round. It must 

subsequently be in charge of defining which portion of the maximum round duration can be 

used by nonmultimedia requests, and perform admission control as well. This means it has to 

be aware of disk metrics – at the very least, it has to communicate about them with the driver. 

 

Having a file server perform many tasks that are typically made by the disk driver, is 

unnatural to say the least. MMFS would essentially impose its model onto the disk driver, 

making the whole approach rather “bolted down” and inflexible. Also, having more than one 

multimedia-aware file server mounted at the same time would become impossible. 

 

This model can be extended to support multiple file servers, by moving admission control 

back into the driver and letting each MMFS instance allocate a fraction of the (now again 

driver-controlled) rounds based on the streams the file server has. MMFS could increase and 

decrease its own fraction on demand, and submit a batch of requests of up to this fraction for 

each round. 

 

There is however another issue that both these models suffer from: there is a communication 

gap between the last reply of the last round and the submission of the next round’s batch. In 

the case of multiple MMFS processes, the driver would have to synchronize with all MMFS 

Figure 5.12: alternative division of tasks 
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processes before it can start a new round. Otherwise, the round batch of one MMFS process 

could arrive after the start of the new round, and possibly cause it to miss its deadlines. The 

time needed for synchronization could lead to the disk going idle even in the case that 

requests are present. This makes this model non-work-conserving, as it does not use the disk 

to the fullest extent. 

 

In addition, the above approach implies that activity in all MMFS processes and the driver 

now happen at roughly the same time, forcing the computational overhead to happen at peak 

moments rather than being more evenly spread out over time as in our model. Ultimately our 

current approach was preferred because in addition to all the above points, it inherently 

supports multiple MMFS instances rather than requiring explicit support for this. 

 

As a completely different alternative, block buffers could theoretically be placed at the disk 

driver. MMFS processes would then notify the driver of requests and get a block buffer 

address in the disk driver’s address space containing the data as reply. Especially with a LRU 

cache replacement policy, a centralized cache could have advantages over several local caches 

in MFS processes. However, the file servers would have to communicate their caching 

policies to the disk driver if anything other than LRU is to be used. Also, given the potentially 

huge differences in block sizes between MFS and MMFS, this would make the choice of 

cache buffer size rather difficult. Finally, the file servers would have to let the disk driver 

know when they are done with a specific buffer, adding an extra layer of communication. 

 

 

5.2. The MMFS – dr iver  protocol 

 

The concepts from section 5.1 are now implemented in an actual protocol extension between 

MMFS and the driver. Figure 5.11 shows the relevant extract from figure 5.3. The protocol 

revolves around the block prefetch requests from MMFS for each stream, linking MMFS 

streams to the driver’s EDF queue. Besides basic block request messages, the protocol must 

offer a way to override and cancel block requests (see subsection 5.1.11). For admission 

control, there must be stream addition and deletion messages. All requests are made by 

MMFS; all replies come from the driver. 
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Subsections 5.2.1 and 5.2.2 describe the resulting protocol extension. Subsections 5.2.3 and 

5.2.4 discuss deadlines and admission control, adding the practical aspect of MINIX’  clock 

frequency. Subsection 5.2.5 summarizes the model’s requirements into three basic protocol 

rules. If MMFS follows those rules, the driver can meet the deadlines of all block requests. 

 

5.2.1. Extension of existing protocol 

 

The format of the data retrieval request and reply messages are fully based on the original 

basic driver read and write requests (DEV_READ_S and DEV_WRITE_S) and replies. The driver 

can then process multimedia requests as normal requests. 

 

However, the original protocol assumes that there is always at most one best-effort request 

pending at the driver, and this is not the case with MMFS. To allow multiple pending requests 

and replies between a single MMFS instance and the driver, the new asynchronous 

communication primitive is used in both directions here too. Again, this implies a non-FIFO 

ordering of messages. 

 

We then need to extend the basic messages with at least two things: 

- The multimedia deadline of each request, so that the driver can perform EDF sorting. 

- Some way to tell which replies and cancel requests belong to which requests. 

 

To indicate that a deadline has been specified at all, we add the DEV_MM_READ_S and 

DEV_MM_WRITE_S message types for data transfer. The only difference between 

DEV_{ READ|WRITE} _S and DEV_MM_{ READ|WRITE} _S requests is the deadline in the request 

message. The difference between their reply messages is somewhat more elaborate. 

Figure 5.11: the protocol between MMFS and the driver 
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New messages are introduced for request cancellation (DEV_MM_CANCEL_S), and for 

admission control (DEV_MM_ADD and DEV_MM_DEL), using a new field layout specific to the 

requests. All reply messages share a field that contains the original request type. The other 

fields that were added to the reply message are specific to the request type. The full message 

layout of all added requests and replies is listed in appendix C. The next three subsections will 

discuss several aspects in detail. 

 

To retain the spirit of the original protocol and retain a “balanced”  communication scheme, 

every request is always eventually replied to. Specifically, an overridden or cancelled request 

always results in an error, rather than being discarded silently. 

 

The requests are not tied to streams directly. The driver can only link a request to a specific 

MMFS instance, not to a specific stream. The implications of this are discussed later. 

 

5.2.2. Request identification and cancellation 

 

As it turns out, a system with request IDs as implemented for the new VFS/FS protocol (see 

subsection 3.4.4) is not needed, as there is already enough information present in each request 

for unique identification. Each request carries an I/O destination endpoint (the IO_ENDPT 

request message field) and an endpoint-dependent indicator that can uniquely identify the 

destination buffer in the form of an I/O grant (the IO_GRANT request message field). I/O 

grants are part of MINIX 3’s improved interprocess protection. One process tells the kernel to 

grant another process access to a specific buffer with a specific length, and hands over the 

resulting grant identifier to the other process. The other process is then limited to accessing 

only that buffer in the first process’s address space. In general, messages that use grants have 

a ‘_S’  suffix to their name. 

 

As long as the MMFS process makes sure that there is a 1-1 mapping between I/O grants and 

buffers (which it can, by preallocating all grants), the combination of the I/O endpoint and I/O 

grant are sufficient to identify a specific buffer of a MMFS process. The combination of those 

two fields and the request’s deadline (the MM_DEADLINE field) are sufficient to identify a 

specific request. 
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It is now trivial for MMFS to override or cancel previous requests. MMFS can override a 

previous request with a new request for the same buffer but with a lower deadline, by sending 

off the new request with the same I/O endpoint and grant and the new lower deadline. A 

specific request can be cancelled by sending a DEV_MM_CANCEL_S request that carries the I/O 

endpoint, grant, and deadline of the request to cancel. 

 

5.2.3. Request deadlines 

 

Deadlines are necessarily expressed in clock ticks – the smallest time unit available on 

MINIX 3. The only field that is still unused in the original DEV_{ READ|WRITE} _S messages is 

the m2_s1 short integer field. This is not large enough to store clock values, which require a 

long integer field. Therefore, the deadline has to be fit into a short integer value. In practice 

this means going from 32-bit to 16-bit on 32-bit architectures. 

 

It is attractive to use deadlines relative to the current time in this case, but this is risky. Even if 

passing a message always takes less than a clock tick in practice, exchange of a message may 

just happen to take place across a clock tick. The receiver would then decide on a different 

resulting clock value than the sender. This would make it impossible to use the deadline as 

part of the unique identifier for requests. 

 

To avoid this, absolute deadlines are used. These have to be truncated; it is up to the receiver 

to determine the original deadline from the truncated value. To facilitate this, deadlines used 

in messages may not be further in the future than can be expressed by a signed short integer 

(15-bit, i.e. 32767). Combined with the fact that deadlines always have to be in the future at 

all (by at least the work-ahead time), the receiver can easily determine the original absolute 

deadline using the following C code. It takes the 32-bit current time as ‘cur_time’, and the 16-

bit ‘deadline’  (MM_DEADLINE) value from the request, and returns the resulting 32-bit 

deadline: 

 

if ((cur_time & 0xffff0000) + deadline >= cur_time) { 

return (cur_time + deadline); 

} else { 

return (cur_time + deadline + 0x00010000); 

 } 
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Note that even 32-bit deadlines are not really absolute: with MINIX’  standard clock frequency 

of 60 ticks per second, it takes about two years and three months overflow the counter. Our 

MMFS and driver implementations deal with this by subtracting 32-bit clock values for 

relative comparisons. 

 

5.2.4. Admission control and timing restrictions 

 

Before a MMFS instance may start a stream, it has to send an admission request to the driver, 

in the form of a DEV_MM_ADD request. The request includes the stream rate in bytes per 

second (MM_RATE) and the block size in bytes (MM_BLOCK_SIZE). If the driver cannot admit 

the stream, it must send back an error code indicating the stream has not been admitted. If the 

stream can be admitted, then the driver must send back the work-ahead time and the 

minimum time distance between each pair of requests (see subsections 5.1.5 and 5.1.6). 

 

These ‘work-ahead time’ (REP_MM_WAT) and ‘ ticks per block’  (REP_MM_TICKS) values must 

be expressed in clock ticks as well. After all, timers can only be set on clock tick granularity. 

The ‘ ticks per block’  value is the minimum number of clock ticks between each two request 

deadlines. To guarantee the admitted stream rate and to make sure no more than the admitted 

number of block requests have their deadline fall in one round, this value must necessarily be 

a clean divisor of the number of clock ticks per round. 

 

Based on the discussion in subsections 5.1.6 and 5.1.7, this results in the following 

pseudocode logic to determine the effective stream rate and return the appropriate ‘ ticks per 

block’  value along with the work-ahead time: 

 

on receipt of DEV_MM_ADD(rate, block_size) { 

  /* convert rate from bytes per second, rounding up 

 * to a multiple of the given block size */ 

  blocks_per_second = divide_rounding_up(rate, block_size); 

 

  /* convert the number of blocks per second to a fraction 

 * of a round */ 

  blocks_per_round = blocks_per_second / TICKS_PER_ROUND; 
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  /* increase this fraction to the lowest higher 

 * integer divisor of the number of ticks per round */ 

  blocks_per_round = 

round_up_to_divisor_of(blocks_per_round, TICKS_PER_ROUND); 

 

 /* note that ((blocks_per_round * block_size) >= rate) 

 * still holds. however, blocks_per_round is now an 

 * integer divisor of TICKS_PER_ROUND, so we can divide 

   * cleanly. the result is the number of ticks allowed 

 * between each two block requests. */ 

 ticks_per_block = TICKS_PER_ROUND / blocks_per_round; 

 

 /* do the actual admission control test, and return 

 * the appropriate values if admitted */ 

 if admission_control_test(ticks_per_block, block_size) 

   return OK, ticks_per_block, work_ahead_time; 

 else 

   return error code; 

 } 

 

This implies a whole lot of rounding up, although all of the rounding granularities are no more 

than predetermined configuration values (i.e. #define’s): the MMFS block size, the round 

duration, and the clock frequency. The standard MINIX clock frequency of 60 ticks per 

second will already have to be changed if applications are to request frames at a rate of for 

example 25 frames per second. This is however not an issue for the driver or even MMFS, 

and we will look at this again in chapter 8. 

 

Complementing the DEV_MM_ADD request, there is a DEV_MM_DEL request to tell the driver 

that a stream does not exist any more. These two admission control requests include a opaque 

“stream ID”  field, allowing the driver to link delete requests to add requests. The stream ID is 

also echoed in both reply messages, allowing MMFS to link add/delete replies to requests. 

Actual stream requests are not linked to streams, so the file server may not issue the 

DEV_MM_DEL request until all of the stream’s block requests have been fulfilled or cancelled. 

 

5.2.5. Resulting contract with file servers 
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We now summarize the requirements for actual block requests, to which MMFS instances 

must adhere, so that the driver can meet all deadlines (following subsection 5.1.7). These 

requirements make up the basic contract between the FS and the driver. For each stream, that 

is, each ‘<block size, ticks per block> ’  pair that the driver has admitted with a DEV_MM_ADD 

reply (and not later removed because of a corresponding DEV_MM_DEL request), the following 

must hold for all block requests made as part of that stream: 

 

1. All request deadlines must be in the future by at least the number of ticks given by the 

driver as the work-ahead time. That is, two rounds plus a small epsilon value. 

2. For each pair of requests, the deadlines of these requests (each of size ‘block size’ ) 

must be least ‘ ticks per block’  clock ticks apart. 

3. No request must be made with a deadline that is ahead of the current time by more 

ticks than the upper value of a signed short integer. 

 

Requests that violate the first point are not feasible, as per subsection 5.1.5. Pairs of requests 

that violate the second point may cause per-round overutilization, as per subsection 5.1.6. 

Requests that violate the third point may lead to deadlines being extended incorrectly, as per 

subsection 5.2.3. 

 

Stream requests are not linked to streams in the protocol, so the driver cannot enforce this 

contract for individual streams. As a result, one actively misbehaving MMFS instance could 

cause deadlines to be missed for all MMFS instances, not just for itself. One partial solution 

would be to let the driver maintain a per-FS, rather than a global, count of admitted stream 

bandwidth per round. It can then make sure that no more than the appropriate fraction of the 

(maximum) round time is dedicated to each of the file servers. This extra safeguard was not 

implemented in the driver for this project. 

 

 

5.3. Dr iver  implementation 

 

In MINIX 3, the driver-independent aspects of drivers are implemented in a “ libdriver”  

library. That cleanly separates the FS/driver communication protocol from the actual driver 

implementation. For this project, all changes made on the driver side are confined to 
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“ libdriver” . The changes therefore automatically work for all hard disk drivers, even though 

only the “at_wini”  IDE driver is relevant to us in practice. 

 

For the most part, the driver implementation simply follows the protocol specification in the 

most straightforward way, but there are some aspects that are worth discussing. Subsection 

5.3.1 describes the deterministic admission controller that we have implemented. Subsection 

5.3.2 discusses the per-round combination of multimedia and nonmultimedia requests. 

Subsection 5.3.3 describes how rounds are implemented in a way that yields various 

advantages. Finally, subsection 5.3.4 describes the resulting logic that the driver uses to 

handle the EDF multimedia queue, the FCFS nonmultimedia queue, and the SCAN round 

queue. 

 

5.3.1. Disk metrics and admission control 

 

The new multimedia-aware part of the driver library has been implemented with high 

modularity, in order to allow a more elaborate admission control and round management 

system to be dropped in with relative ease. However, the admission control system that we 

implemented is deterministic, and as such rather basic. The driver is assumed to know the 

worst-case maximum number of blocks (with a certain size) that the driver can fetch from the 

disk during a round, and it uses this value to determine how many streams can be admitted 

Figure 5.13: the new driver archtecture 

Figure 5.12: the driver process 
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with which bandwidth. This rather simple approach requires the disk driver to pick a static 

block size to base these measurements on, rounding up and taking multiples of it as necessary. 

 

In order to allow nonmultimedia requests to be processed in each round as well (see the next 

subsection), a static number of blocks per round is reserved for nonmultimedia requests, and 

admission control only allows streams to use the remaining number of blocks per round. A 

nonzero value ensures that nonmultimedia requests will never starve. 

 

The actual disk speed parameters are computed “offline” , and currently statically defined at 

compilation time. With some changes, these values could be specified as environment 

parameters at boot time or even obtained statistically at load time, but that was not necessary 

for this project. 

 

5.3.2. Combining multimedia and nonmultimedia requests 

 

If at least one nonmultimedia request is allowed per round, then the driver must know how to 

optimally merge multimedia and nonmultimedia requests into one single round. For this 

project, one important consideration is that the current implementation of the MINIX file 

server (MFS) – which was until recently fully integrated with the blocking VFS server – is 

also implemented as blocking. Each instance of MFS can make at most one request to the disk 

drive at a time, and waits until the disk driver has replied. Subsequently, the maximum 

number of nonmultimedia requests (all from MFS instances) that can arrive before the start of 

each disk scheduling round, is equal to the number of mounted MINIX partitions on the 

system. This number is typically very low: the standard MINIX 3 installation suggests three 

partitions ("/", "/usr" and "/home"), so in the worst case, three nonmultimedia requests are 

submitted to the disk driver for each round. 

 

A second consideration is that partitions for multimedia and nonmultimedia file systems are 

completely separate. Each partition is laid out contigously on disk, so the blocks requested by 

MFS instance will be placed physically relatively distantly from blocks requested by MMFS. 

This implies that little advantage can be obtained from integrating multimedia and 

nonmultimedia requests in a way that minimizes disk arm movement. This is a significant 

difference from systems that integrate multimedia and nonmultimedia files on the same file 

system. 
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For these reasons it was decided to always handle the nonmultimedia requests at the 

beginning of the round, and then handle the multimedia requests. This ensures that while the 

multimedia requests will meet their deadlines in any case, pending nonmultimedia requests 

will be served as quickly as possible per round. 

 

In practice, the sets of multimedia and nonmultimedia requests are both sorted in CSCAN (i.e. 

one-way SCAN) order, so that the resulting combination is CSCAN-ordered as well. 

Depending on the relative layout of the multimedia and nonmultimedia partitions, the 

complete CSCAN sorting may be over two rounds rather than within a single round. 

 

5.3.3. Dynamic round times 

 

Like for example the MARS project [4], our implementation uses dynamic round times. 

Instead of using a periodic timer to start and end each round, rounds are started whenever 

multimedia requests are present while no round is active, and they end whenever the last 

request of the round has been processed. Rounds then only have an upper duration. Requests 

that arrive during a round, do not necessarily have to be queued for the duration of a full 

round before they are processed. 

 

This approach is inherently work-conserving: the disk is not idle for the rest of a round if there 

is any work to do, and no special measures have to be taken to fall back on the basic FCFS 

policy for nonmultimedia requests if no multimedia requests are present. 

 

Another advantage is that round times will be relatively short if relatively few multimedia 

streams are present. This means that nonmultimedia requests will automatically be served at a 

relatively lower latency, because the rounds are shorter. They will also be served at a faster 

rate, because there are relatively more rounds overall. 

 

5.3.4. Actual implementation  

 

The sets of requests for the current round are kept in arrays to allow for easy sorting. 

Nonmultimedia I/O requests, as well as non-I/O requests, are kept in simple linked lists of 

structures that only contain messages (FCFS). Multimedia I/O requests are kept in a separate 
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(doubly-linked) linked list that is sorted on (expanded) deadlines, lowest first (EDF). 

Whenever a new multimedia I/O request comes in, this list is iterated over, for two reasons: 

 

- If another request with the same I/O endpoint and grant is found, then the request with 

the relatively highest deadline is considered to be overridden and removed from (or 

not added to) the list (and replied to with an ‘EINTR’  error code). 

- The new request (if not overridden) is added at the right location into the list so that 

the list remains EDF-sorted. 

 

Although this could be optimized by splitting these out into a hashtable and a list that is sorted 

on demand, the number of requests in the queue is in practice low enough not to substantially 

benefit from this. 

 

A scheme similar to the first step is used when a cancel request (DEV_MM_CANCEL) from 

MMFS is processed. First the queue is examined. If a matching request is there, it is cancelled 

(i.e. removed and replied to with ‘EINTR’) and the cancel operation finishes successfully 

(‘OK’ ). If no matching request is present in the queue, the remaining multimedia part of the 

current round is examined, and an appropriate error code is returned based on whether the 

request-to-cancel was found in the current round (‘EBUSY’) or not (‘ENOENT’). 

 

Every time the actual driver is ready to perform new work, either at startup or because it has 

finished processing the last request, the driver library takes the following steps: 

- If a round is currently in progress and not yet finished, process the next request in the 

round. 

- Otherwise, if the multimedia I/O queue is not empty, start a new round, and process 

the first request in this new round. 

- Otherwise, if there are nonmultimedia I/O requests or non-I/O requests queued, 

dequeue and process the next one. 

- Otherwise, receive a message, as there is no work queued. 

 

The easiest way to model the receipt of a message is that the message is simpled queued in the 

appropriate queue upon receipt, after which the steps above are taken again if the driver is idle 

(i.e., not currently processing a request). In practice, if the driver is idle, nonmultimedia 

requests are not queued and instead processed directly upon receipt. If the driver is not idle 
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(typically waiting for DMA transfer to complete, receiving messages until an interrupt 

notification comes in), messages are always queued. 

 

When a new round is started, up to as many requests are taken from the head of the EDF-

sorted multimedia I/O queue as allowed by the defined fraction of the defined per-round 

maximum. After that, the rest of the round is filled with nonmultimedia I/O requests. Both 

parts are stored in arrays, sorted on disk position (CSCAN), and the first request is processed. 

As indicated in subsection 5.3.2, requests are first taken from the nonmultimedia I/O queue, 

and then from the multimedia I/O queue. 

 

Note that the driver will never go idle as long as any message is queued, so this entire 

approach is indeed work-conserving and implies the aforementioned dynamic round times. No 

timers are needed. 
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Chapter  6. MMFS par t 2: the dr iver  side 

 

This chapter describes the implementation of the second and last part of the MMFS 

multimedia file server. This part manages the data streams, block buffers, cache, and the 

communication to the driver using the new protocol extensions described in chapter 5. 

 

Section 6.1 discusses the main objects in MMFS: buffers and streams. It describes the 

mapping between these two objects, and the procedures used to move streams forward. On 

top of that, section 6.2 outlines the policies of deadline and request management, and shows 

how MMFS fulfills the FS/driver protocol contract from section 5.2. 

 

A stream is always opened, read from, and closed by a single user process. This is the subject 

of section 6.3, which discusses the user process API, and with that the MMFS implementation 

of the VFS requests not yet discussed in chapter 4. Section 6.4 makes some final notes. 

 

 

6.1. Buffers and streams 

 

MMFS streams are a direct implementation of the stream concept from subsection 5.1.1. Each 

active stream has a head, a split, and a tail. All data between the head and the split has been 

requested from the disk driver but not yet arrived. All data between the split and the tail of the 

stream has arrived and is available for reading by the user process. 

 

MMFS uses a static block size. To store prefetched data in, it maintains a pool of buffers 

which are all of that block size. Buffers are dynamically assigned to blocks as needed. The 

window of each stream consists of a number of blocks, and therefore of a number of buffers. 

The head, split and tail of a stream move forward by whole blocks at a time, regardless of 

actual frame sizes. 

 

Figure 6.1: the MMFS process, part 2 



– 107 –
 

Subsection 6.1.1 and 6.1.2 elaborate on the basic principles by defining the buffer object and 

stream windows. Subsection 6.1.3 to 6.1.6 describe the mechanisms employed to advance the 

head, split, and tail of a stream window. Subsection 6.1.7 describes MMFS’  caching policy. 

 

6.1.1 The buffer object 

 

Each buffer can be dynamically assigned to an arbitrary block on disk. This block is identified 

by a block position number. The block start (in bytes) into the partition is always a multiple of 

the static block size. Several streams may overlap, that is, cover (in part) the same section of a 

single file. For optimal buffer usage, only a single buffer can be assigned to a single block 

position at any time. A single buffer may therefore be part of the window of more than one 

stream. Buffers can be found by block position number using a position-based hashtable. 

 

A buffer is in use by a stream if it is currently part of the window of that stream. It is then 

assigned to a block position number that falls between the head and tail of the stream. A 

buffer is filled if the block data for the buffer’s block position has been retrieved from disk. A 

buffer is always in one of the following five states: 

 

- Free. The initial state of all buffers. The buffer is not assigned to a block position and not 

in use by any stream. All buffers in this state are part of the free list. 

- Requested. The buffer has been assigned to a block position, but is not yet filled. A 

(DEV_MM_READ) request for it is pending at the driver. The buffer is in use by one or more 

streams. 

- Prefetched. The buffer has been assigned to a block position, and has been filled by the 

driver. The buffer is in use by one or more streams. 

- Cached. The buffer is assigned to a block position and is filled, but it is not in use by any 

stream any more. It is therefore in the cache. MMFS’ caching policy is described in 

subsection 6.1.7. 

- Cancelling. In section 6.3 we show that this state is needed for buffers in use by closing 

streams. It indicates that the block was in requested state, and a DEV_MM_CANCEL 

message has been sent to the driver to cancel the DEV_MM_READ block request. 

 

Figure 6.2 shows the state transitions. The remaining part of the chapter uses the transition 

numbers in the figure to indicate when certain transitions take place. 
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A buffer that is in use by one or more streams (i.e. in the state requested, filled or cancelling), 

always has an associated deadline. This is always the earliest stream deadline for the 

corresponding block. If the buffer is in state requested, then the latest request pending at the 

driver to fill this buffer always has that earliest deadline. Deadline computation will be 

covered in section 6.2. 

 

A buffer that is in use, also has a stream as owner. The buffer’s owner is always the stream 

that has the earliest deadline for the buffer’s block. If there are multiple streams with the same 

earliest deadline for this block, the buffer’s owner is any one of those. 

 

It is important to note that several streams may operate on a single file with different stream 

rates, so no assumptions can be made about the ordering of buffer ownership between 

streams. That is, a buffer’s deadline and ownership may have to be recomputed whenever a 

stream advances its head or tail. 

 

As explained in subsection 5.2.2, each buffer has an I/O grant associated with it. MMFS 

allocates these grants on startup. The FS/driver protocol message replies supply the grant as 

identifier for the buffer that has been filled or cancelled. For fast lookup, MMFS uses a grant-

based hashtable. 

 

Table 6.1 shows the ‘struct buffer’  structure fields. 

 

Field Descr iption 

int b_state; One of the five states free, requested, prefetched, cached, cancelling. 

bpos_t b_pos; Block position number currently associated with this buffer. 

Figure 6.2: buffer state transitions 



– 109 –
 

clock_t b_deadline; The earliest deadline of all streams with this block in their window. 

struct stream *b_owner; The stream that needs the associated block the soonest of all streams. 

char *b_data; Pointer to the actual buffer data area in MMFS. Only set once. 

cp_grant_id_t b_grant; Grant to the driver associated with the data. Only set once per driver. 

struct bufferlist *b_list; Linked list pointers (prev, next) for the free list and the cache. 

struct bufferlist *b_plist; Linked list pointers (prev, next) for the position-based hashtable. 

struct bufferlist *b_glist; Linked list pointers (prev, next) for the grant-based hashtable. 

 

 

MMFS must have enough buffers to support the required number of streams. The memory 

consumption of MMFS dominated by the product of the block size and the number of buffers 

in the buffer pool. A bigger block size therefore leads to higher independence from frame size 

variations (see chapter 5) and faster data retrieval overall (see chapter 8) at the cost of a higher 

minimum stream rate (chapter 5) and more MMFS memory consumption. 

 

6.1.2. Stream windows 

 

The head, split and tail of a stream’s window are expressed in block position numbers. The 

file system design guarantees that all files are laid out consecutively on disk, so each next 

block position number can be found by adding one to the last block position number. Figure 

6.3 shows this. Note that there is no real list or array of buffers for each stream; rather, all 

buffers are obtained from the position-based buffer hashtable based on the stream’s 

head/split/tail block numbers. 

 

The tail block is the first block that the user process has not (fully) read yet, and therefore the 

first block that needs to be available to the user process. The split block is the first block that 

has not yet been filled. The head block is the first block that is not part of the stream’s 

Table 6.1: the buffer structure 

Figure 6.3: a typical stream window 



– 110 –
 

window any more. If the tail block equals the split block, the stream has no prefetched data. If 

the split block equals the head block, the stream has no data requests outstanding to the driver. 

 

One very important invariant is that a buffer has been assigned to each block in between the 

tail and the head. Obtaining a buffer based on a block position that is part of any stream’s 

window, will therefore always succeed. 

 

All buffers associated to blocks between the tail and the split are in state prefetched (with the 

exception of cancelled buffers, see section 6.3). Typically, the buffers between the split and 

head are all in state requested, but this part of the window may contain prefetched buffers as 

well, for one of the following reasons: 

- The buffer was already prefetched for another stream that has this block in its window. 

- The buffer was obtained from the cache. 

- The corresponding block request was fulfilled relatively early by the driver. 

 

In principle, the head, split, and tail block numbers of a stream will only increase. However, 

buffer stealing may cause a stream’s head and split to be decreased. The relevant procedures 

are described in the next four subsections. 

 

6.1.3. Advancing the window head 

 

The procedure for advancing the window head is not as straightforward as sending a request 

to the driver. A buffer structure must be available to store the resulting data in, but it may turn 

out that no buffer can be obtained for this request. It is also possible that a buffer has been  

prefetched or requested for this block position already. This subsection and the next describe 

the exact procedure taken by MMFS. 

Figure 6.5: advancing the window head 

Figure 6.4: buffer sharing of three streams 
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Each attempt to advance a stream’s head by a single block involves the desired block position 

number and a newly computed deadline for that block for this stream. Computation of the 

deadline is subject of section 6.2. 

 

First, the position-based hashtable of buffers is checked. If a buffer structure is already 

present for this block number, the action taken depends on the state the buffer was in: 

- If the buffer was cached, it is removed from the cache and marked as prefeteched 

(buffer state transition 1). It adopts the requesting stream as owner and takes on the 

newly computed deadline. 

- If the buffer was requested or prefetched, the buffer’s deadline is compared to the 

newly computed deadline. If the latter is earlier, the buffer changes owners to this 

stream and adopts this new deadline. In that case, if the buffer was in requested state, a 

DEV_MM_READ request for the block data is resent to the driver, but with the new, 

earlier deadline. This will override the old request at the driver, so that the data is 

retrieved sooner. 

Nothing else needs to be done in this case. 

 

On the other hand, if no buffer is present for this block position number yet, a buffer has to be 

obtained from elsewhere. If the free list is not empty, a buffer is taken from there (buffer state 

transition 2). Otherwise, if the cache is not empty, a buffer is obtained from there (transition 

3). If both lists are empty, a buffer has to be stolen from another stream. The procedure for 

stealing buffers is described in the next subsection. This might not succeed, but if it does 

succeed, the resulting buffer was previously in state requested or prefetched. In the latter case, 

buffer state transition 4 takes place. 

 

When a buffer is found for the free list or cache, or stolen successfully, then it is given the 

new block position, (re)inserted into the position-based hashtable, marked as owned by the 

requesting stream with the requested deadline, and put in requested state. A DEV_MM_READ 

request for it is sent to the driver, which possibly overrides a previous request for this buffer. 

 

6.1.4. Stealing buffers 
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When stealing a buffer, MMFS always has to find the “worst”  buffer currently in use, that is, 

the buffer that has the latest deadline of all buffers in use by any stream. In no case must a 

buffer be stolen from a stream that needs the buffer more (i.e., that has an earlier deadline for 

it). This guarantees that with a limited number of buffers available, the number of buffers in 

use by each stream is automatically fair and in proportion to its stream rate. Or, to put it in the 

terms from subsection 5.1.7, with 4S buffers available in total, each stream gets its minimum 

of 4B buffers at all times. See also the discussion in subsection 5.1.11. 

 

The worst buffer of all streams is found by looping over all the streams, and going from head 

to tail over each stream’s window, looking for the last buffer in the stream’s window that is 

owned by that stream. This buffer will have the latest deadline of all buffers owned by that 

stream, provided the stream owns any buffers at all. If there is no overlap in stream windows, 

the buffer will always be the last buffer in the window, that is, the first buffer that is checked 

for that stream. 

 

If an owned buffer is found for the stream this way, its deadline is compared to the deadline of 

the worst buffer found so far (if any), and if this buffer’s deadline is further in the future, it 

will be the new worst buffer. At the end of the loop over all the streams, the result is the worst 

buffer overall. If this buffer has a deadline earlier than the deadline of the request for which 

the buffer is to be reused, then the buffer may not be stolen, and in that case the stealing 

stream can not advance its window head at that time. 

 

If a buffer is actually stolen (i.e., the worst buffer has a later deadline than the new request’s 

deadline), this buffer is going to be used for a new block position number, so it is no longer 

available to any stream with this buffer’s old block position in its window. This includes, but 

may not be limited to, the stream from which it is stolen. Therefore, whenever a buffer is 

stolen, all streams are checked and their window head and split are reduced if necessary, in 

order not to include this buffer. The choice for the overall worst buffer implies that none of 

the streams of which the window is reduced, hold ownership of blocks in the part of the their 

window that is clipped off. Other buffers in this part therefore need not be checked. 

 

6.1.5. Advancing the window split 
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Whenever the driver notifies MMFS that a block has been retrieved from disk (with a 

DEV_MM_READ reply), MMFS looks up the corresponding buffer. If the buffer state is still 

requested, it is changed to prefetched (buffer state transition 5). All streams are checked to see 

if this buffer was the first buffer after the split. If so, the split block position is advanced to the 

next buffer in state requested, up to the head of the window. If enough data is now available 

to fulfill a suspended read() request from the user application, the read() call is resumed. 

 

6.1.6. Advancing the window tail 

 

A stream’s tail is moved up whenever the stream’s reader position is at least one whole block 

ahead of the current tail block’s base position. This means that one or more buffers cease 

being part of this stream’s window. These buffers are always in the state prefetched. 

 

Of those buffers, the buffers that have this stream as owner will have to change ownership as 

a result. A new owner is searched for by looping over all streams, checking whether any 

stream has the buffer in its window, and if so, which stream now has the earliest deadline for 

this buffer. If such a stream is found, the buffer changes ownership to that stream, with that 

deadline. If no such stream could be found, the buffer is put into the cache (transition 6). 

 

6.1.7. The buffer cache 

 

Buffers that are filled but not in use are in the cache. MMFS implements a distance-based 

caching policy [22], organizing the cache in such a way that the buffers of which the contents 

have the lowest probability of being reused soon, will be the first to be reused for different 

content (i.e., for another block position). 

Figure 6.6: advancing the window split 

Figure 6.7: advancing the window tail 



– 114 –
 

 

If a buffer is added to the cache, it is added because no new owner could be found for the 

block. That is, no stream turned out to have this block in its window. That means that before a 

buffer is added to the cache, all streams are checked first. During this check, a hypothetical 

deadline distance to the current time is computed for the buffer’s block position for each 

stream, even though the buffer is not part of that stream’s window. If the block is ahead of the 

stream’s tail, the distance can be computed based on the block’s deadline as if the block were 

part of the stream window. If the block is behind the stream’s tail, a default maximum upper 

value is used. 

 

The lowest deadline distance of all streams forms an estimate of how soon this buffer will be 

reused. The buffer is handed over to the cache along with this distance. The buffers in the 

cache are stored in a doubly-linked list that is sorted on these distances, highest distance first. 

Buffers are taken from the front of this list for reuse. To reduce computational overhead, the 

deadline distances are computed only once. 

 

 

6.2. Deadline and request management 

 

The following subsections discuss issues related to timing: subsection 6.2.1 discusses how 

streams’  block deadlines are computed, subsection 6.2.2 outlines how MMFS determines 

when to issue the next request for each stream, and subsection 6.2.3 discusses what happens 

when a stream reader is too fast or too slow. 

 

6.2.1. Deadlines 

 

All block deadlines for a stream are based on the stream’s “base time,”  which is the deadline 

(i.e., expected reader retrieval time) of the tail block of the stream’s window. These deadlines 

play a role not only while making requests, but also to determine the importance of the current 

use of a buffer (see subsection 6.1.4 on block stealing). 

 

A block buffer in the stream window that is N blocks ahead of the stream tail has a deadline 

that is simply equal to “base time + N *  ticks per block” . Remember that the ‘ ticks per block’  

value is specified by the driver after admission control. When sending block requests, the 
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resulting deadline is increased to be ahead of the current time by at least the work-ahead time. 

This fulfills the first point of the FS/driver contract. However, having to do so indicates a 

potential deadline miss, and should not occur if everything goes well. 

 

In the normal case where deadlines are not missed, the deadlines of all requests are already 

predetermined by the values returned by the disk driver after admission control according to 

the formula above. All MMFS does is manage the number of outstanding requests to the 

driver. 

 

When advancing a stream’s tail, the stream’s base time is increased by the number of tail 

buffers removed, times ‘ ticks per block’ , to reflect the new tail buffer’s deadline. By only ever 

increasing the base time, by increasing it only by a multiple of ‘ ticks per block’  whenever the 

stream advances its tail, and by only issuing requests when advancing the head of the stream, 

MMFS is able to guarantee the second point of the FS/driver contract. 

 

6.2.2. Issuing of requests 

 

In principle, MMFS follows the effective stream rate as specified by the driver, advancing the 

stream head once every ‘ ticks per block’  clock ticks. The time between issued requests is then 

equal to the time between these requests’  deadlines, but the two are maintained separately. A 

‘next request time’  variable is kept with each stream, and MMFS tries to advance the window 

head for this stream when this time is reached, increasing the ‘next request time’  variable by 

the ‘ ticks per block’  value. 

 

That is sufficient to keep the stream going, but it does not allow for deep prefetching (see 

subsection 5.1.10). To facilitate this, an attempt to advance the window head is also made 

whenever the reply of a previous request comes in. Requests may then be issued at a faster 

rate than the requests’  deadlines are apart. A check is made to only advance the window head 

if the resulting deadlines are not too far ahead, in accordance with the third point of the 

FS/driver contract. 

 

The deep prefetching attempt fails if no buffer is available to extend the stream head. If 

successful, however, the ‘next request time’ variable is increased accordingly. 
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6.2.3. Stream reader rate deviation 

 

The deadlines of requests are not affected if the stream reader user process is reading faster 

from the stream than with the rate it specified. Readers can attempt to read faster than the 

stream rate, but even if the data is already available, this will advance the base time 

accordingly. Actual driver requests then still have the minimum ‘ ticks per block’  time 

between deadlines. If the data is not available, the read request is suspended. 

 

The stream reader can also be slower. This poses a risk if not considered. If the stream’s base 

time was purely based on the reader’s expected read time, and the reader was slower, then the 

resulting base time (i.e. the deadline of the tail block) would end up being below the current 

time. After all, the tail block is not retrieved by the stream reader at the intended time, so it 

has to be kept around. All subsequent blocks’  deadlines are based on the base time, so a 

stream might then be able to acquire a disproportionately large number of buffers. The 

buffers’  near deadlines would prevent other streams from stealing them, and those streams 

would then miss their deadlines as well. 

 

To avoid this, every stream’s base time is always kept at the current time as a minimum. This 

pushes back the deadlines of all new requests, forcing each stream to keep its buffer usage in 

line with that of other streams. 

 

This approach isolates streams from each other, and has two other advantages. First, streams 

are prefetching at an effective rate that is typically higher than the requested rate, due to the 

rounding up of driver admission control. The reader will ultimately fall behind, as it reads at 

its own requested rate rather than at the effective rate. The base time correction automatically 

compensates for this by delaying requests accordingly. And second, the approach provides a 

very simple implementation of stream “pause”  functionality: a stream reader can simply stop 

reading from the file for a while, and continue at any later time at no extra cost. 

 

 

6.3. Remaining VFS requests 

 

This section describes the implementation of the VFS calls that directly affect streams. 

Subsection 6.3.1 discusses the basics of read requests. Subsections 6.3.2 to 6.3.4 describe how 



– 117 –
 

streams can be opened and closed, and how MMFS handles these operations. Subsection 6.3.5 

then defines the stream object as used in MMFS. Subsection 6.3.6 describes how driver crash 

recovery is implemented. 

 

6.3.1. Reading from streams 

 

The basic stream reading is done using simple read() calls on a file descriptor. This 

automatically lets VFS take care of many aspects of the reading process. 

 

The read calls arrive as REQ_READ requests at MMFS. The procedure for handling REQ_READ 

requests is simple. If the requested data has been prefetched for the associated stream, the 

request is satisfied immediately. If not, the request is suspended, and its state is stored in the 

stream object until it can be satisfied. Table 6.2 shows the structure containing the state 

(‘struct readreq’ ); note that REQ_READ VFS requests do not (yet) use buffer grants. 

 

Field Descr iption 

u64_t rr_pos; Current read byte position. Always falls within the stream’s tail block. 

size_t rr_bytes; Number of bytes left to copy out. Result might be less at end of file. 

size_t rr_cum_io; Number of bytes copied out so far. 

char * rr_ubuf; User-space buffer address to copy data to. 

int rr_useg; User-space buffer segment to copy data to. 

 

 

If a suspended data request spans multiple blocks, each part is copied out whenever it is 

available, so that the associated buffers can be freed up by advancing the window tail as soon 

as possible. The actual REQ_READ reply is only sent whenever the whole request has been 

satisfied, unless the end of file is reached first. 

 

6.3.2. The queryfs API 

 

MMFS allows stream readers to specify the rate at which they want to read the given stream, 

so the stream reader must have a way to pass this value to MMFS directly. In addition, seek 

and close operations on the file descriptor are not passed by VFS to MMFS in such a way that 

they allow MMFS to map these requests to streams, so explicit requests are required there as 

Table 6.2: the readreq structure 
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well. Note that due to similar lack of information in the VFS/FS protocol, only one stream is 

allowed per user process per file. This allows MMFS to at least reliably map read (REQ_READ) 

requests to streams, as these include a process identifier, unlike seek (REQ_INHIBREAD) and 

close (REQ_PUTNODE) requests. 

 

MMFS uses the new queryfs() interface and REQ_QUERYFS VFS call to let processes 

communicate with it (see subsection 3.4.6). The definitions needed for user processes are 

stored in the ‘sys/streamctl.h’  header, which is included as appendix A.3. Three stream-

specific calls are supported to control the stream: STREAMCTL_OPEN to open a stream, 

STREAMCTL_CLOSE to close a stream, and STREAMCTL_SEEK to seek within a stream. 

 

The seek operation is currently simply equivalent to closing and then reopening the stream in 

terms of startup and closedown latencies. The only advantage of the seek operation is that it 

avoids a race condition during the independent close and open calls, where a reopening stream 

is denied because another stream has been admitted in its place in the meantime. 

 

6.3.3. Opening streams 

 

The STREAMCTL_OPEN call opens a new stream for the file descriptor it operates on, with a 

specified bytes-per-second rate. The stream open request also includes a position, so that 

streams can start at arbitrary locations within the file without having to call STREAMCTL_SEEK 

immediately after. However, it should be mentioned that VFS maintains file descriptor 

positions and MMFS has no knowledge about or control over those, while VFS does not look 

at the stream requests, so the user process has to perform an explicit lseek() call on the file 

descriptor as well. This cannot be avoided without making very specific modifications to the 

VFS/FS protocol. 

 

When processing a STREALCTL_OPEN command, MMFS will first send an admission request 

(DEV_MM_ADD) to the driver, with the standard MMFS block size and the stream rate as 

specified by the user process. If the admission request is denied, the user process is notified 

immediately, and no stream is opened.  If successful, a new stream object is created for this 

process, and MMFS immediately requests as many blocks from the driver as necessary to 

support the stream’s startup requirements (see subsection 5.1.9). MMFS sends the actual reply 
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to the stream open request of the user process once the work-ahead time has passed, or once 

the replies to all startup block requests have come in, whichever happens sooner. 

 

6.3.4. Closing streams 

 

The STREAMCTL_CLOSE call closes a stream opened previously by that process. MMFS is not 

informed when a process closes a file descriptor, so each process that uses a multimedia 

stream has to make this call explicitly as well. 

 

If the stream has run to the end of the associated file, then no block requests will be active for 

this stream any more. All MMFS has to do before the stream is closed, is to send a stream 

delete request (DEV_MM_DEL) to the driver. If MMFS is still actively retrieving blocks for the 

stream when the STREAMCTL_CLOSE request arrives, the situation is more complicated. See 

the discussion in subsection 5.1.11. All outstanding DEV_MM_READ requests for this stream 

will either have to be fulfillled or cancelled before the stream can be deleted. 

 

A complicating factor is the fact that buffers can be shared between streams. Simply 

cancelling all outstanding requests is not an option. There may be one or more other streams 

that are also interested in the same block. After cancellation, these streams may not have 

sufficient time available to re-request the block with a slightly later deadline (as per the first 

point of the FS/driver contract). Such requests must therefore not be cancelled. On the other 

hand, requests with deadlines further ahead must be cancelled, or MMFS would have to keep 

the closing stream around until all its deep prefetching requests have been fulfilled. 

 

Based on this, the following procedure is followed. For all buffers in the closing stream’s 

window that are owned by the closing stream, MMFS checks which stream should own the 

buffer next. If the buffer was filled already (i.e., in prefetched state), then the buffer is 

reassigned to the new owner with the next earliest deadline, or to the cache if no new owner 

could be found (buffer state transition 6). 

 

If the buffer was not filled, it is in the requested state, and a DEV_MM_READ request for it is 

pending at the driver. The buffer is then set to the cancelling state (transition 7). Buffers in 

cancelling state still keep the closing stream as their owner. However, all other streams are 

checked, to see if any other stream is interested in this buffer. 
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If another stream is found that is interested in the buffer, and that stream’s deadline for the 

block is nearer to the current time than the work-ahead time, no DEV_MM_CANCEL request is 

sent out to the driver. Eventually, a DEV_MM_READ reply will eventually come in from the 

driver. 

 

In the other case, that is, no interested stream was found or the stream’s deadline is further 

ahead than the work-ahead time, a DEV_MM_CANCEL request is sent. Eventually, either a 

successful-cancellation reply or a request acknowledgement comes in, depending on whether 

cancellation was still possible. 

 

A buffer can then leave the cancelling state one of in the following ways: 

 

- A successful cancellation reply from the driver comes in. The next best owner is 

sought for the buffer (similar to the procedure outlined in subsection 6.1.6). If a new 

owner is found at all, the buffer’s owner and deadline are updated, and since the buffer 

was not filled yet, it is re-requested with the next earliest deadline (transition 8). 

Cancellation requests are processed nearly instantly, so the new deadline is guaranteed 

to be further ahead than the work-ahead time (minus up to half the epsilon part of this 

value, but that is no problem). The new request is therefore still feasible. If no new 

owner could be found, the buffer is added to the list of free buffers (transition 9). 

- A data retrieval acknowledgement comes in. This implies that either no cancellation 

request was sent, or the cancellation failed. If there is a next best owner, the buffer is 

assigned to this new owner as above. Since the buffer is filled, no driver request has to 

be issued in this case (transition 10). If no new owner was found, the buffer is added to 

the cache (transition 11). 

 

Each closing stream keeps a counter of owned buffers that are still in cancelling state. When 

this counter reaches zero, the stream has completed getting rid of its buffers, and the 

DEV_MM_DEL stream-delete request is sent to the driver. When the reply to that request comes 

in, the stream is actually deleted. All requests that are not cancelled are guaranteed to arrive 

within the work-ahead time, so waiting for them to come in can also never take longer than 

the work-ahead time either. Closing a stream may therefore take up to the work-ahead time in 
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the worst case. The process making the STREAMCTL_CLOSE call is always replied to 

immediately, so this is invisible to the application. This is not the case for STREAMCTL_SEEK. 

 

6.3.5. The stream object 

 

Based on the previous sections and subsections, we can now define the actual stream object as 

used in MMFS. Every stream object is in one of the following six states: 

 

- Free. The stream object is unused. 

- Adding. The stream object has just been created for a user process. A DEV_MM_ADD 

admission request has been sent to the driver, and MMFS is waiting for the reply. The 

associated user process is blocked in the STREAMCTL_OPEN queryfs request. 

- Buffer ing. The admitted stream is in its startup phase. It has requested its initial blocks, 

and is waiting for those blocks to come in or for the work-ahead time to pass, whichever 

happens first. The user process is blocked in the STREAMCTL_OPEN or STREAMCTL_SEEK 

queryfs request. 

- Active. The stream is active. New blocks are requested from the driver periodically, and 

the user process can read from the stream. A REQ_READ request may be pending. 

- Cancelling. The stream is waiting for all its blocks to be cancelled, either before buffering 

(seek) or deleting (close). The user process may be blocked in the STREAMCTL_SEEK 

queryfs request. 

- Deleting. MMFS has sent a DEV_MM_DEL request to the driver, and is waiting for the 

reply before the stream is returned to the free state. No user process is associated with this 

stream during this time. 

 

Figure 6.8 shows the state transitions as caused by user requests. 

 

Table 6.3 lists all fields of the ‘struct stream’ structure. 

 

Figure 6.8: stream state transitions 
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Field Descr iption 

int s_state; One of the states free, adding, buffering, active, cancelling, deleting. 

endpoint_t s_endpt; Endpoint of the user process that owns this stream. 

int s_node; Node number of the file that this stream operates on. 

bpos_t s_tail; Block position number of the first block of the window. 

bpos_t s_split; Block position number of the first non-filled block in the window. 

bpos_t s_head; Block position number of the first block after the window. 

int s_ncancel; Number of cancelled buffers owned by this stream. 

clock_t s_wat; The ‘work-ahead time’  value for this stream, from the driver. 

clock_t s_ticks; The ‘ ticks per block’  value for this stream, from the driver. 

clock_t s_basetime; The ‘base time’  value: the deadline of the tail block. 

clock_t s_nexttime; The ‘next request time’  value: when to advance the window head next. 

int s_req; Request pending from the user process: none, open, read, seek, close. 

int s_id; VFS request ID of the pending request, if any. Included in the reply. 

struct readreq s_rr; If pending request is read, state of suspended read request. 

 

 

6.3.6. Recovery from driver crashes 

 

A last issue in MMFS is recovery from driver crashes, that is, handling of REQ_NEWDRIVER 

requests from VFS. As mentioned before, the modularity of MINIX allows file servers to 

fully recover from driver crashes, completely hiding such events from user processes. Once a 

new driver has been started to operate in the place of the old and crashed driver, VFS notifies 

the FS about this event. The FS can then resend any outstanding requests to the new driver, 

and continue as if nothing happened. 

 

Recovery from driver crashes is not entirely compatible with MMFS’ design. The first thing 

to note is that if such a crash takes place, MMFS is likely to miss most if not all of its 

deadlines. Many of the requests that it will have sent off to the crashed driver, will not be 

feasible to be resent any more. In order to correct this, all streams’  deadlines have to be 

moved back in this case, and the deadlines of the block buffers they own have to be readjusted 

accordingly. 

 

That is not all. The new driver does not actually know about the streams that the crashed 

driver admitted. When MMFS receives a REQ_NEWDRIVER message from VFS, it first has to 

Table 6.3: the stream structure 
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resend all admission control requests to the driver –  one per stream – and only then resend all 

block requests with their new deadlines. 

 

There is a potential race condition here. If any MMFS instance was in the process of trying to 

accept a new stream while the old driver crashed, the new driver may receive various 

admission control requests in a different order. The driver may then accept a different set of 

streams. This could lead to rejection of one of the streams that were already active in MMFS. 

As multiple MMFS instances may be present, and as the driver is unaware of FS processes 

until it receives a message from them, this problem can not be solved in a way that is hidden 

from the stream reader user process. Therefore, no effort has been made to deal with this 

situation. MMFS simply assumes that resent admission requests are always granted. 

 

 

6.4. Evaluation 

 

Of all the code resulting from this project, MMFS has by far the most computationally 

expensive algorithms, warranting a note about this. Although excessive algorithmic 

complexity has been avoided wherever possible, MMFS has not been particularly optimized 

in this regard. 

 

In particular, the worst-case complexity of buffer stealing by multiple streams in a single 

clock tick is O(S² *  B), where S is the number of active streams and B is the total number of 

buffers. This is only a theoretical upper bound, and is rarely ever even approached in practice. 

Our tests indicate that the practical computational overhead of the current implementation is 

negligible even if the number of streams is at its maximum. We therefore consider this to be 

acceptable. 
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Chapter  7. CPU scheduling 

 

The last point of interest on the path from the disk to the application is the aspect of CPU 

scheduling. Even with guarantees for retrieval at the disk level, a multimedia process could 

still miss its deadlines if there is no protection at the CPU level. Such misses could be caused 

by CPU-intensive nonmultimedia processes, but also by other multimedia processes that use 

up too much CPU time. 

 

If MINIX 3 were able to provide realtime guarantees, that would solve this side of the 

problem altogether. However, turning MINIX 3 into a realtime operating system would be a 

complex and involved process, far beyond the boundaries of this project. In this chapter, we 

investigate what else can be done to limit multimedia deadline misses resulting from other 

CPU workloads. 

 

Section 7.1 discusses a fundamental limitation with respect to scheduling system processes. 

Section 7.2 looks at the demands and algorithms for scheduling periodic user processes, and 

comes up with a matching design. Section 7.3 describes the implementation of the resulting 

scheduling extension. 

 
 
 
7.1. Scheduling of system processes 

 
In a microkernel operating system like MINIX, nearly all system work on behalf of a user 

process is performed by system processes, that is, other processes in user space. For accurate 

scheduling, the execution time of system processes would have to be included in the 

execution time of user processes. This requires that the kernel can establish which system 

process is working on the behalf of which user process at any time. 

 

At least for disk I/O, this used to be possible, because of the strict chain of blocking calls as 

described in section 1.2. However, our VFS changes have removed the strict chaining. The 

result is a fundamental limitation: during the periodic execution of a multimedia user process, 

we can not schedule only the system processes that are working for that user process. Any 

solution for this would require significant changes that affect the kernel and all system 

processes. 
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With no means to link system process execution to application requirements on the CPU 

scheduling level, we have to fall back on the MINIX priority system for system processes. 

 

One observation is that servers like PM and VFS (with our modifications) generally spend 

very little time on the calls they are processing. In the case of multimedia processes, we have 

already removed the obstacles that could cause a multimedia process to wait for any other 

process. This limits priority inversion to the point where we do not have to worry about that 

aspect at all. 

 

We could therefore assign relatively high priorities to all the servers involved in supporting 

multimedia streams (VFS, MMFS, the disk driver, as well as PM), and assign relative lower 

priorities to all other servers. This is the best that can be achieved for system processes in this 

regard. 

 

 

7.2. Design of a per iodic scheduler  for  user  processes 

 

What remains is scheduling of the user processes themselves. To match our reservation-based 

approach to disk retrieval, we decided to add a reservation-based scheduler to the system. 

Subsection 7.2.1 argues that this is best done on top of the standard MINIX scheduler. 

Subsection 7.2.2 lists several demands for periodic multimedia processes, which result in a 

scheduling API described in subsection 7.2.3. Subsection 7.2.4 considers which scheduling 

algorithm to use. Subsection 7.2.5 discusses the implications of the limitation described in the 

last section, and describes the resulting scheduling system. 

 

7.2.1. The MINIX priority-based scheduler 

 

The standard MINIX scheduler already performs well for interactive and CPU-intensive 

processes. It assigns a maximum priority and running time (quantum) to each process, and 

schedules the runnable process with the highest priority for the duration of its quantum. If the 

process uses up the full quantum, its priority is lowered. At regular intervals, the priority and 

quantum of all processes is increased if they are below their maximum. 
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The priority of CPU-intensive processes will therefore end up being lower than the priority of 

interactive processes with short running times, but neither will ever starve. The only 

difference between privileged system processes and normal user processes in this respect is 

that the system processes have a higher maximum priority. 

 

There is therefore no point in reinventing a system that will achieve these properties. Instead, 

we can base our scheduling extension on the standard MINIX priorities, and let the MINIX 

scheduler do the rest. In the absence of multimedia processes, MINIX will then behave 

exactly as before. 

 

7.2.2. User process requirements 

 

We assume that the a multimedia process does some computational work on the data it fetches 

from disk. For local video serving, this would typically involve decoding and displaying of 

each frame. For video-on-demand, it could involve (re)encoding of the stream and/or 

preparing the data to be sent over the network. 

 

The ability to specify a period, and an execution time within this period, fulfills the basic 

requirements of such processes [33]. Processes then need at least two API calls: one to reserve 

a period and an execution time, and one to give up the remaining execution time for the 

current period. This allows the process to make a deterministic reservation, and yield to other 

processes whenever it does not need all of its reserved time in a period. 

 

When considering disk retrieval, the completely periodic CPU scheduling behavior may be 

too strict in some cases. In particular, a process’s read() call could be delayed when retrieving 

the next frame from MMFS. This may occur when the disk is somehow overloaded, but also 

when smoothing of VBR streams fails (see subsection 5.1.10). The stream may never be able 

to “catch up”  at the disk level once it has missed a deadline, and all subsequent read() calls 

will be delayed as well. The process will then keep having its CPU periods desynchronized 

from disk access from that moment on. 

 

To make up for this, we allow for a limited degree of control from the application into the 

scheduler. The periodic process can specify a ‘drift’  time value each time it defers execution 

to the next period. This allows it to move back its period by that time from that moment on. 
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7.2.3. The user process API 

 

We can now define the following two process API calls for the CPU scheduler: 

 

psreserve(period, exectime) 

 psnext(drift) 

 

The first call allows a process to reserve execution time of ‘exectime’  microseconds every 

‘period’  microseconds. The process can specify different values at a later time in order to 

change its reservation, and it can “unreserve”  itself by setting the period to zero. The values 

are rounded up to clock tick values. Admission control is used to prevent CPU overutilization 

and starvation of aperiodic processes. 

 

7.2.4. Scheduling algorithms 

 

An actual scheduling algorithm takes care of translating those reservations into appropriate 

process execution, making sure that each periodic process actually gets the desired execution 

time within each period. We consider two scheduling algorithms: Rate Monotonic (RM) and 

(again) Earliest Deadline First (EDF). 

 

The RM scheduler is known for the fact that it can be implemented by statically mapping 

process periods to UNIX priorities [15]. This simplifies the implementation. In our case, use 

of RM this way has a number of practical disadvantages: 

 

- Very few priorities are actually available in MINIX. With few priorities, many 

different periods would have to be mapped to the same three or four priorities. 

Increasing the number of priorities has the effect of slowing down all scheduling 

decisions. 

- Other modifications to the MINIX scheduler would be required to provide isolation 

from periodic processes that overrun their specified deadlines. One of the original 

assumptions for the RM algorithm was that such a situation would not occur at all 

[15]. 
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- RM has a known upper limit on what it can schedule. With many processes, the 

maximum utilization supported by RM approaches ln(2) � 0.69. In contrast, EDF 

supports a maximum system utilization of 1.0, meaning that if deadlines can be met at 

all, EDF will meet them. 

 

Stepping away from the static mapping to MINIX priorities, EDF is then the more attractive 

option. 

 

7.2.5. Scheduling in practice 

 

A process that makes a lot of calls to system processes must not be able to effectively run for 

much longer than it is entitled to. The execution time given to each periodic process must 

therefore include the time spent by system processes. The actual execution time that the user 

process gets is then equal to the specified execution time minus the time spent by system 

processes within that execution time. 

 

To achieve this, our scheduler extension can assign a high MINIX priority to each periodic 

user process for the duration of its execution time. At any time, the “ right”  periodic process (if 

any) must be the only process with this high priority. In the case of EDF scheduling, the right 

process is the process with the earliest deadline (i.e., period end) that still has execution time 

left in its current period. 

 

As long as the high priority is higher than other user processes, the process always gets to run 

whenever it is runnable. As long as the priority is lower than (the relevant) system processes, 

these system processes can still run during the user process’s execution time. 

  

If it the process completes before using up all its execution time, it can give up the remaining 

time with the psnext() API call. In that case, it is completely stopped for the rest of this 

period. If, on the other hand, it exceeds its execution time, its priority is changed from high to 

very low. This allows it to continue in the background until it gets the next batch of high-

priority execution time in its next period. That does mean it is now likely to overrun its 

deadline, because it may not get to run at all while having this low priority. 
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Figure 7.1 illustrates the execution of a periodic process this way. It gets a high priority for 

the duration of its execution time somewhere in its period, at the moment that it has the lowest 

deadline and still some execution time left. In the figure, this execution time is not interrupted 

by other processes that end up with the lowest deadline. When it calls psnext(), it is stopped 

until it gets the high priority in the next period. In the figure, the process overruns its deadline 

in the third period. It is then given a low priority. Only in the absence of other processes can it 

continue to run. The gray blocks of the process include all time spent by system processes. 

 

Although this is the best that we can achieve without a much more elaborate system in place, 

it is far from optimal. Background activity of system processes is accounted to whatever 

periodic process is running at the time. The effective execution time of that process is then 

reduced by that same amount. As a result, it may overrun its deadline if it has specified an 

execution time that matches its own execution time very closely. This entire approach is only 

justifiable because we are concerned with soft deadlines. The same approach would be 

unacceptable for realtime systems. 

 

 

7.3. Implementation 

 

Based on all the considerations of the previous section, this section presents the actual 

implementation of the resulting EDF-based periodic scheduler extension. Subsection 7.3.1 

explains why the extension can be implemented in a user-space system process. Subsection 

7.3.2 describes the procedures taken by the implementation. 

 

7.3.1.  A scheduling extension in user space 

 

Figure 7.1: example execution of a periodic process 
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The resulting algorithm only maintains a bit of per-process state, and is driven by only the two 

given API calls and a number of timers as input. As output, it only starts and stops processes 

and updates their MINIX priorities. It is highly isolated from the priority-based CPU 

scheduler that it builds on. As a result, it can be fully implemented in a user-space system 

process. We can then avoid having to extend the kernel, keeping it as small as it already was. 

 

The only requirement in this respect is that the process implementing the scheduler always 

preempts the process being scheduled if one of the scheduling timers goes off. This is true if 

the priority used for periodic processes is lower than the priority of the system server 

implementing the scheduler. The overhead of message passing and context switches are 

simply negligible in comparison to the inaccuracies resulting from the system process 

accounting and clock tick alignment. 

 

We have implemented this EDF-based periodic scheduling system in the Process Manager 

daemon, and called it “PSCHED”. The header file defining the two user process API calls is 

included as appendix A.4. 

 

 

7.3.2. Actual implementation 

 

The scheduler extension schedules the process with the earliest deadline. It does this by giving 

the process a high priority for the duration of execution time within its period. The actual 

execution time may be shortened if the process calls psnext(), or split up if a new process 

appears with an earlier deadline during this time. Remember that a process’s deadline is equal 

to the end of its current period, which is also the start of its next period. 

 

The implementation uses two heaps. One heap is used for processes that have not yet used up 

(or waived) their execution time within their current period. This “deadline heap”  is sorted on 

deadlines. If the heap is not empty, then the process with the earliest deadline in this heap is 

the one with the high priority. The other heap is used for processes that have no execution 

time left in their current period. This “period heap”  is sorted on period ends (i.e., in fact the 

same deadlines), which indicate when the process enters the new period. All periodic 

processes are in exactly one of the two heaps at any given time. The heaps are used in 

different ways; they cannot be merged. 
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The implementation uses three timers. The first timer is set when the next periodic process is 

scheduled by the extension, that is, when the process is given a high priority (transition 1 in 

figure 7.2). It is set to go off after the duration of the process’s (remaining) execution time in 

this period. As indicated, three events can cause the process to stop being scheduled with high 

priority: 

- The timer triggers. The process has used up its execution time in this period. It is 

given a very low priority, removed from the deadline heap, and added to the period 

heap (transition 2). 

- The process calls psnext(). The process is stopped altogether, removed from the 

deadline heap, and added to the period heap (transition 3). The timer is cancelled. 

- Another process ends up having the earliest deadline. The current process is stopped, 

and its remaining execution time is saved. It remains on the deadline heap (transition 

4). The same procedure as above is followed to start the new process with the earliest 

deadline, and that also involves restarting the timer. 

 

The second timer is set to the lowest period end of the period heap. When it triggers, it 

refreshes the deadline of the processes for which the new period has started. Those processes 

are removed from the period heap and added to the deadline heap (transition 5). If the 

deadline heap now has a new head, the new process with the earliest deadline is scheduled as 

above. 

 

The third timer is needed to deal with one practical aspect of the MINIX scheduler. As 

mentioned in subsection 7.2.1, MINIX’  scheduler penalizes long-running processes by 

decreasing their priority over time. Periodic processes that have specified long execution 

times are likely to be running for a long time consecutively. They may therefore end up with a 

Figure 7.2: transitions of periodic processes 
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low priority, even though they started with a high priority. To prevent such processes from 

eventually reaching (and even crossing) the priority of normal-priority user processes, the 

third timer is used to “ refresh”  the high priority of the EDF-scheduled process regularly. 

 

When a process calls psreserve() with a nonzero period and execution time, an admission 

check is performed. This check makes sure that the total resulting CPU utilization will not 

exceed a certain percentage of full CPU utilization. This percentage is a constant, and 

typically less than 100% to avoid starvation of aperiodic user processes. If the check is 

passed, the process is added to (or updated in) the EDF system. 

 

When a periodic process calls psreserve() with a zero period, it is removed from the EDF 

system and returns to being an aperiodic process. Exiting processes are removed from the 

EDF system as well. 

 

The implementation in PM makes use of the sys_nice() kernel call to assign high and low 

priorities to process, and to stop them (using the special PRIO_STOP nice value). For the timers, 

PM’s own timer multiplexing system is used, which internally uses the sys_alarm() kernel 

call. The currently EDF-scheduled process is set to run at a priority in between normal 

processes and the relevant system processes (nice value -5 in PM, priority 5 in the kernel). 

The low priority used is the lowest of the system (nice value 20 in PM, prioity 14 in the 

kernel). 

 

Table 7.1 shows the fields added to the ‘struct mproc’  per-process structure in PM. 

 

Field Descr iption 

clock_t mp_period; The period as specified by the process, in clock ticks. 

clock_t mp_exectime; The execution time as specified by the process, in clock ticks. 

clock_t mp_exec_left; The number of clock ticks of execution time left in the current period. 

The process is on the deadline heap iff this value is nonzero. 

clock_t mp_deadline; The deadline, also known as the period end. 

int mp_heap_pos; The position within the current heap, for fast deletion. 

 

 

 

Table 7.1: fields added to the ‘mproc’  structure 



– 133 –
 

Chapter  8. Test results 

 

In this chapter, we describe our efforts to test the results of our work. Section 8.1 looks briefly 

at a scheduling trace generation extension, which is used later to illustrate several tests. 

Section 8.2 determines the conditions for all the performance tests, using raw disk transfer 

tests to determine the gain obtained from using certain block sizes and from using SCAN 

sorting. In section 8.3, we compare MMFS to MFS in basic disk retrieval tests. Section 8.4 

discusses several points MMFS properties. Section 8.5 looks into the organ pipe approach 

mentioned in chapter 4. Section 8.6 adds nonmultimedia I/O processes to the basic disk 

retrieval tests. In section 8.7, our new EDF scheduler is tested. Finally, section 8.8 briefly 

considers the network. 

 

 

8.1. Scheduling traces, and a basic read() call 

 

Quite early in our testing efforts, we were struck by the inability to visualize what was going 

on in practice. Although several performance analysis tools are present in MINIX 3, these 

mainly operate on a per-process basis. That makes them unsuitable for showing an important 

aspect the system behavior: scheduling of processes. This is relevant not only for the CPU 

scheduling part of this project, but also for general insight into the relative performance of, 

and interaction between, individual processes. 

 

To overcome this, we implemented a simple scheduling trace extension to MINIX, which we 

called “schedtrace”. A user process can temporarily enable the scheduling tracer by passing a 

buffer to the kernel (via a PM call). During this time, the kernel generates an entry in a buffer 

in kernel space whenever a context switch takes place. Once the relatively small buffer in the 

kernel is full, it is copied out into the right position of the (typically much larger) buffer of the 

user process. 

 

The tracing stops whenever the user process explicitly stops it with another call, or when the 

user buffer is completely filled up. The resulting buffer then contains the scheduling trace, 

and the user process can write it to a file for example. The actual entries in the buffer that the 
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kernel generates upon each context switch, are eight bytes each. They contain the following 

information: 

- The relative time spent between the current context switch and the last one. 

- The first two letters of the process that was active during that time. 

- The process slot number of that process. 

 

The time value is measured by taking the difference between system clock values obtained 

using the i386 ‘ rdtsc’  read-timestamp-counter instruction. This currently makes our 

implementation i386-specific. The timestamp values obtained are CPU speed dependent, and 

therefore mainly useful as relative values. Of course, some overhead is incurred in obtaining 

the timestamp, subtracting the previous value from it, and storing the result along with the 

other information in an entry. The overhead we measured is small though, and we are merely 

interested in rough visualization of the results, so this tradeoff is acceptable. 

 

An external script takes care of converting the raw trace into a graph. It generates a horizontal 

bar for each two-letter process name. Drawing of the full names rather than the two letters 

required manual configuration. The complete trace is mapped to a predefined number of 

pixels, so the widths of the bars in each graph are not related to their heights. Per pixel, the 

height of each spike in a process bar indicates the relative time spent on that process in the 

time represented by the pixel. Red indicates that the process itself was running, yellow  

indicates that the kernel or a kernel task was running on the process’s behalf (i.e. during 

message passing and while the SYSTASK task is running). Hues of orange indicate various 

degrees of mixture of the two. The privileged ‘hlt’  instruction of the idle process has to be 

called from kernel context as well, so the idle process always shows up as yellow. 

 

Of course, the generated graphs still require quite some knowledge of the active processes in 

order to be interpreted successfully, in particular because no information about their states is 

included. Nevertheless, with this new tool we could visualize a single read() call for 128 KB 

of data from a file on disk. Figure 8.1 shows the path taken from the user process (‘ test’ ) to 

VFS to MFS to the driver (‘at_wini’ ), after which by far most of the total time is spent in the 

idle process, while the hard disk is fulfilling the retrieval request. After a kernel interrupt, the 

driver returns a result code to MFS. It was MFS’s buffer space that was used to store the 

actual data in, and MFS therefore has to spend some time copying the result from its own 

buffer to the user process, using a SYSTASK task call. After that, it sends a result code to 
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VFS, and starts a read-ahead operation. The ‘at_wini’  driver has a higher priority than VFS by 

default, so it gets to run first and initiates the next transfer for the read-ahead. Once that is 

done, VFS runs and replies to the user process. 

 

Note that the ‘other’  category in the figure includes all other processes, and the spike 

occurring during the disk retrieval is the occurrence of a clock tick. In particular, the 

“ random” random number generation system process runs during every clock tick. 

 

During the time spent in the idle process, all of the other processes are waiting for a result. In 

particular VFS is performing almost no work at all in the whole action, but was originally still 

blocked from accepting any other requests from other processes during this time. It was this 

that made us consider unblocking VFS in the first place. 

 

 

8.2. Testing conditions 

 

In this section, we briefly discuss our test system (subsection 8.2.1), perform disk retrieval 

tests for a number of scenarios to study the effect of different block sizes and SCAN sorting 

(subsection 8.2.2), and determine configuration parameters for the next tests based on these 

results (subsection 8.2.3). 

 

8.2.1. The test system 

 

Most of the development for this project has taken place on a MINIX installation running in 

VMware. To eliminate all inaccuracies resulting from the use of such a virtual environment, 

      Figure 8.1: scheduling trace of a single read() call 
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we have conducted the actual tests on a “ real”  machine. The specifications of this machine 

represent the kind of machine that one would currently buy cheaply in order to store it in a 

closet and let it perform background work: 

 

 Processor:   Pentium III, 866MHz 

 Working memory: 256 MB SDRAM 

 Hard disk:  IBM Fireball Plus LM, 7200 RPM,  

12,6 GB (13578485760 bytes) 

 Network card:  Realtek RTL8139 

 

8.2.2. SCAN on modern disks 

 

One of the questions that arose during this project was whether latency minimizing disk 

scheduling algorithms like SCAN are still relevant in current times, given the tradeoff 

between disk scheduling optimizations and stream startup times. One of our first tests was 

therefore to test several disk usage scenarios and evaluate the difference between use of 

round-robin disk scheduling, and SCAN. 

 

We decided to run tests for retrieval of 15 megabytes (15728640 bytes) worth of data at once, 

from all over the test hard disk, using round-robin (RR) and SCAN sorting (SC), with block 

sizes varying between 32 and 512 kilobytes. The resulting retrieval durations for each 15 

megabyte batch are in 60HZ clock ticks, and we also show the time reduction from use of 

SCAN over use of RR as a percentage. 

 

We used the following tests: 

- Test 1 retrieves a set of blocks that is spread out completely evenly over the disk. The 

block order is randomized in the round-robin case. Any benefits obtained from using 

SCAN can be attributed mostly to reduction of disk arm movement. 

- Test 2 retrieves a completely random set of blocks. 

- Test 3 assumes that the disk contains 35 files of 330 megabytes each. Each request is 

for a random block within a file that is chosen using on a Zipf-based probability 

distribution. Note that this test does not span the entire disk. 
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- Test 4 retrieves a set of contiguous blocks. In the case of SCAN the retrieval is 

completely sequential. In the case of round-robin, the block order is randomized. Any 

difference in speed can be attributed mostly to reduction of rotational latencies. 

 

All tests have been repeated twice for each of the two disk scheduling types with the same 

randomization. This was then repeated several times with different randomizations, to 

eliminate anomalies due to bad randomization as well as disk-level caching. The average 

values are shown in table 8.1. 

 

 32 KB – 480x 64 KB – 240x 128 KB – 120x 256 KB – 60x 512 KB – 30x 

 RR SC Red. RR SC Red. RR SC Red. RR SC Red. RR SC Red. 

Test 1 356 246 31% 195 145 26% 119 96 19% 76 63 17% 57 53 7% 

Test 2 358 222 38% 196 134 32% 117 89 24% 76 64 16% 57 51 10% 

Test 3 334 213 36% 186 129 31% 110 84 24% 75 60 20% 53 50 6% 

Test 4 199 39 80% 120 38 68% 77 36 53% 55 36 35% 47 36 23% 

 

Test 1 and 4 show that reductions in respectively mostly disk arm movement and mostly 

rotational latency from the use of SCAN are both significant. The SCAN results of test 4 

yielded nearly the same times for all block sizes. This shows that for purely sequential access, 

the block size of individual requests is relatively unimportant. 

 

The same does not hold for the other three tests: the SCAN retrieval for each block size takes 

longer than the round robin retrieval for blocks twice that size. This means that use of a large 

block sizes is an overall more important factor, and the choice of block sizes only depends on 

the choice for granularity of stream rates. As stated before, all stream rates have to be rounded 

up to a multiple of the block size. That means that with larger block sizes, fewer streams can 

be admitted. 

 

Nevertheless, the benefits from use of SCAN are substantial for in particular small block 

sizes. In test 3, which mimics the real world scenario that we had in mind most closely, the 

time reduction obtained from SCAN is between 35 and 20 percent for block sizes ranging 

from 32 to 256 KB. With a block size 512 KB, the gain from using SCAN was reduced to less 

than ten percent, indicating that for block sizes of 512 KB and up, application of SCAN is not 

Table 8.1: duration of round-robin and SCAN retrieval 
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worth the increased maximum startup time. Even in this case, though, underutilization of the 

disk may cause prefetching of several sequential blocks at once. That can still result in even 

further reduction of round times, as shown in test 4. 

 

8.2.3. Configuration parameters 

 

With these results in mind, we decide to use a 256 KB block size for our tests. We choose 

driver round times of one second (60 clock ticks). The worst-case scenario of SCAN retrieval 

then amounts to 56 blocks per round (60² / 64, the worst case in table 8.1). We reserve one 

block for nonmultimedia retrieval, so we can deterministically admit 55 streams with a rate of 

256 KB per second. Without SCAN, this would be about eight fewer streams with the same 

rate. 

 

We dedicate four block buffers to each stream at minimum. Four times 256 KB equals a 

megabyte, so the MMFS process uses a total of 55 megabytes. This is sufficient to support all 

streams, and allows flexibility in user process read granularity as discussed in subsection 

5.1.8. Compared to the total size of the working memory in our test machine, this amount is 

quite acceptable. The deep prefetching approach makes sure that all memory is actually used 

even if fewer streams are present. 

 

 

8.3. Basic per formance compar ison 

 

In this setion, we compare MMFS against the “old”  situation, that is, against the MFS MINIX 

File Server. Subsection 8.3.1 describes how we perform the tests. Subsection 8.3.2 performs 

tests where stream readers read large blocks at a low rate. Subsection 8.3.3 performs tests 

where stream readers read small frames at a high rate. 

 

8.3.1. Simulation and setup 

 

To simulate a high number of stream readers, we have written a simulation utility that spawns 

a number of child processes. Each child executes a basic “ read(); sleep();”  loop that mimics 

the data retrieval behavior of any stream reader. It reads a predetermined amount of data in 

total, and measures the time that each read() call takes, as well as the total time taken by the 
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process. It sleeps in between each two read() calls by a predetermined time. For sub-second 

delays, select() is used. 

 

We continue with the same file setup as used in the third test case of the SCAN test, creating a 

dedicated partition for 35 files of 330 MB each. Every reader starts on one of the 35 files, but 

since we are interested in disk retrieval performance, the simulation utility evenly uses all 

files and spaces out the positions within each file between the readers. This avoids disk 

underutilization resulting from (otherwise highly desirable) buffer multi-use and cache hits in 

MMFS. 

 

For fairness, the tests have been performed with two versions of MFS. One uses the default 5 

MB cache (1200 blocks of 4KB), and one has been given a cache that is as large as MMFS’  

cache: 55 MB (14080 blocks). A similar partition was created for MFS as for MMFS, at the 

same disk position. During the tests, the MFS partition was always mounted read-only. 

 

All the tests have been performed with the unblocked version of VFS. At least in the first 

tests, MFS gets no advantage or disadvantage from that. There is always at most one 

outstanding request from VFS to MFS, so if read requests from the simulation utility are 

queued, they are now queued within VFS rather than between VFS and MFS. 

 

We assume that mere data retrievel is not the only thing that the user process will be doing. 

As such, we define a user process request for data retrieval as “ lost”  if the retrieval takes at 

least 50% of the period of the stream reader. 

 

A difficult point is whether to let the stream reader compensate for the time it takes to fulfill 

read() requests. On one hand, if the read() call is delayed because the FS has somehow fallen 

behind, then the FS will not be able to “catch up”  if the requested disk bandwidth is already at 

or over the maximum (causing the delays in the first place). One lost request is then likely to 

be followed by many more subsequent losses. On the other hand, compensation for read 

jitter/overhead may cause the stream to drop below the requested stream rate. There will 

always be some overhead. 

 

As we cannot distinguish between the two cases (we could adapt MMFS to support a limited 

form of feedback, but not MFS), the stream reader simulator only delays for the read() time if 
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the read request is considered to be lost. This keeps the actual stream rate (as perceived by the 

hypothetical end user) equal to the requested stream rate whenever possible, but gives better 

statistics about the actual number of lost requests. 

 

For the purpose of this test, the driver’s admission control has been turned off after 55 

streams, to see the resulting behavior after the deterministic limit has been reached. The cache 

sizes of MMFS and the large-cache MFS are then increased to 80 MB to allow up to 80 

streams. In the following graphs, a black vertical bar at 55 streams indicates where admission 

control originally stopped more streams from being admitted. 

 

To allow this many stream readers to be active, we had to change  two MINIX constants: 

- ‘_NR_PROCS’  in ‘minix/sys_config.h’  (from 100 to 150), to allow for at least 80 

processes alongside the MINIX system and shell processes. 

- ‘OPEN_MAX’ in ‘ limits.h’  (from 30 to 100), to allow the parent stream reader 

simulator to have pipes open to all its stream reader children to let them report back 

the test results. 

The number of threads in VFS was set to equal the maximum number of processes in total. 

 

8.3.2. Large-block performance comparison 

 

In the first test, the stream reader simulator is set to read blocks with the same size as MMFS 

blocks: 256 KB each. A rate of 256 KB/sec is used by the stream readers, so that each stream 

reader reads one 256KB block per second, exactly equal to the speed at which MMFS 

requests blocks from the driver for each stream. This simulates a stream reader that does its 

own internal buffering on top of MMFS. The next subsection will present a more realistic 

scenario in this respect. 

 

We deliberately match the exact rate of MMFS’  block retrieval from disk in this test. Using 

stream rates not aligned to the effective request rate only results in fewer streams being 

admitted (see subsection 5.2.4). That is not very interesting from a testing point of view. Also, 

using a multiple of 256 KB/sec for one stream gives the same results as using multiple 

streams at the 256 KB/sec rate. 
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With a period of one second, the time after which read requests are considered “ lost”  is half a 

second (i.e., 30 clock ticks with the standard 60 HZ clock frequency). The number of forked 

stream readers is varied from 5 to 80 in steps of five. The streams are started up 

simultaneously, and all of them run for the time it takes to read 200 times 256 KB. With no 

delays, this takes 200 seconds. All data points in the graphs below are the result of at least 

three runs, so that each data point represents at least ten minutes of testing time. The file 

system is remounted between each two tests to prevent any accidental cache hits. 

 

Graph 8.1 shows the total sum of the stream rates that all streams received combined. Here, 

the actual rate of a stream is represented as the average fraction of 256KB-blocks it was able 

to read per second, that is, the time it took to read all 200 blocks divided by 200. Ideally, this 

value is exactly equal to ‘1’  for each stream, and equal to the number of streams in total. This 

ideal line is shown by the straight line from the lower left to the upper right corner of the 

graph. 

 

Graph 8.2 shows the average loss percentage of each stream. Graph 8.3 shows the average 

response times of read() calls, in 60 HZ clock ticks. 

 

Graph 8.1 

Graph 8.2 
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The cumulative bandwith graph 8.1 clearly shows the upper limit of all three FS servers: 

MMFS follows the ideal line up to 55 streams, after which it settles around 58 streams. The 

MFS with the large cache can support 45 streams, and the MFS with the default cache hits its 

upper limit at 33 streams. 

 

The difference between the MFS instances with different cache sizes can be explained by 

looking at MFS’s prefetching strategy. MFS performs prefetching of consecutive data both 

during and after each read. It rounds up each read request to a minimum of 128 KB, and then 

performs an additional (possibly overlapping) 128KB read-ahead attempt after the read 

request, starting at the reader’s final read position. 

 

In this test, 256 KB blocks are requested at a time by the user processes, so no rounding up 

takes place. On the other hand, an additional 128 KB is requested from disk and cached 

immediately after. This means that half of the next 256 KB request for that file will be 

available in the next read() call. The remaining 128 KB has to be fetched at that moment, after 

which another consecutive 128 KB will be read ahead. Therefore, with an unlimited cache 

size, MFS will read 256 KB from disk as a result of every read() (except the very first one) – 

in two consecutive 128 KB requests rather than one 256 KB request like MMFS does, but test 

4 of subsection 8.2.2 shows that that hardly matters. 

 

However, once the cache blocks used for prefetching are reused before the next read() call can 

take advantage of them, then the next read call will end up retrieving the full 256 KB after all. 

In addition, it will read ahead 128 KB that will similarly end up being unused. Each read() 

call plus read-ahead then requires 384 KB of cache blocks, and the default MFS has 1200 

cache blocks of 4 KB each, so the cache should be when at least 13 test streams are active (~ 

1200 / (384 / 4)). In practice it happens earlier, because MFS also needs a number of blocks 

Graph 8.3 
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for the inode metadata that maps file positions to disk blocks. This explains why the small-

cache MFS performs so badly: it quickly ends up reading streams at 384 KB per second. 

 

The large-cache MFS does not suffer from this. It constantly requests two consecutive pairs of 

128 KB-blocks. Eventually it ends up losing out to MMFS due to the lack of SCAN sorting of 

its requests. The latency of the read() calls already starts going up before that, because each 

read() call is blocking all other read() calls for the duration of the complete 256 KB retrieval 

(in the form of two blocking calls to the driver). The average queuing time of the read() calls 

at VFS increases as more streams are active and their read() requests are not evenly spread out 

within each second. With a blocking VFS, MMFS would have suffered from the same 

problem. 

 

In all cases, the MMFS performance is equal to what could be expected up to the limit of the 

admission controller. MMFS indeed supports 55 streams of 256 KB per second. Each stream 

has data delivered at the requested rate, with absolutely no loss and minimal read() duration, 

as all data requested by the stream readers is available in advance. MMFS can only support 

three or four streams more than the hard, worst-case limit of the driver’s deterministic 

admission controller. After that, the streams start suffering from increased read call duration 

as MMFS cannot prefetch all data in time any more. They experience reduced per-stream 

bandwidth, and eventually a significant retrieval loss as well. 

 

8.3.3. Small-frame performance comparison 

 

Typically, real-world stream readers would read individual frames rather than huge blocks at 

a time. To complement the large-block test, we developed a test that would read relatively 

small frames at a time, varying in size. We mimic the common “ IBBPBBPBB” encoding 

pattern of I/P/B-frames for MPEG streams. We assume that a stream reader itself would be 

reading ahead to process B-frames as necessary. We use the rule-of-thumb average size ratio 

of 4:2:1 of I:P:B frames [5] to determine the read size used for the frames. With this pattern, 

the stream rate of 256 KB per second and a frame rate of 25 frames per second yields B-

frames of 6740 bytes, and P and I frames of two and four times that size. The requested 

stream rate is 262111 bytes per second (6740 *  14/9 *  25), 33 bytes less than 256 KB/second. 

For MMFS, this means that frame reads are not aligned to its 256KB-blocks any more. 
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A stream rate of 25 frames per second is impossible with MINIX’  standard clock frequency of 

60 HZ. We therefore increased the clock frequency setting in MINIX to 1000 HZ, that is, to 

one clock tick per millisecond. Like the other configuration changes, this only required a 

change to a constant in a header file (‘HZ’  in ‘minix/const.h’ ) and recompilation of MINIX. 

No subsequent deterioration in performance was measured, and we have used this clock 

frequency for all the remaining tests. For this test, it means that each stream reader reads one 

I, P or B sized frame from the stream file every 40 milliseconds. The request is now 

considered lost if it takes more than 20 milliseconds. 

 

The resulting graphs 8.4, 8.5 and 8.6 show the stream rate, loss percentage, and average read() 

response time, respectively. The latter is in milliseconds this time. The first thing to note is 

that the small-cache MFS test was not continued beyond 55 streams. At that time, the 

cumulative stream rate had dropped to about 1.8 256 KB-blocks per second, so each test 

would take several hours. 

 

MFS’s general poor performance in this test is not the result of its prefetching strategy. 

Prefetching stops whenever a block is found to be already present in the cache. As long as the 

cache is not overloaded, only 128KB-blocks of data are fetched from the disk at a time. 

 

Graph 8.5 

Graph 8.4 
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Instead, the behavior of our stream reader is responsible. The scenario requires that 25 frames 

per second are retrieved and processed, and MFS simply cannot keep up with the low 

requirement of a maximum of 20 milliseconds per read. This causes the stream reader to 

consider many reads as lost, and delay the next reads. The fact that many reads take longer 

than 20 milliseconds is again because MFS is blocked during the retrieval of 128 KB into the 

cache. This starts being an issue with as little as fifteen streams, and causes the perceived 

stream rate to fall below expectations from that point on. 

 

Despite the loss-induced delays, the large-cache MFS eventually approaches its maximum of 

roughly 28 streams. This is substantially less than the large block test, and fully due to the fact 

that it now retrieves 128 KB of consecutive data at a time from the disk rather than 256 KB. 

The 3:2 retrieval duration ratio between round-robin retrieval of the same data in 128 and 256 

KB pieces shows up in the test in subsection 8.2.2 as well. 

 

The small-cache MFS does not do as well as the large-cache MFS, even with a low number of 

streams. Inode metadata blocks are pushed out of the cache just as often as data blocks, 

forcing MFS to reread them often. This happened in the large-block test as well, but with the 

tighter delay requirements, the resulting latency increase is no longer negligible. A subtle play 

between these delays and (temporary) lower latency for other processes causes the small-

cache MFS to have an loss rate that is – unintuitively – below that of the large-cache MFS for 

low numbers of streams. 

 

The small-cache MFS experiences a true performance disaster when its cache is overflown. 

This does not happen as fast as in the last test: each stream now needs only 128 KB of cache 

in order not to have its prefetched blocks thrown out, and that yields a maximum of rougly 

37.5 streams in theory (~ 1200 / (128 / 4)). Again, it is less in practice due to the inode 

metadata blocks. Worth noting is that during investigation of initial test results, it was 

Graph 8.6 
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discovered that MFS would actually write out inode blocks to disk even when mounted in 

read-only mode. This was solved by building in extra preventive checks into MFS. 

 

Once again, MMFS is able to provide full guarantees for at least 55 streams. It levels out 

pretty soon after. Graphs 8.5 and 8.6 are somewhat misleading in this respect. MMFS only 

operates on whole 256 KB blocks, and both the loss rate and the read call durations are 

averages. That means that many of the small frames will still be available immediately once a 

256KB-block has arrived, no matter how long it took to fetch that block. As a result, the loss 

and read latency averages stay low after 55 streams, but the variance (not shown) increases 

steadily. 

 

 

8.4. MMFS per formance 

 

There are several aspects that are relevant only for MMFS and worth discussing in more 

depth. This section discusses the duration of read() calls (subsection 8.4.1), round durations 

(8.4.2), stream startup times (8.4.3), and closedown times (8.4.4). 

 

8.4.1. Read call jitter 

 

If we zoom in on the bottom of the two read latency graphs (8.3 and 8.6), the average read 

response times of MMFS between the two tests reveals a difference, even with the large block 

test redone at 1000HZ. The jitter of “small”  read calls is much less than with “big”  read calls, 

despite the fact that more individual requests have a higher total overhead. 

 

Closer analysis reveals that the difference is fully due to the time spent copying out data from 

the MMFS buffers to the user process. This is amplified by the fact that our stream reader was 

set to spawn all streams at the same time. Most streams are requesting a 256KB block around 

the same time in each second, resulting in a peak of activity per second. This is clearly visible 

in the scheduling trace included as appendix D.1, which shows about 1.6 seconds of running 

time of 55 stream readers (“ reader” ) and relevant system processes. The blocking nature of 

the copy-out process causes implicit queuing of read requests within MMFS, and with that the 

relative increase in read response times. 
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When we introduce a random delay in each stream reader after startup, the activity of the 

processes is more spread out. This can be seen in the scheduling trace in appendix D.2. Graph 

8.7 shows the maximum (not average) read latencies of all runs, with both the original 

condensed and the now spread-out variant. With this modification, the read operations now 

take 2.1 milliseconds on average. The average was 2.4 milliseconds before, but the maximum 

is roughly halved. In reality, no assumptions can be made about when streams are started, but 

the chance that most of them perform all their read() calls at the same moment is low. 

 

Smaller reads already take 0.001 milliseconds on average. In general, the use of smaller read 

requests is beneficial to MMFS: it limits the duration of individual read requests, because 

smaller amounts of data have to be copied out at a time, so the copying operations are more 

spread out by themselves. 

 

8.4.2. Multimedia round durations 

 

With dynamic driver round times (see subsection 5.3.3), the actual round durations are an 

important aspect that play a role for in stream startup times (see subsection 5.1.9), deep 

prefetching and VBR (see subsection 5.1.10), and integration of multimedia and 

nonmultimedia disk requests (see subsection 5.3.2). In all cases, shorter actual round 

durations yield a bigger advantage for both multimedia and nonmultimedia user processes. 

Graph 8.8 shows the average round durations during the large-blocks and small-frames tests. 

Graph 8.7 
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Up to 30 streams, the average round times stay very low. Even with 55 streams, the average is 

well below the upper duration of one second. Graph 8.9 shows the maximum round duration 

in each simulation run. 

 

The maximum round duration is never even closely reached until about 30 streams. After that, 

the maximum is still below one second in all cases. After 55 streams, the maximum round 

sizes (in number of blocks), and consecutively their durations, start exceeding their limits, 

resulting in a linear increase beyond one second. 

 

A closer analysis of individual round times reveals that the round with maximum duration 

takes place very quickly after all streams have been opened. Soon after, the sub-second round 

durations cause the streams to prefetch faster than the stream rate, after which the limit on the 

number of blocks per stream is hit within MMFS. Per-stream prefetching then continues at the 

same rate as the stream itself: in the test case, one block per second. With a relatively low 

number of streams, and therefore low disk utilization, small numbers of requests are queued at 

the driver at any time. That causes many more small rounds of the observed low average 

durations. Graph 8.10 shows the total number of rounds as a function of the number of 

streams. 

Graph 8.8 

Graph 8.9 
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The number of rounds is rising almost linearly up to 30 streams, with nearly as many rounds 

as there are streams (for the large-block test, 30 streams each reading 200 blocks during the 

run equals 6000 requests). Here, each round consists of one single multimedia request, which 

is always fulfilled before at least two new requests come in. Only after 30 streams does the 

driver start aggregating multiple requests into single rounds on average. Eventually, the 

number of rounds drops to a value that is close to the minimum value of 200 rounds for 200 

requests per stream, regardless of the number of streams. 

 

In short, this means that the advantage from SCAN-sorting of individual rounds only starts 

becoming relevant from about 30 streams, that deep prefetching for streams is only bounded 

by the number of buffers in MMFS below this number, and that the short round times should 

give nonmultimedia requests low response times even with a number of streams close to the 

maximum. We will look at the last point in more detail in section 8.6. 

 

8.4.3. Stream startup times 

 

In a sense, the startup time is the most important drawback of MMFS compared to file servers 

that do not rely on prefetching (e.g., MFS), because this startup time is always perceived 

Graph 8.10 
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directly by an end user. It is therefore important how well our optimization of startup times 

(subsection 5.1.10) works in practice. Without this optimization, opening a stream would 

always take two full seconds. In the following test, the stream reader simulator was modified 

to open one stream at a time, and then wait five seconds before opening the next stream. 

Graph 8.11 shows the startup time for each individual stream. 

 

The graph shows that MMFS takes full advantage of the disk underutilization when few 

streams are active. For the first 20 streams, the startup time is never more than 100 

milliseconds. After that, the startup times start rising, but they never reach the full two 

seconds, not even at 55 streams, because of the sub-second round durations. 

 

Of course, the stream open requests are completely evened out over time in this test. This is 

an ideal situation. If multiple streams are started at the same times, the disk utilization will 

experience a much larger temporary peak, resulting in longer startup times for each of the 

streams. Graph 8.12 shows the same test but without the five-second delay between the 

startups. 

 

Scheduling latencies prevent all stream startup requests from taking place at the exact same 

moment. As a result, the first five streams get away with relatively low startup times. The 

startup times of the remaining streams quickly hit the ceiling. With 55 streams, the driver still 

fulfills all data retrieval requests with sub-second round durations, but the data is not available 

early enough to allow for the startup optimization. 

 

An important fact to note is that our test setup has all streams positioned completely separate 

from eachother within all the files, so that there is no overlap between buffers in MMFS. 

Especially for startup times, this is the absolute worst case. If some initial data blocks of a 

starting stream are already available in buffers owned by other streams (or cached), then this 

Graph 8.12 
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reduces the startup time of that stream. After all, MMFS does not have to fetch those blocks 

from disk. If all blocks are available, the startup time is reduced to zero. 

 

8.4.4. Stream closedown times 

 

Another point of interest is the extra time it takes to close down streams, that is, to cancel any 

outstanding requests for data blocks with a deadline further ahead than the work-ahead time, 

and to wait for outstanding requests earlier than that time. We changed MMFS slightly to 

acknowledge the STREAMCTL_CLOSE request only after the stream has been fully closed and 

unregistered at the driver. This allows the stream reader to obtain statistics about the time it 

takes MMFS to close streams. The following test is constructed in the same way as the last 

one: starting off with 55 streams, the streams are closed one by one, five seconds apart, and 

the closing time of each stream is measured. Graph 8.13 shows the result, starting with the 

first stream closing first and ending with the 55th stream closing last. 

 

Although closing streams could take up to two seconds due to the inability to cancel 

outstanding requests in time (see subsection 6.3.4), the values of this test are nowhere near 

that upper limit. This is because of the same lack of overlap between streams in our test setup 

that caused the worst-case startup times. If a nonfilled buffer of one closing stream is not part 

of the window of another active stream, MMFS tries to cancel its pending request 

immediately. The cancellation may or may not succeed, based on whether the request is 

already part of the current round (again, see section 6.3.4). This means that at worst, the 

cancel time of each stream is the duration of the current round at the time that the stream 

starts closing down. As shown in subsection 8.4.2, that is roughly 0.7 seconds. The highest 

measured individual close time in this test is indeed a little below 0.7 seconds, and the 

Graph 8.13 
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averages are much lower. The closedown times drop further when the round times get shorter 

as fewer streams are left. 

 

When closing down all streams at once rather than five seconds apart, there is no significant 

increase in the closedown times of individual streams (graph 8.14). However, there is no 

advantage from shortened round times, so that the total average closedown time is higher. 

 

 

8.5. The organ pipe scenar io 

 

In the next set of tests, we temporarily moved away from the worst-case scenario (in many 

respects) of having all streams operate on different sections of all the files. We reintroduce the 

Zipf-based file access distribution and random initial in-file positioning that we also used in 

test 3 of subsection 8.2.2. Streams may now overlap, reducing the number of actual requests 

made to the disk driver. 

 

It turns out, however, that the chance that two streams are operating within the same 1.75 MB 

section of a single file (in order to have overlap at all) is sufficiently small that the results are 

nearly identical to the earlier tests. As all streams have the same rate for each file, the 

occurrence of such overlap between two streams translates in disk usage reduction by one 

stream. On average, 0.5 stream is experiencing overlap in each test. Consecutively, the 

closedown times of streams remained practically just as low as in subsection 8.4.4, even 

though buffer sharing could have had a negative impact here. We have not included the new 

graphs for these tests here, as they are indistinguishably close to the original ones. 

Graph 8.14 
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Graph 8.15 shows the average round durations for even spread and organ pipe scenarios for 

small frames retrieval. As expected, the driver’s multimedia round times between 30 and 55 

streams are lower than with the even spread of readers across the files. With the organ pipe 

approach, most blocks are closer to each other on disk, yielding a speed gain from faster 

SCAN disk retrieval in each round. The differences are small though. Overall, we conclude 

that the organ pipe approach is not very beneficial in our test setup. 

 

 

8.6. Presence of other  disk loads 

 

The previous tests show that MMFS is able to provide minimal read() call latency, and get 

more out of the hard disk than MFS. We therefore achieved our first and second goals. We 

now move on to the third goal: the isolation from other processes. This section covers 

isolation of disk access, the next section covers CPU scheduling. 

 

In this section, we consider two scenarios: that of one I/O-intensive process on another 

partition (subsection 8.6.1), and, mainly for MFS, that of ten I/O-intensive processes on the 

same partition (subsection 8.6.2). 

 

8.6.1. One I/O-intensive process on another partition 

 

In the following test, we test how wellprotected MMFS is against the I/O of nonmultimedia 

processes, and obtain some statistics on the I/O response times for these processes. This test 

combines the original tests with a single nonmultimedia process that is reading nonsequential 

4KB-blocks from a 80 MB file on a different MFS partition at maximum speed. 

Graph 8.15 
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We do not look at the small-cache MFS and the small-frames scenarios any more, as in both 

cases, the MFS performance is too low to be acceptable. Also, no more than 55 streams were 

tested this time. Graph 8.16 shows the combined effective stream rates for MMFS and the 

large-cache MFS version in a large-block based test. 

 

There is a much bigger gap in performance between MMFS and MFS than before. As far as 

VFS is concerned, the two types of processes are completely independent, as they operate on 

different partitions. Both types of requests (multimedia stream data requests and full-speed 

I/O requests) are therefore processed by the two file servers in parallel. In the case of MMFS, 

this leads to the desired combination of multimedia and nonmultimedia requests into rounds. 

As the graph shows, the stream readers experience no deteriorated performance at all. 

 

In the case of MFS, each of the two MFS instances are processing one request at a time, and 

their requests are combined in first-come-first-serve order by the driver. This roughly leads to 

a 1:1 ratio of requests served: for every multimedia stream request, one nonmultimedia 

request is processed. This effectively halves the bandwidth available for stream requests, and 

is only alleviated by the fact that the I/O-intensive process can not have a request queued at all 

times. For the large-blocks test however, the rough 1:1 ratio means that the two consecutive 

128 KB blocks that make up each 256 KB-request (see subsection 8.3.2) are not guaranteed to 

be consecutive any more. This results in a little over half the total combined effective rate of 

the original large-blocks test. 

 

As can be expected, the requirement of guaranteed stream rates of MMFS comes at the 

expense of the performance of the I/O-intensive process. Graph 8.17 shows the total number 

Graph 8.16 
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of 4KB blocks read by the I/O-intensive process, and, more importantly, graph 8.18 shows the 

average response times of individual read() calls of this process. 

 

As long as the round sizes stay close to one multimedia request per round (even with the 

addition of the nonmultimedia requests), the ratio between multimedia requests and 

nonmultimedia requests stays close to 1:1, and the I/O-intensive process in the MMFS run is 

able to perform only slightly worse than the one in the MFS run. Above 20 streams, this starts 

changing. As round durations increase, the number of requests starts going down and 

individual read call latency starts going up, to the point where the rounds approach their 

maximum. The MFS instance that the nonmultimedia process operates on, also needs to 

retrieve a number of meta-blocks for the file, so the average read() call actually takes longer 

than a complete round. 

 

8.6.2. Ten I/O-intensive processes on the same partition 

 

The last test is not entirely fair with respect to MFS when compared to the original unblocked 

VFS. The observed behavior is a result of two MFS processes being able to process requests 

in parallel, which is only possible due to the fine-grained locking implemented in VFS. With 

the original VFS, all the different requests were serialized before being processed by any MFS 

Graph 8.17 
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instance. The 1:1 ratio between the multimedia stream requests and the I/O-intensive process 

would then be much closer to N:1, where N is the number of streams. Or more general, closer 

to N:M, where M is the number of I/O-intensive processes. We test this by creating ten I/O-

intensive processes that operate on the same partition as the streams. This more accurately 

reflects the situation for MFS as it was before unblocking VFS. As MMFS does not support 

reading from files without attaching a stream to the file, we have to let the stream reader read 

from another partition in the case of MMFS. 

 

Although it is unusual to have ten processes running that all try to use the disk at the highest 

possible rate, this scenario does present a long-time version of peak activity. Ten other 

processes that happen to read from the disk at virtually the same time is possible if temporary 

heavy processing takes place. In that case, a similar drop in performance for multimedia 

processes could be expected, although generally for a shorter interval. 

 

Graph 8.19 shows the resulting stream rates. Graph 8.20 shows the total number of blocks 

read by the ten I/O-intensive processes combined. Graph 8.21 shows the response times of 

individual read calls. Note the change in scale for graph 8.21 compared to graph 8.18. After 

all, ten processes are fighting for access to the disk instead of one. 

 

Graph 8.19 
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As expected, the large-cache MFS performance for streams is roughly comparable to that of 

subtracting ten streams from the maximum observed in subsection 8.3.2. MFS is able to 

sustain as many as 30 streams without any loss, while it is able to serve more nonmultimedia 

requests at a lower average latency than MMFS. In this case, it actually does slightly better 

than MMFS. For 35 streams and up, MFS cannot keep up the stream rates any more. 

 

With MMFS, as soon as multimedia rounds start forming with two or more multimedia 

requests, the nonmultimedia requests get a smaller relative fraction of each round. This 

happens even if there is in principle enough room to serve more nonmultimedia requests. That 

explains the relative worse performance of the I/O-intensive processes with MMFS up to 30 

streams. A pragmatic improvement would be to let new nonmultimedia requests be inserted in 

a currently running round, as long as the worst-case time addition resulting from these 

insertions (which violate the SCAN sorting) would never make the current round exceed the 

maximum round duration time. We have not tried this in practice because of time constraints. 

 

 

8.7. Presence of other  CPU loads 

 

The previous tests show that the newly developed VFS/MMFS/driver combination can 

support guaranteed disk retrieval for a high number of streams. In the next subsections we put 

our new “PSCHED”  scheduler extension to the test, showing how well it isolates multimedia 

processes from nonmultimedia processes (subsection 8.7.1) and eachother (8.7.2). 

 

8.7.1. Isolation from nonmultimedia processes 

 

Graph 8.21 
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To test the EDF-based scheduler, a new scenario is needed. If we simply let each of the 55 

streams request 15-20 milliseconds of CPU time per second, this would yield predictable 

results, because all periods are equal. Such a scenario would also not accurately reflect the 

need for stream readers to process the data retrieved. 

 

Instead, we focus on a lower number of streams with different periods and execution times. 

Since the scheduling functionality has been developed with the new disk retrieval model in 

mind, we use only MMFS in the following tests. We consider the case of stream readers 

having to share the total CPU time with several CPU-intensive background processes. Our 

new PSCHED scheduler is compared to MINIX 3’s standard priority-based scheduler. We 

avoid finetuning of the priorities of system processes in MINIX, as that could easily lead to a 

very specific solution that only works for the specific test setup [21].  

 

We consider two stream reader processes that read a small frame and then require 10 

milliseconds of processing time, once every 40 milliseconds (processes 1 and 2). On top of 

those, we add four stream reader processes that read a large block and then use on average 

100 milliseconds per second with periods of 0.5, 1, 2 and 4 seconds (processes 3, 4, 5, 6). 

These six processes together use 90% CPU utilization. We set the scheduler admission control 

to a maximum utilization of 95%, so all these processes can be admitted. The processes all 

use a 256 KB/sec stream rate overall. On top of these six processes, we add four background 

processes that will use up as much CPU time as they can (processes 7, 8, 9, 10). 

 

In the test, we vary the number of processes from one to ten, following the numbering scheme 

given above (i.e., the last four processes added are the nonmultimedia processes). We measure 

Graph 8.22 
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the number of deadline misses (period overruns) over a 200-second period. Graph 8.22 shows 

the percentage of deadline misses as a percentage of the total number of execution periods of 

the periodic processes (i.e., up to six processes), averaged over three runs. As illustration, 

appendices D.3 and D.4 show representative scheduling traces from the tests of the MINIX 

scheduler and our PSCHED extension, respectively. 

 

It is clear that the standard priority-driven scheduler in MINIX 3 is unsuitable for periodic 

multimedia processing. With only three processes, deadline misses start occurring. The miss 

percentage goes over 90% in the presence of the nonmultimedia CPU-intensive processes. 

Not shown is that in the presence of two or more CPU-intensive multimedia processes, the 

multimedia stream readers are not able to keep up their stream rate any more. They simply do 

not get to make enough read() calls in the given time period. 

 

This is not the case with our EDF-based scheduler. However, because of the system time 

accounting limitations of our approach, and the lack of system server priority tuning, we 

could not fully eliminate deadline misses. These deadline misses result from temporary high 

activity of any system process during the execution time of each user process. The actual 

execution time of each periodic process is very close to its specified execution time, so all 

these processes are extremely vulnerable to such interference. Deadline misses start occurring 

with the 90% utilization and CPU-intensive processes (i.e., 7 processes and more). On 

average, roughly 50 out of 10756 deadlines or a little under 0.5% were overrun, nearly all by 

the first two processes that have very short periods. The main source of the interference is 

clustered memory copying activity of MMFS. 

 

If one of the multimedia processes overruns its deadline, its priority will be lowered to below 

that of the CPU-intensive processes. Without any other activity on the system, it might still be 

able to complete its work within the period at lower priority, but this becomes impossible with 

the presence of the CPU-intensive processes. That explains why deadline misses only start 

occurring after adding the CPU-intensive processes. 

 

Graph 8.23 shows the deadline miss percentage after reducing the actual execution time of 

each of the periodic processes to 75% of their specified execution time. The number of 

deadline misses of PSCHED is now reduced to zero. Needless to say, the execution time of 

individual processes can typically not be specified and varied in reality. Instead, the 
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application would choose a higher periodic execution time than it actually needs. The periodic 

scheduler can then admit fewer processes in total. 

 

8.7.2. Isolation from other multimedia processes 

 

Even though deadline overruns did occur in the last tests, the additional per-period time 

required by each process is small. In the next test, we show that our scheduler provides 

isolation of CPU-intensive multimedia processes from each other in general. The first stream 

reader is modified to overrun its execution time by 50% half of the time. The other processes 

are reset to having their actual execution times close to what they specified. 

 

Graph 8.24 shows the resulting deadline miss percentage of the first process. 8.25 shows that 

of the remaining periodic processes (i.e. up to five). With few other processes present, the first 

Graph 8.23 
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process gets enough CPU time to finish its work within time at low priority. With many other 

processes present, it eventually ends up missing all of its deadlines. With PSCHED, the other 

periodic processes indeed end up with the same number of deadline misses as before. In 

contrast, MINIX’  priority-based scheduler has more deadline misses for the correct processes 

in all cases. The percentage in graph 8.25 is somewhat lower, as a high number of deadline 

misses in graph 8.22 occur in the first process, which is not included in graph 8.25. 

 

 

8.8. Network-based tests 

 

The focus of this project has been on the path from the disk to the user application. However, 

we have also taken a brief look at the networking side of the complete problem. At least in 

theory, our test system should be able to achieve a network speed fairly close to the disk 

speed. While the disk achieves a little less than 15 MB per second with reasonably large block 

sizes, the 100MBit/sec Ethernet card should be able to achieve over 10 MB per second. 

 

However, a series of tests on the test machine showed that even with perfect conditions, no 

more than roughly 5.5 MB/sec could be achieved at all. Scheduling traces revealed that during 

this time, the ‘ rtl8139’  network driver, and to a lesser extent the ‘ inet’  server, were using the 

CPU at nearly 100%. One of such scheduling traces has been included as appendix D.5. It 

shows five iterations of a “ test”  process performing a simple “ read(); send();”  loop to transfer 

data from a MFS instance to the network. The same behavior was observed with the “ lance” 

network driver in VMware. 

 

Graph 8.25 
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As could be expected, UDP performed a little better than TCP, even with many TCP 

connections active over a long time, but the 5.5 MB/sec rate was never exceeded. To make 

things even worse, the high CPU utilization of the network driver would require a tradeoff 

between even lower network speed and very little local data processing. 

 

As a whole, this was somewhat of a disappointment. If the network is by far the biggest 

bottleneck, all efforts to optimize on disk speed would eventually be lost here for network-

based multimedia applications. Under these conditions, no networked multimedia streaming 

server could ever be used to its maximum. 
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Chapter  9. Conclusion 

 

In this final chapter, we look back at our work (section 9.1) and consider a number of possible 

future projects based on this work (section 9.2). 

 

 

9.1. Reflection 

 

Our goals were to allow for fast, optimized and isolated multimedia data retrieval from the 

hard disk to user processes. To this end, we have made modifications to several parts of the 

MINIX 3 operating system. First, VFS was made nonblocking to allow multiple concurrent 

requests to file servers to take place. VFS was multithreaded, and a locking model was 

applied to it for both correct operation and fine-grained resource locking. On top of this, a 

read-only multimedia file system and file server were developed. The FS/driver protocol was 

extended to support multimedia requests. And, the generic disk driver library was extended to 

include a SCAN-EDF based rounds system and appropriate admission control. These 

additions allow for multimedia retrieval with soft guarantees even in the presence of other, 

nonmultimedia disk retrieval workloads. To limit interference from CPU workloads, a EDF-

based periodic scheduler extension was implemented in the PM system server. In the process, 

a user-space cooperative threading library and a scheduling trace kernel extension were 

developed. 

 

Our tests show that we indeed achieved our goals. The guaranted prefetching of MMFS 

minimizes the duration of individual read() calls. Even with minimal parameter tuning, we 

managed to get fairly close to the theoretical upper disk retrieval speed limit on our test 

machine. Performance of the multimedia retrieval was not affected by various other disk-

intensive workloads. There was still room for nonmultimedia workloads to continue with 

fairly low response times during low load, and with reasonable response times during high 

load. Our scheduler was able to provide periodic execution time with low deadline miss rates 

and proper isolation from deadline overruns and CPU-intensive workloads. 
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However, there are some critical notes to make as well. Some of the points regarding VFS 

have already been made in section 3.6. In addition, the clean separation of the tasks between 

MMFS and the driver requires both a relatively complicated protocol and a strict rounding up 

of stream rates. Especially the latter puts a limit on the number of streams that is not 

necessary otherwise. A more pragmatic approach might lead to better overall performance, 

even though this might require stepping away from the SCAN-EDF based rounds system at 

all. Finally, if the benefits from the organ pipe approach are generally as low as section 8.5 

suggests, then MMFS could be simplified by not sharing buffers between streams. These are 

all considerations that might have resulted in a different approach had we known them in 

advance. 

 

We have provided only a generic support system for multimedia retrieval. We intentionally 

leave open the question how this system could be used in practice. In principle, many 

multimedia applications could benefit from the speed and soft guarantees provided by the 

system, although the limitations of this project make it less suitable to be used right away. 

Future extensions could tailor the system to specific application demands if necessary. In 

particular, addition of write support and better network performance would make the 

application area of the system much broader. The next section lists these points as well as 

other possible future work that could be based on our work. 

 

 

9.2. Future work 

 

9.2.1. Further VFS extensions 

 

As mentioned, the new unblocked VFS provides a base for several future extensions of 

MINIX. For example, it becomes possible to write a file server that is a client to a networked 

file system like NFS or Samba. This would require a new way for the file server to 

communicate with the ‘ inet’  server: with the current approach, a process can not be both a 

privileged driver and a user process that opens a character-special file. However, dedicating 

as much as one bit in the request and reply types could provide the necessary separation of 

those requests. Asynchronous communication takes care of the rest. However, there may be 

other infrastructural problems that may need to be solved before implementation of an actual 

networked file system becomes possible. 
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Perhaps even more interesting would be support for file servers in the form of nonprivileged 

user processes. If such a user process is able to communicate with VFS like any other user 

process, then this would inherently allow the development of networked file systems as well. 

This would be similar to the Linux FUSE project [36] in some ways; if a compatible interface 

were to be developed, MINIX would instantly be able to use all the file systems that are 

implemented for FUSE. However, this would require some form of asynchronous 

communication with user processes at the very least, and that is currently not possible in 

MINIX. 

 

Another possibility, in line with MINIX’  general direction, would be the adaption of VFS to 

support recovery from crashing file system processes. Currently MINIX can recover from 

driver crashes, but if a file server crashes, VFS crashes as well and takes the whole system 

down with it. To a certain degree, the unblocked VFS now allows other processes and file 

systems to continue operating while one file server has crashed. VFS also retains enough state 

to resubmit outstanding requests after a replacement file server instance has been started. 

Whether full recovery from FS crashes can be achieved in some or all cases, and whether this 

is desirable in general, are still open questions. 

 

9.2.2. MMFS and driver extensions 

 

This project has focused on reading from multimedia streams, although much of the required 

infrastructure for write support is already in place as well. MMFS could be extended or 

replaced in order to provide write support. This would require rethinking of both the file 

system format and the request issuing system, as both assume a consecutive file layout on 

disk – a known poor approach for read-write multimedia file systems. 

 

Our implementation of the multimedia-supporting driver is also far from finished. Especially 

the deterministic block-based admission control system could be replaced by a much more 

sophisticated algorithm. That way, the hard disk could really be used to the fullest extent. This 

would possibly be based on many more metric values, perhaps obtained empirically from the 

disk. Our tests have indicated that there certainly is room for improvement. However, a new 

approach might require a new protocol and therefore also a rewrite of MMFS. 
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9.2.3. Zero copying 

 

One future improvement to multimedia performance that was unfortunately not feasible for 

this project, is the concept of zero-copying. As shown in figure 8.1, the FS spends a 

significant amount of CPU time on copying data from its own buffers to the user process. 

Many of our tests confirmed that this is indeed an issue. Copying could be avoided altogether 

if the driver would retrieve the data directly into a buffer accessible by the user process. This 

can even be combined with networking aspects, if the same buffer can also be used to send 

the data over the network without further copying. 

 

This would have a number of implications, for example for the ability to share data blocks 

between processes. Sharing of buffers between user process is currently not supported at all, 

and solving all this may require significant infrastructural changes to file access. A possible 

solution could involve asynchronous file operations. 

 

9.2.4. Multimedia networking 

 

As the tests revealed, the actual bottleneck of I/O from the disk via the user application to the 

network appears to be the network driver. This project has essentially provided the basic 

infrastructure necessary for multimedia retrieval from disk, so it would be interesting to 

complement it with an attempt to increase the effective speed of networking I/O, and provide 

multimedia-required guarantees for it. If successful, such a project would provide a direct 

improvement to the effectivity and usability of this project. At that point it would become 

interesting to write a new, or port an existing network streaming server that supports various 

media formats as well as the Real-time Transport Protocol (RTP). That could turn MINIX 3 

into a full-fledged video-on-demand platform. 
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Appendix A. Header files 

 

A.1. The ‘minix/systhread.h’  header file 

 

#ifndef _SYSTHREAD_H 

#define _SYSTHREAD_H 

 

#include <ansi.h> 

 

typedef int _systhread_thread_t; 

 

typedef struct { 

  _systhread_thread_t head; 

  _systhread_thread_t tail; 

} _systhread_queue_t; 

 

typedef struct { 

  _systhread_queue_t queue; 

  _systhread_thread_t owner; 

} systhread_mutex_t; 

 

typedef _systhread_thread_t systhread_event_t; 

 

typedef int (*systhread_main_t)(void); 

 

typedef void (*systhread_proc_t)(void *); 

typedef void *systhread_param_t; 

 

typedef struct _systhread_store_t { 

  struct _systhread_store_t *next; 

  systhread_proc_t proc; 

  systhread_param_t param; 

} systhread_store_t; 

 

_PROTOTYPE( int systhread_init, (unsigned int nthreads, 

  unsigned int stacksize, systhread_main_t mainproc) ); 

 

_PROTOTYPE( void systhread_start, (systhread_proc_t proc, 

  systhread_param_t param, systhread_store_t *store) ); 
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_PROTOTYPE( void systhread_yield, (void) ); 

_PROTOTYPE( void systhread_yield_all, (void) ); 

 

_PROTOTYPE( void systhread_mutex_init, (systhread_mutex_t *mutex) ); 

_PROTOTYPE( void systhread_mutex_lock, (systhread_mutex_t *mutex) ); 

_PROTOTYPE( int systhread_mutex_trylock, (systhread_mutex_t *mutex) ); 

_PROTOTYPE( void systhread_mutex_unlock, (systhread_mutex_t *mutex) ); 

 

_PROTOTYPE( void systhread_event_init, (systhread_event_t *event) ); 

_PROTOTYPE( void systhread_event_wait, (systhread_event_t *event) ); 

_PROTOTYPE( void systhread_event_fire, (systhread_event_t *event) ); 

 

#endif /* _SYSTHREAD_H */ 
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A.2. The ‘sys/queryfs.h’  header  file 

 

#ifndef _QUERYFS_H 

#define _QUERYFS_H 

 

#ifndef _TYPES_H 

#include <sys/types.h> 

#endif 

 

/* Query types */ 

 

#define QUERY_STATFS 1 /* the fstatfs() call */ 

#define QUERY_STREAMCTL 2 /* multimedia stream control */ 

 

/* Function prototype */ 

 

_PROTOTYPE( int queryfs, (int fd, int type, char *buf, int len)  ); 

 

#endif /* _QUERYFS_H */ 
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A.3. The ‘sys/streamctl.h’  header file 

 

/* Data for queryfs(QUERY_STREAMCTL) call. */ 

 

#ifndef _STREAMCTL_H 

#define _STREAMCTL_H 

 

/* Operations */ 

 

#define STREAMCTL_OPEN 1 /* open a new multimedia stream */ 

#define STREAMCTL_SEEK 2 /* seek in a multimedia stream */ 

#define STREAMCTL_CLOSE 3 /* close a multimedia stream */ 

 

/* Buffer structure passed to queryfs() */ 

 

struct streamctl { 

  int sc_op;   /* the requested operation */ 

  unsigned int sc_rate;  /* stream rate in bytes/sec (for OPEN) */ 

  unsigned long sc_pos_lo; /* low file position dword (OPEN/SEEK) */ 

  unsigned long sc_pos_hi; /* high file position dword (OPEN/SEEK) */ 

}; 

 

#endif /* _STREAMCTL_H */ 
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A.4. The ‘sys/psched.h’  header file 

 

#ifndef _PSCHED_H 

#define _PSCHED_H 

 

#ifndef _TYPES_H 

#include <sys/types.h> 

#endif 

 

/* Periodic scheduling API prototypes */ 

/* All values are in microseconds! */ 

 

_PROTOTYPE( int psreserve, (unsigned long period, unsigned long exectime)); 

_PROTOTYPE( int psnext, (unsigned long drift) ); 

 

#endif /* _PSCHED_H */ 
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Appendix B. VFS locking scheme 

 

B.1. Locks acquired dur ing VFS calls 

 

The following table shows the worst-case locking behavior of the calls that can be initiated by 

processes other than VFS: the ‘do_’  calls that can be directly called by user processes, and the 

‘pm_’  calls that are made on request by the PM server. Some calls have been split out to more 

narrowly define the worst-case locking for particular execution paths. Note that the table does 

not contain information about how many locks are acquired. For example, select() typically 

acquires readlocks on multiple filps in series. 

 

VFS call Vmnt lock Vnode lock Filp lock Other  locks 

do_access R - - - 

do_chdir R R - - 

do_chmod (chmod) W+ (*) W (*) - - 

do_chmod (fchmod) - W X - 

do_chown (chown) W+ (*) W (*) - - 

do_chown (fchown) - W X - 

do_chroot R R - - 

do_close - O X CP 

do_creat W+ W X CP 

do_dup (dup) - R X - 

do_dup (dup2) - O X CP 

do_fchdir - R X - 

do_fcntl (F_FREESP) - W X - 

do_fcntl (not F_FREESP) - R X - 

do_fslogin - - - - 

do_fstat - R X - 

do_fsync R - - - 

do_ftruncate - W X - 

do_getdents - R X - 

do_getsysinfo - - - - 

do_ioctl - R X - 

do_link W - - - 
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do_llseek - R X - 

do_lseek - R X - 

do_lstat R - - - 

do_mkdir W - - - 

do_mknod W - - - 

do_mount W+ W - B 

do_open (create) W+ W X CP 

do_open (open, truncate) R W X CP 

do_open (open only) R O X CP 

do_pipe R W X - 

do_queryfs - R X - 

do_rdlink R - - - 

do_read - R X CP 

do_rename W+ - - - 

do_rmdir W+ - - - 

do_select - R - S 

do_slink W - - - 

do_stat R - - - 

do_svrctl - - - - 

do_sync R - - - 

do_truncate W+ (*) W (*) - - 

do_umask - - - - 

do_umount W+ W - B 

do_unlink W+ - - - 

do_utime R - - - 

do_write - W X CP 

pm_dumpcore - O X CP 

pm_exec R R - E 

pm_exit - O X CP 

pm_fork - - - - 

pm_reboot - O X CP 

pm_setgid - - - - 

pm_setsid - - - - 

pm_setuid - - - - 

pm_unpause - - - - 
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Vmnt lock: R = VMNT_READ, W = VMNT_WRITE, + = upgrade to VMNT_EXCL. 

Vnode lock: R = VNODE_READ, O = VNODE_OPCL, W = VNODE_WRITE. 

Filp lock: X = mutex. 

Other locks: B = bfs lock, C = bfs lock for block-special vnodes, E = exec lock, P = 

VNODE_WRITE and select lock for pipe vnodes, S = select lock. 

 

(* ) All of do_chmod(), do_chown() and do_trunc() either writelock the vmnt and the vnode if 

one exists, or exclusively lock the vmnt otherwise, as discussed in subsection 3.5.6. 
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B.2. Locks held dur ing FS requests 

 

The following table shows all locks that have been acquired by the current thread during calls 

made to a file system process. 

 

FS request Vmnt lock Vnode lock Filp lock Other  locks 

REQ_ACCESS R - - - 

REQ_BREAD - R X B 

REQ_BWRITE - W X B 

REQ_CHMOD W/X W - - 

REQ_CHOWN W/X W - - 

REQ_CLONE_OPCL R (W) - - 

REQ_CREATE X (O/W) - - 

REQ_FLUSH - O/W - - 

REQ_FTRUNC (*) W X - 

REQ_GETDENTS - R X - 

REQ_GETNODE R O/W - - 

REQ_INHIBREAD - R X - 

REQ_LINK W - - - 

REQ_LOOKUP R/W - - - 

REQ_MKDIR W - - - 

REQ_MKNOD W - - - 

REQ_MOUNTPOINT X (W) - B 

REQ_NEWDRIVER - - - - 

REQ_PIPE R (W) - - 

REQ_PUTNODE (*) O - - 

REQ_QUERYFS - R X - 

REQ_RDLINK R - - - 

REQ_READ - R X P 

REQ_READSUPER X - - B 

REQ_RENAME X - - - 

REQ_RMDIR X - - - 

REQ_SLINK W - - - 

REQ_STAT R (**) R (**) X (**) - 
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REQ_STIME R - - - 

REQ_SYNC R - - - 

REQ_TRUNC W/X - - - 

REQ_UNLINK X - - - 

REQ_UNMOUNT X - - B 

REQ_UTIME R - - - 

REQ_WRITE - W X P 

 

Vmnt lock: R = VMNT_READ, W = VMNT_WRITE, X = VMNT_EXCL. 

Vnode lock: R = VNODE_READ, O = VNODE_OPCL, W = VNODE_WRITE. 

Filp lock: X = mutex. 

Other locks: B = bfs lock, P = VNODE_WRITE and select lock for pipe vnodes. 

 

Parentheses indicate the vnode locking type used on the vnode that is created as a result. 

 

(* ) REQ_FTRUNC and REQ_PUTNODE can be called from a variety of contexts, some of which 

may hold a vmnt lock as well. 

(* * ) REQ_STAT is used for both stat()/lstat() and fstat(); for the former two, the vmnt is locked; 

for the latter, the vnode and filp are locked instead. 
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Appendix C. FS/dr iver  protocol messages 

 

DEV_MM_READ_S and DEV_MM_WRITE_S 

 

Request 

 

Field Field alias Descr iption 

m_type  The request: DEV_MM_READ_S or DEV_MM_WRITE_S. 

m2_i1 DEVICE The block device to read from or write to. 

m2_i2 IO_ENDPT The endpoint owning the destination or source buffer. 

m2_i3 COUNT The block size of this request, in bytes. 

m2_l1 POSITION The low 32 bits of the byte position into the given device. 

m2_l2 HIGHPOS The high 32 bits of the byte position into the given device. 

m2_p1 IO_GRANT The requester’s I/O grant for the destination or source buffer. 

m2_s1 MM_DEADLINE The deadline of this request, clipped to 16 bits. 

 

Reply 

 

Field Field alias Descr iption 

m_type  The reply: TASK_REPLY 

m2_i1 REP_ENDPT The endpoint owning the destination or source buffer. 

m2_i2 REP_STATUS The reply error code: 

 OK  Request fulfilled successfully. 

 EINTR  Request explicitly cancelled. 

 (other)  Same as for DEV_{ READ|WRITE} _S. 

m2_i3 REP_REQTYPE The original request: DEV_MM_READ_S or 

DEV_MM_WRITE_S. 

m2_p1 REP_GRANT The requester’s I/O grant for the destination or source buffer. 

m2_s1 REP_MM_DEADLINE The deadline of the request, clipped to 16 bits. 

 

 

DEV_MM_CANCEL_S 

 

Request 
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Field Field alias Descr iption 

m_type  The request: DEV_MM_CANCEL. 

m2_i2 IO_ENDPT The endpoint that owns the buffer of the request to cancel. 

m2_p1 IO_GRANT The grant of the request to cancel. 

m2_s1 MM_DEADLINE The deadline of the request to cancel, clipped to 16 bits. 

 

Reply 

 

Field Field alias Descr iption 

m_type  The reply: TASK_REPLY 

m2_i1 REP_ENDPT The endpoint that owns the buffer of the request to cancel. 

m2_i2 REP_STATUS The reply error code: 

 OK  Request cancelled successfully. 

 EBUSY Request is in the current round; 

    not cancelled. 

 ENOENT No matching request was found. 

m2_i3 REP_REQTYPE The original request: DEV_MM_CANCEL_S. 

m2_p1 REP_GRANT The grant of the request to cancel. 

m2_s1 REP_MM_DEADLINE The deadline of the request to cancel, clipped to 16 bits. 

 

 

DEV_MM_ADD 

 

Request 

 

Field Field alias Descr iption 

m_type  The request: DEV_MM_ADD. 

m2_l1 MM_RATE The rate of the stream to be admitted, in bytes per second. 

m2_l2 MM_BLOCK_SIZE The block size used for block requests for this stream, in 

bytes. 

m2_p1 MM_STREAM Opaque stream identifier; merely copied into the reply 

message. 

 

Reply 
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Field Field alias Descr iption 

m_type  The reply: TASK_REPLY 

m2_i2 REP_STATUS The reply error code: 

 OK  Stream admitted successfully. 

 EBUSY Unable to add stream at this time. 

 EINVAL Invalid stream rate or block size. 

m2_i3 REP_REQTYPE The original request: DEV_MM_ADD. 

m2_l1 REP_MM_WAT The work-ahead time to be used for this stream. 

m2_l2 REP_MM_TICKS The minimum number of clock ticks between each two 

deadlines. 

m2_p1 REP_MM_STREAM Opaque stream identifier from the request message. 

 

 

DEV_MM_DEL 

 

Request 

 

Field Field alias Descr iption 

m_type  The request: DEV_MM_DEL. 

m2_l1 MM_RATE The rate of the stream to be deleted, in bytes per second. 

m2_l2 MM_BLOCK_SIZE The block size used for block requests for this stream, in 

bytes. 

m2_p1 MM_STREAM Opaque stream identifier; merely copied into the reply 

message. 

 

Reply 

 

Field Field alias Descr iption 

m_type  The reply: TASK_REPLY 

m2_i2 REP_STATUS The reply error code: 

 OK  Stream deleted successfully. 

 EINVAL Invalid stream rate or block size. 

m2_i3 REP_REQTYPE The original request: DEV_MM_DEL. 

m2_p1 REP_MM_STREAM Opaque stream identifier from the request message. 
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Appendix D. Scheduling traces 

D.1. Stream readers, condensed 
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D.2. Stream readers, spread out 
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D.3. Per iodic processes, MINIX scheduling 
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D.4. Per iodic processes, PSCHED scheduling 



– 187 –
 

 

D.5. Network dr iver  per formance 

 


