Finding hot spots in MINIX 3

Jens de Smit
jfdsmit@few.vu.nl

January 7, 2008

1 Abstract

Explains the use of MINIX 3 profiling tools and presents results obtained using
these tools.

2 Introduction

MINIX 3 is a relatively new operating system, designed to be flexible, reliable
and secure. Unlike its predecessors MINIX 1 and 2, it is not only intended as a
teaching tool: it is also to be used as a serious operating system, especially in
situations where security, reliability and/or resource limitations are concerned.

To aid in achieving this goal, a set of system profiling tools has been devel-
oped [Meurs|. The goal of these tools is to locate places inside MINIX’ internals
where a lot of time is spent (so-called ”hot spots”). This paper explains the
capabilities of the profiling tools, demonstrates the use of the statistical profiler
and shows how it can be used to find and optimize a hot spot.

3 The profiling tools

There are two different kinds of profiling tools available for MINIX 3: a statis-
tical profiler and a call path profiler. The statistical profiler is meant to obtain
an image of the distribution of where in the system program cycles are spent.
It does this by periodically checking, using the CMOS timer, which program is
executing and to which instruction the program counter is pointing. This data is
collected over a period of time specified by the user and, on the user’s command,
written to a data file. A separate program is available to combine the data in
this data file with the binaries of the various parts of the MINIX system and
determine which labels (i.e. functions) the samples correspond to. Using this
knowledge the program then presents statistical data specifying approximately
which functions of which system parts used how many CPU time.

The call path profiler is meant to collect more fine-grained details about
program execution. Call path profiling utilizes a special feature of the ACK

(Amsterdam Compiler Kit) compiler that allows for registering function calls.
For this to work, it is necessary for all programs that need to be profiled to be
recompiled with this special feature enabled, as well as to make some changes to
the internals of MINIX itself. The call path profiler can then generate complete
statistics on the order of function calls within programs as well as the number
of cycles spent in these paths and the number of times each path has occurred.
All this administration however does place a burden on the machine causing a
two- to threefold performance loss [Meurs]. The focus of the remainder of this
paper will be on the statistical profiler.

4 Finding hot spots

4.1 Global hot spot discovery

Profiling is, as said before, meant to find hot spots in the system, places to
optimize to increase performance. For hot spots to pop up, it is important
to put a load on the system. A simple experiment is to profile the system
during a complete recompilation of the system itself. This is done by issuing
the command make fresh hdboot in the directory /usr/src/tools. Compiling a
large piece of code (such as MINIX) involves reading from and writing to disk,
terminal interaction and process creation and destruction: plenty of system
work.

Listing 1 (in appendix A) shows the results of such a run. First, a list is
given of the "top consumers” of total system time, followed by a breakdown per
system process. The results show that a lot of time is spent in labels such as
__send, __recei, __sendre, _lock_se, _phys_co and fill_sta. The first five functions
all relate to message passing, the core of MINIX inter-process communication
and an integral part of every system call. It is no surprise that these functions
are listed as top consumers: they are called very often. The good news is that
these are our first hot spots. The bad news is that these functions have been
hot spots since MINIX 1 and are already highly optimized assembly routines.
The work they do is kept to a bare minimum already. Unless hardware support
is available to speed up these operations, there is not much to do to increase
performance of message passing.

Fill_sta is a label in the assembly routine _phys_memset, which is used to
set all bytes in a memory region to a specific value. It is generally used to set
all bytes in a region to 0. This is done before memory is granted to a process
that has just performed an ezec() system call: programs in a multiprocessing
operating system such as MINIX may not read memory from other programs or
processes, so each program starts with a cleared memory area before execution
is begun. Because MINIX 3 at present uses static memory allocation (programs
receive a preconfigured amount of memory), all a program’s memory needs to
be cleared at program startup, even if it will not use all of that memory. Other
operating systems that use a ”paged” memory model do not have this problem
because they allocate memory per page at request time instead of at execution

time. Apart from the fact that this routine is also an optimized assembly loop
that is hard, if not impossible, to improve, this problem is expected to disappear
in the near future because a paged memory implementation is already in the
works.

The disappointing conclusion is that finding improvable hot spots is unlikely
to happen using this test case. Therefore, a different approach to hot spot
discovery is in order.

4.2 Targeted hot spot discovery

Executing a large make job such as described in the first paragraph generates
a huge amount of system calls and therefore a lot of message passing. Because
MINIX message passing is a part of every system call, these functions claim
centrality in the final profiling result and overshadow other, perhaps more in-
teresting phenomena that simply occur not as often as the message passing
functions. Focusing on a single aspect of the system should make hot spots
stand out more, because the hot spot/message passing ratio is higher.

Listing 2 shows the profiling result of a small program that creates a file and
writes 50 megabytes of data to that file in chunks of 10 kilobytes at a time using
the write() function. Its source code is available in listing 3. It shows that 7.8%
of system time is spent under the label _alloc_b in the mfs process. This label
is the label of the alloc_bit() function, found in /usr/src/servers/mfs/super.c.
This function finds a free bit in the i-node or zone bitmap of a MINIX file
system. These bits correspond to unused (and therefore free to use) i-nodes
or disk zones. Finding free i-nodes is done when creating a new file, finding
free zones is used when data is written to a file and that file grows beyond the
number of zones allocated to it. For a more detailed discussion of the MINIX
file system, see [Tanenbaum].

It is no surprise that this function gets called often. Although only one i-node
is necessary for the file, plenty of zones are required to store the 50 megabytes
of data. Typical MINIX zones size is 4 kilobytes, so the required number of
zones is 50M B/4K B = 12800 zones. However, it is still surprising that this
function alone is responsible for more than a quarter of the work done by the
mfs. The reason why this is strange is that the MINIX file server is designed
to keep track of the last free zone found and look near that zone on the next
lookup, because free zones have a tendency to group together. This is especially
the case on a nearly empty file system such as used in this test. Running the
same test using 250 MB and 500 MB of data shows that the problem only gets
worse with larger amounts of data: 49% and 63% respectively of all work done
by the mfs.

To provide the look-near-latest-zone functionality described above, alloc_bit()
has an argument origin that specifies the bit number to start searching from.
Placing a printf() statement in alloc_bit() that prints the value of origin at the
start of the bit finding loop shows that this value does not change over the
course of writing the test data file. Placing a printf() statement at the end of
alloc_bit() displaying the difference between origin and the actual bit number

returned shows that this difference increases with every call to alloc_bit(): appar-
ently the function loops over an increasing range of bits with every subsequent
execution, which explains why the relative time spent in alloc_bit() increases for
larger file sizes.

Apparently, alloc_bit() receives an origin value that does not correspond to
the value of the last free data zone found. A
grep alloc bit /usr/src/servers/mfs/* command shows that it is called
from only two places: once from inode.c and once from cache.c. The only call
concerning the zone bitmap is in cache.c, so the problem is expected to be found
in that file. Alloc_bit() is called from the function alloc_zone(), which calculates
an origin value based on its zone argument, which has a meaning similar to
origin in alloc_bit() in that it can be used to specify a search base. In write.c
it can be seen that alloc_zone() decides whether or not to use the last free zone
value: if zone equals the number of the first data zone of the file system (which is
always occupied by the root directory), then alloc_zone() uses the last free zone
value as the value for origin, otherwise the passed zone number is converted to
a bit number and the converted value is used as origin.

As explained above, the last zone number is not used as origin, so the value
of zone passed to alloc_zone must be something other than the value of the first
data zone. A grep alloc zone /usr/src/servers/mfs/* shows that there
are three places from where alloc_zone() is called, all three from write.c. The
first two occurrences relate to allocating indirect zones, which are necessary for
storing large files. These calls indeed use a different value as the base zone,
namely the value of the first data zone of the file. However, indirect zones are
only allocated sporadically, so this does not explain why alloc_bit() is called so
often with an incorrect value. The third occurrence of a call to alloc_zone() uses
a value for zone which depends on the state of the file for which the zone must be
allocated: if the first zone of the file is not allocated, the value of the file system’s
first data zone is used (which will cause alloc_zone() to call alloc_bit() with an
origin value of the last found free data zone). Otherwise, the value of the file’s
first data zone is used. In other words, the fast lookup technique is only used
when the file being written has no first data zone allocated. Apart from special
files containing ”gaps” which are rarely used, this situation only occurs when
the first data zone of an empty file is written. In all other situations, alloc_bit()
will always be instructed to start searching from the bit number corresponding
to the file’s first data zone. The larger the file is, the more zones it takes up
and the longer alloc_bit() has to search. This is definitely a hot spot that can
be optimized.

4.3 Optimizing the hot spot

Presumably, this ”look near the file’s first data zone” behaviour is intended to
prevent fragmentation of the file system by writing new data zones of a growing
file as near after the old zones as possible. However, as explained above, this
will cause increasing search overhead for every zone written beyond the first.
This would make a machine running MINIX very unsuitable to operate as for

example a file server or any other type of machine that regularly has to handle
writing large amounts of data to disk. By altering write.c to always use the
value for the file system’s first data zone instead of the file’s first data zone, this
overhead can be reduced significantly. However, this will come at the cost of a
higher probability of file system fragmentation, because no effort will be made
anymore to keep the zones of a file together.

To solve this problem, the idea of keeping track of the last found free zone
can be extended to the file level. By introducing a field i_zsearch to the inode_t
structure as defined in inode.h, we can keep track of the last data zone allocated
to a specific file. By adding a line to the function get_inode() in inode.c this field
is initialized to the value NO_ZONE to signal that no zones have been allocated
to this file since it has been opened. The last change is to write.c, where the
policy of defining the search base is changed. Whenever a new zone is needed
for a file, the mfs first checks if i_zsearch is set. If it is, this value is used as
the search base. If it is not set, the mfs next checks if the file has a first data
zone set. If it has, this value is used as the search base. For large files, this may
cause a long search through the zone bitmap, just as in the original situation.
However, this will happen only once, because on the next run, i_zsearch will
be set. If the first zone is not set, alloc_zone() is instructted to search from
the first data zone of the file system, which will cause alloc_zone() to search
from the last found data zone. After alloc_zone() returns, the returned zone
number is stored in the i-node’s i_zsearch field to help the next lookup. In this
situation, the mfs will attempt to allocate new zones for a file near the old zones
to avoid fragmentation, without the overhead of having to skip over zones that
are known to be in use.

Figure 4.3 shows the percentage of samples spent in alloc_bit() compared to
the total number of samples spent in mfs, both for the original file system and
an implementation that uses the optimization suggested above. It is clear from
this graph that the optimized implementation spends less time in alloc_bit()
and also does not suffer from increased search overhead for larger files. Figure
4.3 shows the total number of samples required to write different amounts of
data to a file. This graph shows that for all amounts of data written, the
optimized implementation outperforms the original implementation, and that
the difference increases with file size. All shown figures are the average of three
profiling runs, executed on MINIX 3.1.3b r3052 running inside QEMU with 256
MB RAM on a Mobile AMD Sempron 35004 processor.

5 Conclusion

Performance is an important aspect of every serious operating system. If an
operating system performs poorly compared to alternatives, it is less likely to
become widely adopted. However, finding poorly performing parts of a system
is not trivial: even if you are able to determine that an operation takes more
time than expected, it is still hard to determine where the problem is just by
looking at the code. To help the effort of finding hot spots in MINIX 3, profiling

Percentage of samples spent in alloc_bit()

Number of samples measured

70

60

o
o

N
o

w
o

n
o
T

IUnoptimize'd —
Optimized ---*---

10+ -
e N .
0 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
Amount of data written (MB)
Figure 1: Percentage of mfs usage spent by alloc_bit()
10000 : : : : : : ———
Unoptimized —+—
Optimized ---x~
9000
8000

7000

6000

5000

4000

3000

2000

1000

100 150 200 250 300 350 400 450 500
Amount of data written (MB)

Figure 2: Number of samples needed to write data to a file

tools have been developed that can analyze which parts of the system use up
most of the machine’s time.

This paper has shown how the statistical profiling tool can be used to find
hot spots in parts of the system. It is hard to locate a hot spot by letting the
system do a lot at once, but when it is known where to look, for example because
of experienced low performance when performing a specific task, the profiler can
be used to look into the system to see where all that time is spent. Then, when
the source of the problem is found, a skilled programmer can look into that
source and take the problem away, such as has been done to the part of the mfs
described in this paper. However, it is not easy to determine which parts of
the system are performing below par. What would be valuable to finding and
optimizing hot spots would be to know how various parts of MINIX perform as
compared to other operating systems, so that poorly performing parts stick out.
A set of automated benchmark tools available for multiple platforms would be
very valuable to this end.

References

[Meurs] Rogier Meurs. (August 2006). Building Performance Measurement
Tools for the MINIX 3 Operating System. Minixz 8 documentation. Retrieved
January 1 2007, from http://www.minix3.org/doc/meurs_thesis.pdf

[Tanenbaum] Andrew Tanenbaum and Albert Woodhull. Operating Systems,
Design and Implementation (3rd edition). Prentice Hall, 2006

6 Appendix A: output listings

Listing

1: statistical profile for "make fresh hdboot”

Showing processes and functions using at least 17 time.

Data file: profile.stat.out

System process ticks: 56910 (55%)
User process ticks: 46044 (44%) Details of system process
Idle time ticks: 1099 (1% samples, aggregated and
—————————— -——= per process, are below.
Total ticks: 104053 (100%)

Total system process time

56910 samples

clock __receiv sokokok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 35.3%
system _phys_co sokokokok ok ok ok ok 16.1%
system fill_sta ssckxskokiokksok 6.7%
System __receiv x¥kkkkkkkk 6.1%

vfs __sendre s xkkkxk 3.3%
system _lock_se *x¥x*x 2.7%h
vEs __receiv ¥k¥* 2.2%

mfs __sendre kk*x 2.0%

mfs __receiv kk*x 2.0%

vfs __send %%k 1.9%

mfs __send *%¥% 1.4Y%
system _isokend ** 1.2%
<1% * ** 19.1%

total 100.0%
system 37.8), of system process samples
_phys_co sokokok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk 42.6%
fill_sta sokokokok ok 17.6%
__receiv *okkok 16.2Y%
_lock_se ¥kkokkokkokkok 7.2%
_isokend *kkxx 3.2%
_do_vdev x¥*x 2.6%
_umap_lo *¥x*x 2.0%
_virtual *** 1.8%
_sys_tas *x¥x* 1.8%
_do_copy ** 1.1%
<1Y, wkokrkk 3.9%
system 100.0%
clock 35.3), of system process samples
__Treceiv eokokskokok ok ok ok ok ok 100.0%
<1 * 0.0%
clock 100.0Y%
mfs 12.0% of system process samples
__sendre *x* sokokok ok ok ok ok ok kR ok ok ok ok ok ok ok ok ok sk 16.4%
__receiv *x* koo ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk 16.3%
__send sk ok sk ok ok ok ok ok ok o ok o ok ok ok ok ok 11.8Y%
search *k 6.9%

__notify *%k 5.2%
_get_blo x¥skkkskiokkiokkk 3.2%
_fs_read skkkokkokkokkok 2.6%
_put_blo kxkxkxkkkk 2.3%
_read_ma kkkkkkkkk 2.3%
_parse_p kxkxkkkkk 2.2%
_main skkskskskskskk 1.9%
_get_nam kxkxkxx 1.7%
_rw_chun *kkxk*k 1.6%
_get_ino skkkxkk 1.5%
_put_ino x¥kx*x* 1.3%
__taskca *x*x* 1.3%
_rm_lru **kkk 1.2%
_find_in *kkxx 1.2%
_convéd ¥kkxk 1.1%
_lookup **kkx* 1.1%
_strncmp *¥*kx 1.1%
<1% Fokokokokokkokokkok ok ok 15.8%
mfs 100.0Y%
vis 11.1% of system process samples
__sendre sk ok 3k ok 3 ok K ok ok 3k ok 3 ok ok ok oK ok K sokkokkok 30.0%
__receiv sk ok 3 oKk ok ok ok ok 3 ok ok oK 3 ok K ok ok 3 ok o ok K K 19.6Y%
__send K 3K ok ok 3k 3k 3k ok K oK ok oK ok kK 17.4Y%
_find_vn *kkkkkskk 3.5%
_read_wr x¥kx** 2.7h
no0 k¥kkkk 2.7%
_fs_send *%*x* 1.7%
_main *k¥* 1.5%
_Xlookup *** 1.3%
_get_fil *xx* 1.2%
_get_wor xxx 1.2%
_req_loo *¥* 1.0%
<1% sk 3k ok ok ok ok ok K 16.2%
vis 100.0%
pm 3.2% of system process samples
__receiv koo ok ok ok ok ok kR ok ok ok ok ok ok ok ok sokkokskok 20, 7%
__send ok ok ok ok ok ok ok ok ok ok ok 17.3%
__sendre sokokokokokokkokkok ok 17.2%
_main KKK KA KK KA K 15.7%
__syscal k¥kkkkkkkk 3.0%
_send_wo skkkskokskokskok 2.8%
_pm_isok *¥kkkkk 2.2%
__notify ¥kxkkk 2.1%
__taskca x¥kxkkk 2.0%
_get_wor x¥kxxx* 1.8%
_adjust #kkkk 1.5%
_real_br ¥k 1.0%
<19, Kok ok ok ok ok o koK ok ok o o K oK 12.7%
pm 100.0Y%
processes <1 (not showing functions) 0.6% of system process samples
total 100.0%

Listing 2: statistical profile for writing 50 MB

Showing processes and functions using at least 17 time.

Data file: profile.stat.out

System process ticks:

User process ticks:
Idle time ticks:

Total ticks:

786 (100%)

0%) Details of system process
0%) samples, aggregated and
-——= per process, are below.

789 (100%)

Total system process time 786 samples
system __receiv sk ok 3k ok 3 ok K ok ok 3k ok 3 ok K ok oK ok K 13.7%
clock __receiv sk ok 3k ok 3 ok K ok ok 3k ok o ok ok ok oK ok K 12.5Y%
system fill_sta koo kokok ook kokok ok ok 10.1%
system _phys_co okokkokok ook kokokokok 9.0%
mfs _alloc_b Fokkokok ok ok 7.8%

mfs slword 5.6%
system _lock_se skkskkskkskkskkskkkk 4.3Y%
system _do_vdev s kskkxkkokkkkkkkkk 4.3%
at_wini __sendre ¥kkkxkkkkkx 3.2%
mfs _get_blo *kkkkkkkk 2.5%

mfs __receiv kk¥kkkk 1.9%

mfs __sendre sk¥¥xx 1.5%

vfs __sendre sxkkkxk 1.5%
system _isokend *x¥x*x 1.4Y%
system _umap_lo *x¥x*x 1.3%
mfs _rw_scat x¥x* 1.1%
system _sys_tas *¥*x* 1.0%
vEs __send ¥kx¥* 1.0%

<19 * sokokokokkko sk kok ok ok 16.3Y%

total 100.0Y%
system 48.5% of system process samples
__receiv sokokok ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk 28.3%
fill_sta KRRk kKKK K 20.7%
_phys_co KKK KA KKK KK 18.6%
_do_vdev 8.9%
_lock_se 8.9Y%
_isokend *¥kxkkk 2.9%
_umap_lo *¥kx** 2.6%
_sys_tas x¥*xx 2.1%
_virtual *x** 1.3%
_do_umap *** 1.0%
verify k% 1.0%
<K1Y Fkokokokokkok 3.7%
system 100.0Y%
mfs 29.6% of system process samples
_alloc_b sokokok ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok sokkk 26.2%
slword sk ok 3 ok 3 ok ok ok oK 3 ok ok K 3 ok ok ok 3k ok ok ok K 18.9%
_get_blo 8.6%
__Treceiv ¥ kkkkkokkokkokkokkokk 6.4
__sendre ¥ ¥kkkkokkkkkkk 5.2%
_rw_scat skkkokskokskokok 3.9%
_write_m skkokokokokok 3.0%
_rm_lru kkkkkkkk 3.0%

10

_put_blo ok ok ok ok ok sk k
_rd_indi kxkkxkk
_cpf_rev 3k 3k ok ok K
__send **¥kxx*
_read_ma **x*kx
_rw_chun ***kx
_cpf_new ¥k
_fs_read **x*x*
_get_sup *okok ok

B e e e e e LVl S)
X

_convéd ¥k 3%
K1Y seskskokskokskokskokskok sk ok sk ok koK 3%
mfs 100.0%
clock 12.5% of system process samples
__Treceiv eokook sk koK sk ok sk ok ok k ok *x 100.0%
<1% * 0.0%
clock 100.0Y%
vis 5.2% of system process samples
__sendre koo ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sokkk 29, 3%
__send KKK KA KKK KK 19.5%
__receiv sk 3k ok ok ok ok ok ok 3k ok ok ok ok 17.1%
_get_wor sokok 9.8%
_main kkkkkkkokkkk 4.9%
_get_fil sxskkkskokkkkk 4.9%
_ex6410 **kkkxk 2.4%
_fs_send *kkxkk 2.4%
__taskca x¥kx** 2.4
no0 *k¥kkkk 2.4
_req_rea ¥¥kx¥* 2.4%
_cmpB4ul **kx*k 2.4
<1% * 0.1%
vis 100.0%
at_wini 4.2} of system process samples
__sendre sk ok ok ok ok ok ook ok ok ok ok ok ok oK **kxk 75.8%
_w_trans kkkkkk 6.1%
_setup_d x¥*x¥* 6.1%
_sys_saf *x¥x* 3.0%
_remB4u *¥* 3.0%
__Treceiv %k 3.0%
__taskca %%k 3.0%
<1% * 0.0%
at_wini 100.0%
processes <1 (not showing functions) 0.0% of system process samples
total 100.0Y%

11

Listing 3: file writing test program

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>

#define BUF_SIZE (10 * 1024)

#define FILE_SIZE (50 * 1024 * 1024)
#define NUM_RUNS FILE_SIZE / BUF_SIZE
#define OUTFILE_NAME "/usr/tmp/file.out"

/* £ill a buffer with repeating lowercase alphabet */
void init_buf (char *buf, size_t buf_size) {
int i;
for (i = 0; i < buf_size; i++) {
buf[i] = (char)(i % 26 + ’a’);
}
}

/* main function */

int main (int argc, char **argv) {
char buf [BUF_SIZE];
int i;
int fd;

/* open output file */
fd = open(OUTFILE_NAME, O_WRONLY | O_CREAT | O_TRUNC);
if (fd < 0) {
perror("open");
exit(1);
}

/* £ill buffer with verifiable contents */
init_buf (buf, BUF_SIZE);

/* write data to file */

for (i = 0; i < NUM_RUNS; i++) {
write(fd, buf, BUF_SIZE);

}

return 0;

12

7 Appendix B: altered source files

File: /usr/src/servers/mfs/inode.h (complete)

/* Inode table. This table holds inodes that are currently in use. In some
* cases they have been opened by an open() or creat() system call, in other
* cases the file system itself needs the inode for one reason or another,

* such as to search a directory for a path name.

* The first part of the struct holds fields that are present on the

* disk; the second part holds fields not present on the disk.

* The disk inode part is also declared in "type.h" as ’dl_inode’ for V1
* file systems and ’d2_inode’ for V2 file systems.

*/
#include "queue.h"

EXTERN struct inode {
mode_t i_mode; /* file type, protection, etc. */
nlink_t i_nlinks; /* how many links to this file */
uid_t i_uid; /* user id of the file’s owner */
gid_t i_gid; /* group number */
off_t i_size; /* current file size in bytes */
time_t i_atime; /* time of last access (V2 only) */
time_t i_mtime; /* when was file data last changed */
time_t i_ctime; /* when was inode itself changed (V2 only)x*/
zone_t i_zone[V2_NR_TZONES]; /* zone numbers for direct, ind, and dbl ind */

/* The following items are not present on the disk. */

dev_t i_dev; /* which device is the inode on */

ino_t i_num; /* inode number on its (minor) device */

int i_count; /* # times inode used; 0 means slot is free */

int i_ndzones; /* # direct zones (Vx_NR_DZONES) */

int i_nindirs; /* # indirect zones per indirect block */

struct super_block *i_sp; /* pointer to super block for inode’s device */
char i_dirt; /* CLEAN or DIRTY */

char i_pipe; /* set to I_PIPE if pipe */

bit_t i_zsearch; /* where to start search for new zones */

char i_mountpoint; /* true if mounted on */

char i_seek; /* set on LSEEK, cleared on READ/WRITE */
char i_update; /* the ATIME, CTIME, and MTIME bits are here */

LIST_ENTRY(inode) i_hash; /* hash list */
TAILQ_ENTRY(inode) i_unused; /* free and unused list */

} inode[NR_INODES];

/* list of unused/free inodes */
EXTERN TAILQ_HEAD(unused_inodes_t, inode) unused_inodes;

/* inode hashtable */
EXTERN LIST_HEAD(inodelist, inode) hash_inodes [INODE_HASH_SIZE];

EXTERN unsigned int inode_cache_hit;
EXTERN unsigned int inode_cache_miss;

#define NIL_INODE (struct inode *) O /* indicates absence of inode slot */

/* Field values. Note that CLEAN and DIRTY are defined in "const.h" */

#define NO_PIPE 0 /* i_pipe is NO_PIPE if inode is not a pipe */
#define I_PIPE 1 /* i_pipe is I_PIPE if inode is a pipe */
#define NO_SEEK 0 /* i_seek = NO_SEEK if last op was not SEEK */
#define ISEEK 1 /* i_seek = ISEEK if last op was SEEK */

File: /usr/src/servers/mfs/inode.c (altered functions only)

13

/

* get_inode *

PUBLIC struct inode *get_inode(dev, numb)
dev_t dev; /* device on which inode resides */
int numb; /* inode number (ANSI: may not be unshort) */
{
/* Find the inode in the hash table. If it is not there, get a free inode
* load it from the disk if it’s necessary and put on the hash list
*/
register struct inode *rip, *xp;
int hashi;

hashi = numb & INODE_HASH_MASK;

/* Search inode in the hash table */
LIST_FOREACH(rip, &hash_inodes[hashi], i_hash) {

if (rip—>i_num == numb && rip->i_dev == dev) {
/* If unused, remove it from the unused/free list */
if (rip->i_count == 0) {

inode_cache_hit++;
TAILQ_REMOVE(&unused_inodes, rip, i_unused);

++rip->i_count;
return rip;

inode_cache_miss++;

/* Inode is not on the hash, get a free one */
if (TAILQ_EMPTY (&unused_inodes)) {
err_code = ENFILE;
return NIL_INODE;
}
rip = TAILQ_FIRST(&unused_inodes);

/* If not free unhash it */
if (rip->i_num != 0)
unhash_inode (rip) ;

/* Inode is not unused any more */
TAILQ_REMOVE (&unused_inodes, rip, i_unused);

/* Load the inode. */
rip->i_dev = dev;
rip->i_num = numb;
rip->i_count = 1;
if (dev != NO_DEV) rw_inode(rip, READING); /* get inode from disk */
rip->i_update = 0; /* all the times are initially up-to-date */
rip->i_zsearch = NO_ZONE; /* no zones searched for yet */
if ((rip->i_mode & I_TYPE) == I_NAMED_PIPE)
rip->i_pipe = I_PIPE;
else
rip->i_pipe = NO_PIPE;
rip->i_mountpoint= FALSE;

/* Add to hash */
addhash_inode (rip) ;

return(rip);

}

File: /usr/src/servers/mfs/write.c (altered functions only)

* new_block

14

PUBLIC struct buf *new_block(rip, position)

register struct inode *rip; /* pointer to inode */

off_t position; /* file pointer */

{

/* Acquire a new block and return a pointer to it. Doing so may require
* allocating a complete zone, and then returning the initial block.
* On the other hand, the current zone may still have some unused blocks.

*/

register struct buf *bp;
block_t b, base_block;
zone_t z;

zone_t zone_size;

int scale, r;

struct super_block *sp;

/* Is another block available in the current zone? */
if ((b = read_map(rip, position)) == NO_BLOCK) {
if (rip->i_zsearch == NO_ZONE) {
/* First search so far, start looking from file’s first zonme.
* This tries to prevent file system fragmentation by
* keeping zones that belong to the same file as close
* together as possible */
if ((z = rip->i_zone[0]) == NO_ZONE) {
/* no first zone for file either */
z = rip->i_sp->s_firstdatazone; /* let alloc_zone decide */
}
} else {
/* searched before, start from last find */
z = rip->i_zsearch;
}
if ((z = alloc_zone(rip->i_dev, z)) == NO_ZONE) return(NIL_BUF);
rip->i_zsearch = z; /* store for next lookup */
if ((r = write_map(rip, position, z, 0)) != OK) {
free_zone(rip->i_dev, z);
err_code = r;
return(NIL_BUF);
}

/* If we are not writing at EOF, clear the zone, just to be safe. */

if (position != rip->i_size) clear_zone(rip, position, 1);

scale = rip->i_sp->s_log_zone_size;

base_block = (block_t) z << scale;

zone_size = (zone_t) rip->i_sp->s_block_size << scale;

b = base_block + (block_t)((position % zone_size)/rip->i_sp->s_block_size);

}
bp = get_block(rip->i_dev, b, NO_READ);

zero_block(bp) ;
return(bp) ;

15

