
Dynamic Updates and Failure Resilience
for the Minix File Server

Thomas Veerman

A Master’s thesis

in

Computer Science

Presented to the Vrije Universiteit Amsterdam in Partial Fulfillment of the
Requirements for the Degree of Master of Science

May 11, 2009

Dynamic Updates and Failure Resilience
for the Minix File Server

Thomas Veerman

APPROVED BY

prof.dr. Andrew S. Tanenbaum:
(supervisor) ————————————

Jorrit N. Herder:
(second reader) ————————————

Contents

1 Introduction 1
1.1 The MINIX 3 OS . 2
1.2 The Virtual File System Layer 3
1.3 Dynamic Updates and Failure Resilience 5
1.4 Decoupling VFS and MFS . 5
1.5 Outline of the Thesis . 6

2 Related Work 7
2.1 Dynamic Updates . 7

2.1.1 Classification . 9
2.1.2 Languages and runtime systems 9
2.1.3 Dynamic updating mechanisms in operating systems . . . 11
2.1.4 Binary patchers . 12
2.1.5 Programs with built-in dynamic update mechanisms . . . 15

2.2 Failure Resilience . 16

3 Dynamic Updates and Failure Resilience 19
3.1 General observations . 19
3.2 Dynamic Updates . 20
3.3 Resilience to FS crashes . 22

3.3.1 Shared memory regions 22
3.3.2 Transactions . 23
3.3.3 Data structures temporarily in use 25

3.4 Request queueing . 26
3.5 Asynchrony . 26

4 Decoupling VFS and MFS 28
4.1 General Request Handling . 28

4.1.1 Processing Requests to VFS 29
4.1.2 Serializing requests to MFS 31

4.2 Locking model . 33
4.3 Threads vs. Continuations . 33

4.3.1 Threaded design . 34
4.3.2 Design based on Continuations 36

4.4 Comparison . 39

5 Summary and Conclusion 42

iv

A Request listing 47
A.1 VFS-MFS requests . 47
A.2 PM-VFS requests . 48

B Design comparison 49
B.1 chmod . 49
B.2 lookup . 53
B.3 read . 61

v

List of Figures

1.1 The compartmentalized design of Minix 3. 2
1.2 File system related system calls go through VFS. 3
1.3 Communication flow of file status retrieval. 4

2.1 State is copied from the old program to the new program. 8
2.2 Indirection is used with updated pointers. 8
2.3 DynamicML using two semi-segments. 11
2.4 multics using indirection with updated pointers. 12
2.5 Server State Regions . 18

3.1 VFS/FS communication with transactions. 23

4.1 General code structure. 29
4.2 Possible execution orders of stat and unlink on the same file. . . 31
4.3 Code structure threads. 35
4.4 Code structure continuations. 37
4.5 Each FS has its own request queue and put node queue associated 38

vi

Abstract

Minix 3 is a multi-server operating system based on a microkernel. The rein-
carnation server provides failure resilience for stateless services by monitoring
them at run-time and restarting them if a failure is detected. Also, the rein-
carnation server provides dynamic updates by replacing stateless services with
a new version after, for example, a bug fix.

However, many services are not stateless and cannot rely on the services pro-
vided by the reincarnation server. In this thesis we give an overview of existing
methods that enable dynamic updates and failure resilience. Then we describe
methods to implement dynamic updates and failure resilience for the Minix File
Server. Additionally, this thesis presents a comparison of using threads and
continuations to implement dynamic updates and failure resilience. Both ap-
proaches are capable of implementing all requirements, but our conclusion is
that threads are preferable to continuations.

Chapter 1

Introduction

In August 2006 the Minix File Server (MFS) was separated into two layers; an
upper layer called the Virtual File Server (VFS) and a lower layer consisting of
several File Servers (FSes) [12]. System calls addressed to the file system are
handled by the VFS and later dispatched to the FS handling that part of the file
system designated by the system call. This model allows the implementation
of multiple file systems while maintaining a uniform interface to access files on
these file systems. Moreover, separating the file system into several stand-alone
processes ensures that a crash of an FS cannot influence other parts of the file
system. However, currently when an FS crashes it drags VFS with it.

In this thesis we describe a technique that provides failure resilience for VFS;
this technique allows for a transparent restart of an FS when it crashes such
that work can continue after it has been restored. We also look at dynamic
update for FSes where we try to transparently install a new version of an FS
without rebooting the Operating System (OS). These techniques are related to
each other as they both involve stopping execution of a running program, save
state of the program, start a new copy of the stopped program, and restore
state afterwards. In a sense, we can regard dynamic update as a special case of
failure; one where the program fails in a controlled way.

Currently only the Minix File System is implemented in a server called
MFS (a future release of Minix will include ISOFS). In this document we will
be focusing on VFS/MFS only, but our findings will generally be applicable to
future FSs as well (e.g., FAT, EXT{2,3}).1

The rest of this chapter is organized as follows. In Section 1.1 we will briefly
discuss the general architecture of Minix 3 followed by an overview of the
structure of VFS in Section 1.2. Then we present a more thorough discussion
of dynamic update and failure resilience in Section 1.3 and give an introduction
of our VFS designs in Section 1.4. Finally, we give an outline of the rest of this
thesis in 1.5.

1We use the term FS and MFS interchangeably throughout this document. When dis-
cussing in more general terms we use FS, while we use MFS when we focus more on the one
implementation that is currently available.

1

Figure 1.1: The compartmentalized design of Minix 3.

1.1 The MINIX 3 OS

Minix 3 is a multi-server operating system designed to be highly dependable
[18]. It has a microkernel which does a few very basic tasks (e.g., interrupt
handling, process scheduling, and inter-process communication (IPC)) running
in kernel mode and on top of that a layer of drivers and servers running in user
mode as shown in Fig. 1.1.

The kernel consists of about 4000 lines of code and does only the bare mini-
mum. It programs the MMU and CPU, does interrupt handling, provides IPC,
and schedules processes. Additionally, the kernel has two processes compiled
into kernel space: the clock task and system task. The clock task is an I/O
driver that handles the clock hardware. However, as the kernel routines depend
on this driver and it only interfaces with the kernel –user processes cannot access
it directly– it is made part of the kernel. Other drivers are all in user space. The
system task provides a set of privileged kernel calls that can be used by drivers
and servers that require low-level kernel-mode operations. Although the clock
and system task are part of the kernel, they are scheduled as separate processes
and have their own call stacks.

On top of the kernel runs a layer of drivers that interact with the hardware.
They are implemented as independent user-mode processes that are restricted
in which privileged operations they can do. Due to their isolated nature they
cannot influence other drivers or the kernel in the face of a crash (e.g., by over-
writing data structures with corrupt data). Some drivers can even be restarted
transparently and continue their operations as if nothing has happened. For
example, the network driver can fail and be restarted. The user notices only a
very small decrease in network speed (i.e., only noticeable for frequent driver
crashes) [17].

Finally, there is an upper layer consisting of posix-compliant servers that
work together with drivers to provide the functionality found in Unix-like op-
erating systems. Just like drivers, servers are restricted in what they are ca-
pable of. The Process Manager (PM) and Virtual File Server together imple-
ment the posix interface for application programs. PM itself handles process
management and signaling. For example, starting and stopping of programs
and priority assignment. It also maintains the relation between processes such

2

Figure 1.2: File system related system calls go through VFS.

as parent-child relationships and process groups, and allocates and deallocates
memory (as of Minix 3.1.4 memory is handled by a separate VM server). VFS
handles the file system in cooperation with one or more File Servers. The Rein-
carnation Server (RS) has the important role of managing privileged processes
(i.e., servers and drivers). It starts and stops servers and drivers and makes
sure they are alive; it keeps an eye out for crashed and failing processes. The
former is achieved as follows. All servers and drivers are marked as children
of RS during system initialization. RS then simply waits for SIGCHLD signals,
which are sent to parent processes when a child exits. The latter is done by
sending a heartbeat message to processes and then wait for a response. When
a process fails to respond in time, it is regarded as failing and is shutdown and
subsequently restarted. Finally, there is the Data Store (DS). It acts as a small
database with publish-subscribe functionality. A system process can store infor-
mation and another system process can subscribe to it. When the stored value
changes, all subscribers are notified of the new value.

1.2 The Virtual File System Layer

As mentioned earlier the Minix File Server is organized in two layers: a top
layer consisting of the Virtual File Server and a bottom layer consisting of several
File Servers. The FSes each manage a file system on a disk partition. Processes
communicate with VFS to do file system related system calls. VFS then talks
to the FSes and sends back a reply, as depicted in Figure 1.2.

The figure shows a user process talking to VFS and three FSes that each
hold a part of the file system. In this situation the file system on the hard disk
is spread out over three partitions; one partition holding the root of the file
system, one holding the /usr tree of the file system, and one holding the /home
tree. VFS glues the FSes together into one tree. When VFS is done with the
request it sends back a message with the result. In some situations the result
will not fit in a message. For example, when reading data from disk or asking
for the status of a file. When that happens an FS copies the result directly to
a buffer inside the process and VFS will only tell how many bytes were read or
that the operation was executed successfully.

Now, let us look at an example of how communication works between a

3

Figure 1.3: Communication flow of file status retrieval.

process, VFS, and the FSes when we retrieve the file status of /usr/bin/cc in
Figure 1.3. The following happens. The process does the system call and VFS
starts by looking up which inode belongs to cc (1). The string “/usr/bin/cc”
is checked by VFS to find out whether the path is absolute or relative (i.e., if
the path starts or does not start with a /, respectively). If the path is relative
the lookup starts at the current working directory. Else the lookup starts at the
root of the file system.2 VFS then sends a lookup request to the FS holding the
inode from where we start looking; in this case the request is sent to the root-FS
(2). The root-FS subsequently parses the string directory by directory until it
reaches the file it was looking for or if it finds out the lookup cannot continue
on this FS. For example, if we move up in the file system tree to a higher FS
or down in the tree to a lower FS. The former is called leaving a mount point
and the latter entering a mount point. In this case usr is located on a lower FS
and we will therefore enter a mount point. The root-FS then replies (3) to VFS
“enter mount point” along with how much path characters were processed (in
this case 1 –the starting /). VFS then looks up in a mount point table which FS
belongs to usr, and asks it to continue the look up of “usr/bin/cc” (4). The
usr-FS parses the path up to “cc”, which results in opening bin and looking up
the inode in that directory that belongs to cc. This inode number is sent back
to VFS (5).

VFS now knows that /usr/bin/cc is on the usr-FS and what its inode is.
It then sends a req stat request for that inode to the usr-FS (6). The usr-FS
executes the request and copies the result to a buffer in the originating process
that did the system call (result). VFS is notified everything went well (7) and
in turn replies to the user process the operation was successful (8). System calls
are blocking requests, so the reply will unblock the process.

2Or to be more precise, at the root of the file system relative to the process. A process can
be in a jailed environment where the root of the file system is changed to a confined part of
the file system.

4

1.3 Dynamic Updates and Failure Resilience

Dynamic update is a mechanism that allows software updates and patches to
be applied to a running system without loss of service or down-time [6]. Having
such a mechanism implemented in software is advantageous, because there is
less need to restart the OS (downtime). A study on Windows NT showed that
unplanned downtime more than twice as often is caused by software rather than
hardware failures; moreover, reboots due to maintenance are responsible for 24%
of downtime [34].

In this thesis we present a mechanism that implements dynamic updates for
the file system. The mechanism allows an FS to be updated while the rest of
the system keeps running.

In Minix 3, reliability is achieved by fault isolation and failure recovery.
Faults are isolated by putting most code in isolated user-mode processes and
keep only the bare minimum in a microkernel. If a driver becomes corrupt due to
a bug and shows undefined behavior, it can never change data structures of other
drivers or the kernel. A driver that has crashed or has become unresponsive is
replaced by a fresh copy. This way the system can recover from a failure in,
for example, a disk driver. Recently support for protection against block-device
driver errors was added to Minix. The protection achieves end-to-end integrity
and is able to detect silent data corruption [19].

There are, of course, situations where Minix cannot recover from a failure.
For example, if VFS or RS fail, there is no way to recover. In the former case
there is no file system from which we can read the binary image of a program.
Also, VFS plays too big a role in the execution of a program even if the image
was somehow stored in memory. In the latter case the (grand) parent of all
processes died and all logic to start or stop privileged processes is gone.

To simplify the recovery model some processes are regarded as trusted and
being stable. No measures are taken to recover from failure. If one of these
processes fail, the operating system is likely to come to a halt. On the other
hand, processes that are not trusted should never lead to a system wide crash.
For example, drivers are not trusted. Everyone can write a driver and do a
lousy job. The recovery model of Minix 3 tries to overcome failing drivers.
File Servers, which can be considered as a special class of drivers, are also not
trusted, but currently lack a recovery model. If one of them currently fails, they
will lead to failure of VFS as well. The recovery model used for drivers cannot
be applied to FSes, because FSes are stateful. If an FS crashes it could lose
data that was not yet written to disk, possibly leading to file system corruption.
Moreover, VFS assumes certain state in an FS which would not be present after
a restart. We will present a mechanism for VFS that provides resilience against
failing FSes.

1.4 Decoupling VFS and MFS

Asynchronous communication is needed between VFS and FSes to enable VFS
to not block when an FS fails and to support request queues that are needed to
implement dynamic updates and failure resilience (see Chapter 3).

When communication is asynchronous, the sender of a message does not wait
for an answer. This is convenient when the sender only wants to tell the listener

5

about an event and is not interested in results. In our case, however, the sender
is interested in results. This leads to a few problems. For example, when we
receive a reply, we have to somehow distinguish between a result of a request
sent earlier to an FS and a new incoming request from a user process. Also, as
there is no direct relation between sending a request to an FS and receiving a
reply, the reply can be a result of any request sent earlier. That is, we have to
figure out to which request the reply belongs to.

An advantage of asynchronous communication is that we do not waste time
waiting for a reply. Instead, we can do other useful work; we can handle mul-
tiple requests concurrently. However, multiple requests can all access the same
(global) data structures within VFS. Access to these data structures needs to be
protected, or we risk race conditions and potentially deadlocks. We introduce a
locking model which provides this protection.

Another consequence of handling requests concurrently is that we risk that
system calls are executed interleaved, leading to a different result when they
would be executed sequentially. We solve this by serializing all requests. This
means that all requests belonging to a system call are executed by an FS before
requests of another system call are handled (by the same FS).

In Chapter 4 we describe two designs that provide for this kind of commu-
nication; one based on threads and one based on continuations. The threaded
design is based on a user-space threading library (Minix currently lacks sup-
port for kernel threads) [32]. It has a main thread which receives messages and
subsequently spawns a worker thread for each message. The worker thread car-
ries out the work and sends back a reply to the originating process. When it
sends a request to an FS it suspends itself waiting for an event. Upon arrival
of the reply to the request, the event is fired and the worker thread continues
execution. The continuations design is a big finite state machine that has a
routine for each state. System calls are divided into sub-requests; each sub-
request is separated by an asynchronous communication step. Before and after
communication, state must be serialized and deserialized before and after com-
munication, such that the routine belonging to the request’s state can continue
execution of the system call.

1.5 Outline of the Thesis

The outline of this thesis is as follows. In Chapter 2 we describe related work
on dynamic update and failure resilience. We present a classification model
where dynamic updating systems are divided into four categories based on the
techniques used to implement the systems. Chapter 3 presents techniques to im-
plement both dynamic updates and failure resilience for the VFS. In Chapter 4
we describe how these techniques can be actually implemented in the designs
based on threads and continuations, discuss solutions for issues that arise, and
compare the approaches. Chapter 5 concludes this thesis.

6

Chapter 2

Related Work

In this thesis we want to design a VFS/FS model that allows for dynamic
updates and is resilient against failing FSes. Before we describe our techniques
in Chapter 3, we discuss what others have done. Moreover, based on their work
we were able to devise a classification that could aid in the search for a suitable
dynamic update mechanism.

2.1 Dynamic Updates

Once in a while software needs to be updated in order to add functionality or fix
bugs. Traditionally, the running software is stopped, updated, and subsequently
restarted. In some cases the entire OS has to be restarted. This downtime
could be very costly or simply intolerable. For example, telephone systems
are required to have a downtime of no more than 2 hours within 40 years [28],
financial institutions have to be able to do transactions at all times or risk losing
revenue, and none-stop systems need to be able to update software without
having to interrupt the service they are providing.

Solutions to this problem are based on redundancy and dynamic updates.
Redundant hardware is used to support high load spikes, but can also be used
to replace software. Parts of the system can be shut down for maintenance,
while the rest of the system keeps serving requests using the old software [26].
However, these systems are expensive and difficult to build. Also, there are
less complex situations that need updating and not having to interrupt service
would be a big advantage. For example, it would be convenient not having to
reboot your desktop each time the operating system is updated. One way to
achieve this is to apply dynamic updates. In literature, dynamic updates are also
referred to as Dynamic (Software) Updating Systems, dynamic modification [14],
on-the-fly program modification[11], on-line version change [15], live updates or
hot updates [2].

Every dynamic updating system makes use of either two base techniques:

1. A new program is started and state of the old program is copied to the
new program.

2. Indirection is used with updated pointers.

7

Figure 2.1: State is copied from the old program to the new program.

With the first technique a running program is replaced with a newer version
of the same program, as shown in Figure 2.1. Upon update, the running program
is suspended, a copy of the new version is started, state is copied from the old
program to the new program, and the old program is killed. It is possible that an
update not only involves fixing a bug, but also a change in the data structures.
During copying of the program state these data structures can be adapted to
the new version (e.g., adding or removing fields) using state transfer functions.

The second technique revolves around the usage of a table of pointers to
procedures. An indirect pointer points to a procedure which is resolved when
it is called. Updating the pointer in the table to point to a new version of a
procedure results in an updated program. In Figure 2.2 an indirection table is
shown.

Figure 2.2: Indirection is used with updated pointers.

A program uses an indirect pointer to access procedure x. Upon update
the pointer in the table is changed and now points to a different routine x new.
When a program calls the procedure using the indirect pointer, the new version

8

will be called instead of the old version. Changes to procedure interfaces are not
supported as the program doing the procedure call is not aware of any changes
(i.e., function parameters cannot be altered). A variation on this scheme exists
that does allow interface changes. All references to the old procedure in the
code segment are updated to point to a new version (i.e., no indirect pointers
are used). This approach is much more tricky, because you have to cope with
calls to the old procedure that still exist on the stack and could return different
results than expected.

2.1.1 Classification

In the past software-based updating systems have been classified by different
types of software updating systems [28];

• replacement of abstract data types in programs,

• replacement of servers in client-server systems,

• updating of distributed programs that use externally specified communi-
cation topologies, and

• programs written in procedural languages.

Also, a classification based on the language (i.e., high level versus C/C++) and
domain-specific solutions (client-server, distributed systems, OS kernels) has
been used [4].

Here we introduce a classification based on the way the dynamic update
mechanisms are constructed:

1. Languages and runtime systems; dynamic updates are supported by a
specific language, often backed by a (modified) runtime system.

2. Dynamic updating mechanisms in operating systems; dynamic update
mechanisms provided by the operating system.

3. Binary patchers; systems (compilers, linkers, tools) generating binary
patches that modify the running program in the code and/or data seg-
ments and the stack.

4. Programs with built-in dynamic update mechanisms; programs that have
routines facilitating dynamic updates built in.

2.1.2 Languages and runtime systems

This class of dynamic updating systems provides program modifications by using
a specific language (often additions to existing languages). In some cases the
language uses a runtime system (interpreted languages) or is based on a modified
existing runtime system (e.g., Java Virtual Machine).

Disadvantages of these type of dynamic updating systems are the use of
a specific language and the use of a runtime system, because it makes them
unsuitable for existing programs in a different language and not applicable for
operating systems (e.g., updates to the kernel).

Example systems are DYMOS [23], DynamicML [13], and JDRUMS [27].
We will discuss DYMOS and DynamicML.

9

DYMOS The DYnamic MOdification System is an integrated programming
system consisting of a command interpreter, text editor, source code manager,
compiler, and runtime support system. The language used is Starmod; a mod-
ular, concurrent programming language based on Modula.

In dymos, a program is updated by replacing modules or only individual
procedures. A new procedure or module is compiled and checked against pre-
vious compile results to enforce type checking. Then a loader loads the new
module or procedure into the core image, locks access to the to-be-updated pro-
cedures to ensure they are not invoked while the update is in progress, updates
the Module Access Table (mat) and Procedure Access Table (pat) respectively,
and unlocks the locked procedures. dymos supports interface changes using
conversion procedures supplied by the programmer. The pat is adapted in such
a way that the address of an old procedure points to the convert procedure.
Subsequently, the convert procedure adapts the call using default parameters
and calls the new procedure. Afterwards, the result is adapted back to the old
interface and the result is returned. A new address is registered in the pat for
calls to the new procedure.

In order to make sure updates are done at the right time, the update com-
mand can be given conditions that have to be met before the update is per-
formed. For example, update P, Q when P idle, to update procedures P and
Q only when procedure P is not in use (i.e., not on the stack). dymos uses
the symbol table that is generated after compilation and the state of the run-
ning program to determine when it is safe to update P and Q. Optionally, a
delete <procedures> argument can be appended to designate procedures that
are no longer needed and can be removed.

Disadvantages of dymos are that it requires source code to be available and
it is easy to make an error in the updating process by not supplying the right
conditions that have to be met before the update is executed.

DynamicML DynamicML is a language based on Standard ML (a statically
compiled functional language) with additions to facilitate dynamic updates.

In DynamicML dynamic updates are done on module-level, with the restric-
tion that modules keep the same interface and type signature. Encapsulated
functions, values, and types can be altered in any way. Modules were chosen as
a unit of update because modules can be compiled in isolation, therefore they do
not require a recompilation of the entire program. Modules are replaced using
a modified garbage collector.

In a uniprocessor implementation the data segment is divided into two semi-
segments; only one semi-segment at a time is used for the heap. When memory
allocation fails, the garbage collector mechanism copies objects still in use from
the semi-segment from to the semi-segment to, resulting in a cleaned up to
segment. The roles of the semi-segments are then swapped (i.e., to becomes the
new from and vice versa).

Figure 2.3 shows how this mechanism can be used for dynamic updates.
While objects are copied to the semi-segment to, some objects are processed by
conversion functions to update them to the new signature implementation. Al-
though the signature interface remains the same, internally data representation
can be significantly changed and might need conversion. When an exception is
raised due to a programming error, a rollback is done by simply swapping the

10

Figure 2.3: DynamicML with the data segment divided in two semi-segments.

semi-segment roles again.

2.1.3 Dynamic updating mechanisms in operating systems

Some operating systems have mechanisms that can be used to provide dynamic
updates. In most cases a level of indirection is used for calls to routines. When
a routine has to be replaced with a new version, the pointer that points to the
old routine is modified to point to the new version.

In general, these kind of dynamic updating systems do not support changes
to the routine interface, and often the implementations require specific mech-
anisms that are not available in other operating systems. However, because
dynamic updates are part of the operating system, they can be applied to every
program. Example systems are multics [8], Dynamic Type Replacement (dtr)
[11], and Dynamically Alterable System (das) [14]. We will discuss multics
and dtr in more detail.

MULTICS multics is an operating system from the 1960s where a procedure
has the ability to use another procedure knowing only its name, without knowl-
edge of its requirements for storage, or which additional procedures it could call
upon in turn.

Each procedure call is made indirectly using a pointer in the linkage segment.
Figure 2.4 shows how this mechanism allows for dynamic updates. A new imple-
mentation of a procedure is loaded and then entries for the old implementation
in the linkage segment are marked invalid. Invoking the old procedure results
in a trap and a transparent relink to the new procedure. Programs that in-
voked the old procedure right before the update can continue running without
a problem as the old code is still available and the interface has not changed.

This mechanism works well, but there is no support for changes to procedure
interfaces or data structures.

Dynamic Type Replacement A mechanism similar to multics is Dynamic
Type Replacement by Fabry that does support changes to data structures. dtr
uses, similar to multics, a level of indirection to provide dynamic updates,
embedded in compilers and mechanisms in the operating system.

In dtr, a new code segment for a routine is loaded, and the capability1 in

1In a capability-based addressing scheme, pointers are replaced by protected objects called
capabilities. These objects can only be created by a privileged process. This allows a strict
protection of which parts of the memory a process is allowed to access, making separate

11

Figure 2.4: Indirection is used with updated pointers. Upon update, the old
pointer is replaced by a trap and a new version of the procedure is registered in
the pointer table. Invocation of the old version leads to a trap and transparent
relink.

the call routine to the old code segment is replaced by a new capability pointing
to the new code segment. To support new data structures, every data structure
carries a version number. In the indirect call to a routine, a check is done on
the version of the data structure in use and the version expected by the new
code segment. If they do not match, a conversion routine is called to update
the old data structure to the new representation.

Disadvantages of dtr are its lack of support for interface changes and the
fact that it needs a capability-based addressing scheme (although Fabry men-
tions it might be possible to use a multics-like addressing environment). Also,
if there are multiple updates and versions the system will have to provide mul-
tiple conversion routines for each update.

2.1.4 Binary patchers

Binary patchers are software updating systems that update programs by mod-
ifying code and data segments and the stack. The range of type of updates
supported among binary patchers differs greatly. Some allow changes to func-
tion interfaces, others do not. Changes to global data cannot always be done,
and although binary patchers can be applied to any program in general, not
every system allows programs to be threaded. Also, programs that heavily rely
on state stored in the kernel can prove to be hard to update by some systems.

Below we describe three example systems called Gupta [15], Ginseng [24]
and Ksplice [2]. Other binary patchers are opus [1] and Hicks [20].

Gupta Gupta is a binary patching system that starts a new process running
the new version of a program, and then copies state from the old version to the

address spaces and the accompanying context switches unnecessary.

12

new version. It uses a normal compiler and linker, requires the program to be
linked to a library that provides helping routines, and a wrapping modification
shell that starts and stops the programs. Because programs are started by the
modification shell, they can be traced with the ptrace system call, allowing the
shell to inspect and modify the address space and machine registers. A program
is replaced by the new version when all routines that have changed are not on
the stack.

The dynamic updating process works as follows. A run module in the mod-
ification shell starts the program. After compiling a new version of the pro-
gram, the user defines a change configuration file listing the functions that have
changed. Then the user issues a replace command in the modification shell, so
the replace module will create a process running the new program. To transfer
state, the old program is made to call a library routine to prepare the transition
process. The replace module then copies the data and stack of the old program
to the new version, followed by the machine registers. To make sure these regis-
ters hold correct values in the new program, they are compared with the symbol
tables and new offsets are calculated. This is also done for all return addresses
on the stack. To support new data structures, the user can write an initializa-
tion routine that converts old data structures to new data structures. However,
support for this is limited to local data only. Function interface changes are
implemented as follows. Suppose functions a, b, and c call z, but z expects dif-
ferent parameters in the new program. Then either functions a, b, and c can be
modified to call z with the new parameters and have all 4 functions registered as
changed in the change configuration file, or make z an interprocedure to new_z

that adapts the parameters to the new version and have only z registered as
changed. The latter solution suffers from a small overhead and risks taking a
long time before it is replaced when it is part of a long running loop.

To copy implicit kernel-state (such as open files) wrappers have to be written
for those system calls that store the state in the program. This works for files,
but it is not available for network sockets. Also, when a program forks off a
child process, the new program will have no relation to that child. Moreover,
the new program will carry a new process ID, which might be a problem for
interprocess communication.

Ginseng Ginseng is a binary patching system consisting of a compiler, a patch
generator, and a runtime system for building updatable software. Programmers
are required to annotate safe update points in the original code (i.e., when it
is safe to do a dynamic update in order not to break the program or produce
faulty behavior). Static analysis is used to associate update constraints to each
update point, as well as to detect bad programmer-annotated update points.

At compile time, Ginseng rewrites the program to make every function call
indirect that will later enable dynamic updates. Also, Ginseng makes use of
type wrapping that wraps a type to carry a version field, and inserts a coer-
cion function that returns the underlying representation wherever the wrapped
type is used concretely. The Ginseng patch generator finds out about changed
functions and types and provides state transformer functions that are run at
update time to convert state. The runtime system marks updates as pending,
and when a safe point is reached, it checks if a pending update can be performed
(that is, if it meets the conditions defined earlier). If it does, it is linked into

13

Original code Rewritten code
struct T {

unsigned int version;

union { struct _T0 data;

char padding[X]; } udata;

}

struct T { struct __T0 {

int x; int x;

int y; int y;

}; };

void foo(int* x) { void __foo_v0(int* x) {

*x = 1; *x = 1;

} }

void * foo_ptr = &__foo_v0;

void __foo_wrap(int* x) {

(*foo_ptr)(x);

}

struct __T0* __con_T(struct T* abs){

__DSU_transform(abs);

return &abs->udata.data;

}

Table 2.1: Ginseng code rewriting enabling dynamic updates[24].

the updatable program.
To update a program, the user sends a signal to the running program that in

turn notifies the runtime system. Initialization code generated by the compiler
is run to glue the update into the program by updating function indirection
pointers and converting state.

Table 2.1 shows how code is rewritten. Data structures and procedures are
renamed and have a version number appended. New data structures are created
with the original name that wrap the original data structure and add a version
number. ptr variables are used to reference original procedures. New wrap

procedures are added as wrappers around the original procedures. Together
with the indirect ptr function pointers this enables dynamic updates. Finally,
con procedure are added to unwrap wrapped data structures.

Because of the heavy use of wrapping and indirection pointers, the updatable
programs suffer from overhead. It was measured to have an overhead of 0 to
32%.

Ksplice Ksplice is a binary patcher that is able to update legacy binaries
(unmodified binaries that have not been prepared for dynamic updates) by
comparing object code of the running binary and the patched binary. By com-
paring object code rather than source code, Ksplice avoids issues that could

14

arise that are not apparent when just looking at the source code. For example,
modification to an implicit cast in a prototyped function requires changes to the
executable code of all functions that call the prototyped function. Also, some
compilers inline code that do not have an explicit inline statement. Failing to
find all occurrences of the function could lead to data corruption and program
instability.

A binary diff reveals all changes in data structures and functions. Adapted
code is dynamically linked with the running binary and jump instructions are
added at the beginning of obsolete functions. When data structures semantically
change between the old and new version, Ksplice allows a programmer to supply
additional code to modify data structures in memory. Ksplice generates and
loads patches automatically without the need for help from a programmer.

Ksplice was primarily developed to install security patches for the Linux
kernel. It supports function interface changes and can modify (global) data
structures. The dynamic update is applied to the running version of a binary,
instead of starting a new binary and copying a modified data segment (which is
impossible for a kernel). However, it does require functions not to be active (i.e.,
cannot update non-quiescent functions), so long running functions will not be
updated. To check a function is not active, Ksplice uses Linux’s stop machine

to grab all CPUs and run a procedure that does a stack inspection to make sure
no thread is currently executing the function.+

Java A system for Java that resembles Ginseng a lot was developed by Orso et
al [25]. A tool called DUSC (Dynamic Updating through Swapping of Classes)
takes a class and rewrites the byte-code so that it is dynamically updatable. To
perform a dynamic update, the system waits for a safe point (i.e., no method of
the classes that are to be updated is executing), creates new instances of the new
classes and copies state of the old instances. Finally it updates reference pointers
to point to the new objects. Classes can be added, removed, or updated. Class
interface changes are not supported, but can be done anyway by registering the
old version as removed and the new version as newly added.

Although this system is based on Java, it requires no changes to the language
nor the JVM. However, it does rewrite byte-code and therefore belongs in the
binary patcher category rather than Languages and runtime systems.

2.1.5 Programs with built-in dynamic update mechanisms

Programs belonging to this category employ techniques that are entirely en-
closed by the program itself. They do not make use of tools that aid in the up-
date2, specific languages that are tailored for dynamic updates, or mechanisms
built into the operating system. Programs that make use of the client-server
technique typically belong in this category. Also, as we will see below, design
patterns can be used to facilitate dynamic updates.

We will discuss Dynamic C++ classes [21] in more detail. An other example
that belongs to this category is dynamic updates in the K42 research kernel
[6, 5].

2Except tools that aid the user in notifying the program that there are updates and what
should be updated.

15

Dynamic C++ classes Dynamic C++ classes allow run-time updates of
an executing C++ program at the class level. The system works with stan-
dard C++ compilers and the use of proxy templates. Using two-level indirec-
tion, method invocations are forwarded to the correct implementation. Interface
changes are not supported because of the use of proxy templates. The templates
remain fixed and only forward invocations. Internally, new class implementa-
tions can invoke newly introduced private methods. There are no state transfer
mechanisms; older versions of objects remain in use. The templates have an
invalidate method that marks all older versions as invalid. If an invalidated, old
version is then invoked, an exception is raised. It is up to the caller to recover
from that (e.g., construct a new object of the new version). Obviously, this
method is to be used carefully.

The advantage of this technique is that it can be applied to any program
written in C++. However, only classes that are made dynamic are supported.
Also, long running dynamic objects are not replaced.

2.2 Failure Resilience

There exist many techniques that limit the scope of a failing component in a
system such that only a part of the system fails. The failing component can
then be restarted and continue service or the complete system is restarted.
For example, in some systems drivers are isolated and can be restarted and
continue their service [30, 17]. However, there are also situations where a failing
component can cause data corruption that might not be reparable. For example,
when an FS fails, it could cause data corruption on disk, leading to an irreparable
file system.

Existing approaches based on hardware use redundant components to pro-
vide fault tolerance [3] or memory protection by using capability-based address-
ing [10] or separate address spaces such that processes can only access memory
appointed to them. Virtual Memory (vm) can provide protection by marking
memory regions read-only. Memory protection only limits the scope of a failed
component, but it does not help recovery.

A different way to achieve failure resilience is based on using high-level, type-
safe languages and runtime systems. These languages and systems can prevent
fault situations from occurring at runtime. Also techniques that check code
correctness can be applied.

Virtualization can be used to limit the amount of code that crash the sys-
tem. In this situation a machine has multiple operating systems running in a
virtual environment. When one of the virtual machines crashes, the others can
continue and even take over the job of the failed machine (this only works when
the involved virtual machines run in absolute lockstep). Of course, when an
error occurs in a driver of the host machine and the system crashes, all virtual
machines are dragged along with it.

Finally, some systems wrap operations in transactions that are committed
atomically. When an error occurs, the transaction is aborted and modifications
are undone [16, 33].

Systems that implement techniques described above only try to limit the
damage a failing component can do. We are interested in mechanisms that

16

can also recover a failed component and restore it to the state it was in before
the failure. One such system is described in [30] where they introduce shadow
drivers. A shadow driver is a kernel agent that improves reliability for a single
device driver. When a driver fails, its shadow restores the driver to a functioning
state in which it can process I/O requests made before the failure. While the
driver recovers, the shadow driver services its requests. When the driver has
restarted, the shadow driver replays requests that alter the internal state, so it
returns to the state it was in before the crash. Afterwards it resumes pending
requests. They use Nooks [31] to isolate the driver from the kernel to make sure
it cannot damage other components except itself upon crashing.

A related technique is checkpointing where snapshots of the state of a com-
ponent are taken and communication logged. After a failure a component is
restarted and state restored by retrieving and restoring to saved state and then
replay stored messages [29].

Another interesting technique is provided by the Rio (ram i/o) file cache [7]
where they make system memory safe for persistent storage. Normally memory
is regarded as unsafe and data is periodically written to safe storage (e.g., to
disk or tape). However, the time window between storing data in cache and
writing it through to stable storage is still vulnerable to crashes. Making the
window smaller (i.e. wait a shorter time before write through) decreases file I/O
performance. The Rio fail cache overcomes this problem by performing a warm
boot. The system is rebooted upon crash and during the boot a memory dump
is written to the swap file.3 After a full boot a tool in user-space inspects the
memory dump and writes dirty cache to disk. While this technique is certainly
useful, it is not interesting for us as we want to avoid having to reboot the
system.

In [9] a new OS design is introduced where client-specific state is partitioned
into isolated per-program memory regions referred to as Server State Regions
(SSRs). An SSR is created when a client first binds to a server, and a new SSR
is created for every server to which a client binds. SSRs are destroyed when
clients unbind from a server. SSRs are created from the clients memory pool,
but the client cannot touch the memory.

For example, when a client binds to a server and initiates a service request,
the kernel enters a mapping for the SSR into the virtual memory translation
tables of the server before dispatching the request to it. The server can then
access the SSR and use it to store and manage client-specific state required to
handle the request. When the server sends a response back to the process, the
kernel removes the server’s access to the SSR.

When a server crashes in this scheme, state is preserved because state is
stored at the client and not at the server. Only SSRs that are mapped in
during a crash are affected and could potentially be corrupted. When a server
is restarted, it is responsible for detecting corrupted SSRs and repairing them.
If it fails to do so, an error message is propagated to the client.

3It must be noted that they implemented this technique on a system that does not reset
memory on boot. The technique will not work on x86 hardware.

17

(a) Normal situation (b) Using SSRs

Figure 2.5: Storing client-specific state at the client using Server State Regions

18

Chapter 3

Dynamic Updates and

Failure Resilience

As we have pointed out in the introduction of this document, the design of
VFS/MFS must address the following key requirements:

• MFS can be replaced, on the fly, with a new version (dynamic update).

• VFS must be able to cope with a crash of an FS (failure resilience).

When an FS crashes VFS must detect that this has happened and the FS must
be recovered. It is very likely that the failed FS still had state stored that is
not yet written to disk, potentially causing file system corruption. Part of the
recovery process is recovering this lost state. However, when a program crashes
it is generally hard to tell what exactly happened. A program can crash, for
example, when it executes a faulty instruction or references memory it is not
allowed to access (i.e., writes to read-only memory). Also, programs often exit
with an error value when they encounter an error situation they cannot recover
from (e.g., when a malloc fails). In the case of MFS, it panics in situations
when there is no other option than to fail. These situations are often a result of
sanity checks on parameters (e.g., null pointer checks) and are unlikely to cause
state corruption.

In this document we will assume that crashes do not cause state to become
corrupt. However, we will provide a means to validate recovered state. If after
verification it turns out that state is not valid, a file system check of the data
on disk and in memory is done to salvage as much as possible. Checking data
in memory may increase the chance of recovery of certain data, as it might be
missing or corrupt on disk, but still be available and intact in memory.

3.1 General observations

Analysis of the current code leads to a few observations. Each user process
(application) can make at most only one call to VFS at any time and will be
blocked waiting for the result. VFS can handle only one system call at a time.
That is, it receives a system call, handles the call (e.g., sends zero or more

19

messages to FSes), and sends a reply with the result.1 The Process Manager
(PM) can send messages to VFS to inform it about, for example, exiting or
forking processes. These messages are sent asynchronously and therefore it is
not mandatory to immediately send back a reply to PM.

In MFS, the only FS currently available in Minix, state consists of two data
structures: the inode table and block cache. Also, MFS is capable of handling
only one request at a time (e.g., only one read, write, or a lookup as opposed
to multiple concurrent reads or writes).

The rest of this section describes mechanisms that implement Dynamic Up-
dates and Failure Resilience.

3.2 Dynamic Updates

Initially we were aiming for a generic dynamic update technique that could
be implemented by every stateful program, but soon we reduced that goal to
design a technique specifically for VFS. Consequently, we were not looking for
a technique that would be provided by the operating system.

The use of a binary patcher would certainly be useful, but for us they have
too many drawbacks. For example, due to the nature of MFS, we have to be
able to alter global data structures (e.g., adding a field to the fproc table).
Also, it is desirable to avoid having versions of functions and data structures,
because it complicates the update process. Finally, binary patchers can cause
significant overhead and slow down performance.

It was not feasible to use a specific language with support for dynamic up-
dates built-in (using a runtime system), because we wanted to adapt an existing
program written in C. Also, VFS has to be fast and the use of a runtime system
is likely to impose a significant performance penalty.

The method to implement dynamic updates for VFS we describe below, is
classified as a program with built-in update mechanisms.

In a sense we can regard dynamic updates as a special case of failure.2 In
both situations the program will stop running, start a new copy, and reset
program state to the moment before the failure or update. However, as a result
of a crash the file system on disk might be corrupt or the inode cache or block
cache in memory is in an inconsistent state. With dynamic updates we do not
have this problematic situation. Therefore, a safer method to restore state can
be used by writing all data to disk and reopen inodes afterwards.

Also, between updates internal data structures might change. Versioning
could be used to convert data structures between versions, but that leads to
a host of other issues. For example, for how many versions should conversion
routines be included? A possibility is to support only one version difference
and combine that with version chaining (i.e., let multiple successive FS versions
update one after another). That would make the update procedure much more
complex, because you need to figure out which version you are running and

1Exception to this scheme being reading/writing from/to pipes leads to suspension of a
process until the other side of the pipe has connected and using select to wait for an active
file descriptor.

2This holds only for a subset of dynamic updating systems. Some programs never stop
running, but dynamically load additional code.

20

provide all intermediate versions one way or another. However, since it is highly
unlikely that the file system format on disk changes often, a much easier solution
would be to write data to disk and then let the new FS read the data back in.
In that way there is no need for conversion routines at all.

Dynamic updates can be achieved as follows. The interface between VFS
and MFS is adapted by adding a new request telling the MFS to restart. VFS
issues this request and returns to its main loop to process other messages. When
MFS receives this request, it does a sync to write the inode table to the block
buffer and the block buffer to disk, followed by an exit. In order to initiate a dy-
namic update, the user issues a service update <label> <path to binary>

command. RS copies the binary to memory (to a buffer on the heap), sends
the update request to VFS, waits for the FS that <label> refers to, to stop,
and finally it executes the new binary. The path to the binary can be arbitrary.
That is, the binary does not need to be installed in /sbin. Also, by first copy-
ing the binary to memory, we do not risk the binary being unavailable during
the update. This resembles the driver recovery scheme in Minix 3 for failed
block device drivers, where a copy of the block driver is held in memory and a
modified exec call is used to start a binary from memory instead of disk[17].

Upon startup of the updated FS, it sends an fs ready message to VFS
notifying it is alive. VFS subsequently performs a semi-mount to remount the
new MFS into the file system. The semi-mount differs from a normal mount
in the sense that it does not need to do every sanity check a mount operation
normally does, and after a successful mount it updates the vnode table to reflect
the new MFS endpoint. For example, the procedure already has a proper minor
device number (cf., bogus input from a mount command), it knows that the
minor device is not in use by a block-special file, and it knows the vnode which
the partition is mounted on is valid. To finish the operation, VFS sends a list of
inode numbers to MFS for it to open in order to synchronize the inode tables.
This way it is unnecessary to save the inode table externally before a restart.
As we will show in Section 3.3.1, it is possible to store state in a shared memory
region. This way, the buffer cache will be available to the updated FS, speeding
up the reopening of inodes as it is not necessary to read them from disk.

Saving the inodes to disk and later reopening them also works for anonymous
pipes. These pipes are all handled by the root MFS. Although they do not have
a name like named pipes, they do have an inode number and block cache entry
assigned. Upon shutdown of the root MFS, this inode and buffered data are
simply written to disk. When the MFS comes back up, the pipe and data are
made available again by opening the inode from disk. When the pipe is no longer
in use, the inode is returned to the free inode list and disk space is available
again.3

Finally, while an FS is being updated, requests targeted at that FS need to
be queued. Afterwards, when the FS has finished updating, the queued requests
are executed.

3It might be a good idea to introduce a separate pipe FS that handles all anonymous pipe
operations. As we will see later, this could improve concurrency as the root-FS has less work
to do. Such a project will be part of future work.

21

3.3 Resilience to FS crashes

The problem you face with a crashed FS is losing state (data written to cache
and modified inode data) and leaving the file system on disk in an inconsistent
state due to partial writes. Also, if VFS is not aware that an FS has crashed,
it will try to send messages to a non-existing endpoint and panic.

A possible solution to the first problem could be using a journalling file
system. However, we want our solution to be unrelated to the file system format
used on disk. It is possible that in the future Minix will support other file
systems that also have no journal to recover from. So instead, we somehow
need to restore state from the crashed FS and copy it to a newly started FS.
After the state has been recovered, the partially executed request is reissued to
fix any inconsistencies.

After an FS has crashed, VFS needs to detect that this has occurred. When
an FS crashes, RS is signalled and spawns a new copy. Upon startup the FS
sends an fs ready message to VFS, which will subsequently suspend it because
it has no work for it. At this point VFS has to find out that an FS has failed and
which one specifically. To be able to do that RS should register the endpoint of
an FS with DS and VFS should subscribe to it when it mounts an FS. The key
is the initial endpoint of the FS and the value is the actual endpoint of the FS.
When an FS starts for the first time, the key and value are the same. After an
FS crashes or restarts, the value becomes the new endpoint of the newly started
FS. When the value changes, VFS will be notified by DS and know that an FS
has crashed and which one.

3.3.1 Shared memory regions

After an FS has been restarted, the state of the crashed FS needs to be restored.
Virtual Memory (VM) can provide an elegant solution. Upon startup, an FS
stores the inode table and block cache in shared memory and publishes the
name of the region in DS. VFS tells the suspended FS it should restore state
from a dead FS by sending a recovery request. The suspended FS then asks
DS for the name of the memory region and subsequently maps in the shared
memory after deleting its own shared memory region. This avoids the need to
copy data and providing temporary access privileges to other process’s address
space (e.g., keeping the dead FS in memory until the inode table and block
cache have been copied). This approach may also be used as an optimization
for dynamic updates (e.g., to keep the buffer cache in memory). The current
implementation of VM in Minix lacks support for these shared memory regions
and for mprotect (to mark parts of memory as read-only to protect it from
being overwritten upon failure). Implementing these features is part of future
work.

As we pointed out at the beginning of this chapter, we assume that the state
is not corrupted by the crash. Nevertheless, it is important to check this is true.
Otherwise we risk continuing to work with corrupt data and make the problem
worse. When state turns out to be corrupt, the user should be notified and a
file system check can be done in an attempt to fix inconsistencies.

State can be verified by computing checksum values over the inodes and
blocks in the block cache after each successful request. During recovery, the
checksum values are compared to the recovered state. If verification fails, sub-

22

Figure 3.1: VFS/FS communication with transactions. 1) send request. 2) {ok,
error} result value, reply message, possible auto-commit flag. 3) commit request
to store result of previous request. 4) commit acknowledgement.

sequent system calls from processes that had inodes opened on the failed FS are
forced to fail, by closing the associated vnodes in the vnode table, file descrip-
tors, and unlock locks on file descriptors that are no longer opened.

3.3.2 Transactions

In most cases, a request failed to be executed completely, when an FS crashed.
It is up to VFS to reissue the failed request. In order for VFS to do this, all
requests should be queued (which is also necessary for dynamic updates). Each
FS has its own queue. The head request is send and subsequently removed from
the queue when the reply from the FS is received. When an FS fails (and thus
no reply is received), VFS can resend the head request after the FS has been
restored.

However, how do we know at what stage of the request the FS crashed? We
can distinguish 3 crash scenarios:

• Crash before state is modified.

• Crash after state is modified.

• Crash after state is modified and written to disk.

The first case is no problem as we can simply reissue the request. In the second
case it is very likely important data was changed leading to a different outcome
when we retry the failed operation. The last situation is actually not that bad,
because after all, it is exactly what we want. In all cases VFS has no way of
telling which scenario occurred and retrying the failed request is not guaranteed
to give the correct result.

Upon closer inspection of the code of MFS it turned out that 60% of the
requests are idempotent4 and can be reissued without a problem (see Tables 3.1
and 3.2). The remaining calls can be made idempotent by transforming them
into transactions that need a commit call before they are actually executed.

4“An expression raised to the square or any higher power it gives itself as the result, it
may be called idempotent.” - Benjamin Peirce (1809-1880) in 1870 in American Journal of
Mathematics (1881)

23

Idempotent Non-idempotent
breadwrite create
chmod link
chown mkdir
flush mknod
fstatfs mountpoint
ftrunc newnode
getdents putnode
inhibread rename
lookup rmdir
newdriver slink
rdlink unlink
readsuper
readwrite
stat
sync
unmount
utime

Table 3.1: Idempotent and non-idempotent VFS-MFS requests

Figure 3.1 shows how this would work. VFS sends a request to an FS which ex-
ecutes the request just like normal, except that it writes the result to temporary
data structures. The FS then sends an ok message to VFS, which holds the
result of the request. In turn, VFS sends commit and the FS then commits the
changes, which must be an atomic operation. After committing, the FS returns
a committed message. In case an FS knows that a request is idempotent, it
sets an auto-commit flag in the ok message, so part of the communication can
be skipped as optimization. An ok message could also hold an error value. In
that case no state has changed and the transaction is implicitly aborted.

If an FS crashes before the request is committed, no important data have
been changed yet. The commit either fails or succeeds, but never partly because
it is atomic. But what if the FS fails after committing the request and is not
able to send a message to VFS to acknowledge it has committed the request?
VFS will think the commit failed and will reissue the request, which will lead
to a wrong outcome as the requests that need transactions are not idempotent.
This problem can be solved by having VFS adding IDs to requests. The ID is
recorded in the atomic commit. When an FS fails after committing and VFS
finally reissues the failed request after the FS is recovered, the FS can tell if
it already executed this request by checking the last committed request ID. In
that case it sends already committed.

Adding transactions and request IDs demands quite a few changes to the
current VFS/MFS protocol. Also, the current message formats for the requests
are for a large part congested and we do not want to add more message types
to the system. However, we can make a few optimizations, so changes will
be minimal [32]. The ID value can stay small as it is only used to differenti-
ate between the current and previous non-idempotent request. In the current

24

Request Possible issues on retry
create inode erroneously marked in use, entry already exists
link entry already exists on retry
mkdir see create
mknod see create
mountpoint inode is already marked as mountpoint
newnode inodes erroneously marked as in use
putnode deallocate not allocated inode
rename old name non-existent, new name already existing
rmdir entry non-existent
slink inodes erroneously marked as in use, entry already exists
unlink see rmdir

Table 3.2: Problems that can arise when a non-idempotent request is issued for
the second time.

VFS/MFS protocol the request type and result of a request are stored in the
m type field, which is an 32-bit integer. The request type is a small number and
the result value is either ok (0) or a small, negative error value. It is therefore
possible to split the m type field in three parts; a 16 bit field holding the request
result, a 15 bit field holding the request ID, and a 1 bit auto-commit flag. The
VFS/FS protocol needs an additional request type to signal an FS to commit a
transaction.

We should note that our transaction protocol only protects against crashes.
We cannot tell whether an FS really committed a request or not (i.e., it reports it
committed the request, but due to a bug it actually did not). We can distinguish
the following scenarios:

1. FS commits request properly and returns committed.

2. FS does nothing and returns committed.

3. FS commits garbage and returns committed.

4. Same as 1-3, but FS does not return committed.

The second and third scenario can also occur with idempotent requests where
the commit step is omitted. For example, reading data from a file is an idem-
potent request. The FS copies the read data directly to the process that issued
the request and sends ok (and how many bytes were read) to VFS when done.
However, VFS has absolutely no guarantee that the data was really copied. If
the FS fails to acknowledge it committed the request (successfully or not), we
end up in a denial-of-service scenario, because VFS will never continue to the
next request. In this document we assume all operations execute successfully
or fail due to a crash. Faulty behavior and Byzantine failures certainly deserve
attention, but that remains future work.

3.3.3 Data structures temporarily in use

It must be noted that virtually each request requires an FS to read an inode
from disk, do some work, and finally release the inode. If this release is not done,

25

it stays in use indefinitely and the system will not be able to cleanly unmount
(and dirty inodes are never written to disk). For example, VFS sends a request
to an FS, the FS opens and closes an inode to do its job, and sends a reply
to VFS. If the FS crashes while the request is not yet finished (i.e., inode is
still opened), and VFS retries the request after the FS has been recovered, the
inode stays opened even when the request has been successfully executed. As a
workaround we add a counter to the inode data structure telling how often an
inode is in temporary use. Under normal circumstances these counters should be
zero after the request has finished, except when an FS crashes. On a following
inode release or unmount, we can tell that this inode should be released one
more time (i.e., counter-value times more).

The failure resilience technique described above resembles Server State Re-
gions (SSRs) by moving the state to a separate part of memory, using shared
memory. The main difference is that the FS is responsible for the integrity of all
state, whereas with SSRs only the mapped-in SSRs are vulnerable. However,
some errors can take a while before they are noticed, so that multiple SSRs
can still be corrupted. Even the ones not mapped-in at the moment the server
crashes. Another difference is that SSRs are based on a server with multiple
clients, where it makes sense to store client specific data at the client itself. In
our case there are multiple servers (FSes) and just one client (VFS). It is not
necessarily a problem, but that is not how the technique is intended to be used.

3.4 Request queueing

While an FS is not available due to a dynamic update or a failure, VFS cannot
handle system calls designated to that FS. Instead, requests belonging to those
system calls have to be put on a queue associated with that FS, so they can be
handled later when the FS is available again. When a request is at the head
of the queue, it is send to the FS. When the FS sends a reply, the request is
removed from the queue and the next request in line can be send.

During a dynamic update, requests are simply appended to the queue. The
same happens during a failure. However, also a recovery request is prepended to
the queue and send to the (newly started) FS (i.e., handled with priority). When
recovery has completed, the recovery request is removed from the queue and
the next request (which was the head request before the recovery and probably
caused the FS to crash) is send for the second time (i.e., before and after the
crash).

3.5 Asynchrony

All communication between VFS and FSes is currently synchronous; VFS sends
a message and blocks until a reply arrives. However, communication between
an FS and the disk driver is also synchronous. When a disk driver crashes and
an FS waits eternally for a reply, VFS is also unable to continue as it will not
receive a reply from the FS. By making the communication between VFS and
FSes asynchronous, VFS will not block on a failure of FS any more and can
continue sending requests to other FSes. As a side effect, this could improve
VFS’s performance as multiple FSes can handle requests concurrently.

26

Asynchronous communication is also necessary to implement request queues
(which, in turn, are needed for dynamic updates and failure resilience). As
VFS appends requests to the queues, it cannot block for a reply (otherwise it
would have no more than one request on a queue). A system call handler adds
a request to the queue and suspends. When a reply to its request comes in, the
handler is woken up, and it continues its work.

Using asynchronous communication, VFS can send requests to all FSes and
does not block when an FS fails. However, this has considerable consequences
for the structure of VFS. In the next chapter, two approaches, one based on
threads and one based on continuations, will be explained in detail.

27

Chapter 4

Decoupling VFS and MFS

In this chapter we discuss techniques that enable the key requirements men-
tioned in the previous chapter:

• Make MFS dynamically updatable.

• Make VFS resilient to MFS crashes.

• Improve performance of VFS by introducing concurrency.

We have already explained how the first two requirements can be achieved using
generic techniques. In this chapter we describe solutions that are required to
implement these techniques and also make it possible to provide concurrency.
We present and compare two approaches: a design based on threads and a
design based on continuations.

Both approaches share a few properties; we will describe these in Section 4.1.
In Section 4.2 we describe a way in which global variables are protected such
that they cannot be accessed by multiple system calls concurrently. Section 4.3
describes both designs in detail. Finally, we present a comparison in Section 4.4.

4.1 General Request Handling

In general, when a process makes a system call to VFS, we can distinguish the
following steps:

1. A process makes a system call to VFS,

2. VFS sends the request to an FS where the actual work is carried out,

3. FS returns a reply to VFS, and

4. VFS reports result to the originating process.

Accordingly, the structure of VFS will be as follows (see Figure 4.1). Either
PM or a user process sends a request or makes a system call to VFS, respectively.
VFS subsequently stores the sent message in the fproc entry of the process
that made the call (either directly or indirectly through PM) or in some cases
handles a PM-request immediately. A system call handler processes the request
and when communication with an FS is required, a request is put on the queue

28

Figure 4.1: General code structure.

associated with that FS. While on the queue, the process is in a suspended
state. When the FS sends a reply back, the main loop of VFS looks up to which
request the reply belongs and continues the system call. When the system call
is completed a reply is sent to the user process or PM.

Requests sent to VFS (on the left side in the figure) will be described in
detail in Section 4.1.1. Communication between VFS and FSes (on the right
side in the figure) is discussed in Section 4.1.2.

4.1.1 Processing Requests to VFS

In the current, synchronous VFS design, a message is received in the main loop
and dispatched to the system call handler (e.g., do chmod for the chmod request).
If VFS has to communicate with an FS, it sends a message and waits for a reply.
This is repeated until VFS is done processing the system call and it sends a reply
to the originating process (see Figure 1.3).

In an asynchronous design, this is not possible as it is not guaranteed we will
even receive a reply to our request, when we explicitly wait for a reply. We can
receive no reply (because an FS might have crashed), replies for other requests,
or even new requests from user processes. Instead, all messages, including replies
from FSes are received in the main loop and processed from there. Consequently,
we have to receive messages as fast as possible and store them somewhere,
otherwise we will not be able to receive results from FSes.

As we have pointed out in Chapter 3, currently, a process can make at most
only one call to VFS at any time. Or to be more precise, a process can make
only one system call at a time. For example, a process blocked on a call it
made to PM, cannot simultaneously make a system call to VFS. We can use
this property to associate messages with a specific process and store them in
the corresponding fproc table entry. Also replies from FSes are stored in the
fproc entry of the original process that made the system call.

29

Approach Requests Local
to
VFS

On behalf of
other process
(signalled)

Handled immediately fork, setgid, setsid, setuid yes no
Queued exec no no
Queued or flagged dumpcore, exit, unpause no yes
Special handling reboot no no

Table 4.1: PM-VFS requests

Messages from PM

Messages from PM are an exception to this scheme (see Table 4.1 and Table A.2
in Appendix A). Some messages ask VFS to do just a little bookkeeping (fork,
setgid, setsid, and setuid). They are executed local to VFS (require no FS
communication) and can be handled immediately. Others require quite a bit of
work on VFS’s part and also might have to be postponed while an FS is not
available (dumpcore, exec, exit, reboot, and unpause).

All requests from PM are stored in the fproc table entry of the originating
process, except for requests that belong to Handled immediately; they are han-
dled immediately and require no queueing. Processes that made a system call
to PM cannot have requests outstanding at VFS at the same time and therefore
there should be room to store PM-requests.

However, and this makes it tricky, requests belonging to Queued or flagged
can be caused by a signal from another process (e.g., when the super user forces
a program to quit). It is possible that the process which is signalled to exit

could already be busy making a system call to VFS. In that case, there is no
room left to store a message in the fproc table. Queued or flagged requests are
handled as follows. In case the targeted process is not busy making a system
call to VFS, they can be stored in the fproc entry. Otherwise they are stored
as flags in the fproc entry, which are checked the moment the reply to that
request comes in. unpause requires special attention as it is used to unblock a
process that is waiting for a reply from an FS (so it makes no sense to wait for a
reply and then unblock it). Instead of waiting for a reply, the main loop checks
on each iteration for this flag and unpauses the process if it is set (the process
receives eintr).

reboot is special among PM-requests; it iterates over all processes exiting
them, unmounts all mount points, and finally a reply is send back to PM. While
the system is being shut down by reboot, other processes should not be able
to make system calls (note that this was impossible in the synchronous design
where only one system call at a time is handled). This is solved by setting an
exiting flag in the process table that is checked each time a message comes in.
If the flag is set, new calls from a flagged process are discarded. Also, while
an FS is not available due to a dynamic update or a failure, reboot has to be
postponed until the FS returns (and is recovered). The latter is also solved by
setting a reboot flag and having the main loop check for it on each iteration.
When the flag is set and all FSes are available, the reboot is executed.

30

4.1.2 Serializing requests to MFS

We have to be careful that system calls are not executed in an interleaved
fashion, such that the outcome is different from what it would be if the system
calls were executed in succession. For example (see Figure 4.2), an unlink and
stat operation on the same file should not lead to the outcome where the stat

request reports that the file has a zero link count. Either stat is executed before
unlink and reports valid data, or it is executed after the unlink and returns an
error message, stating that the file does not exist. In other words, it is necessary
to serialize requests.1

OK OK
User A: stat(x) User B: unlink(x) User A: stat(x) User B: unlink(x)
1. n = lookup(x) 1. n = lookup(x)
2. stat(n) 2. unlink(n)

3. n = lookup(x) 3. n = lookup(x)
4. unlink(n) 4. report errno

Not OK
User A: stat(x) User B: unlink(x)
1. n = lookup(x)

2. n = lookup(x)
3. unlink(n)

4. stat(n)

Figure 4.2: Possible execution orders of stat and unlink on the same file.

This is solved by putting requests on a queue that is associated with the
FS it is targeted at. The queue is handled in FIFO order. We assume an FS
can handle only one request at a time (which is currently true for MFS) and
therefore this queue is enough to ensure serialized execution. However, not
all system calls require communication. System calls directed at VFS can be
categorized in four categories (see Table 4.2).

System calls with a path name argument always have to do a lookup first
and are subsequently serialized. That way they do not alter global data that
could influence other concurrent calls.

System calls that do not have an argument (or nothing file related) do not
change global data in a way they can pose a threat to other calls (i.e., umask
sets the creation mode of new files for a specific process and (f)sync writes the
cache to disk).

The indirect calls from PM either make no changes to global data (i.e.,
set process specific values –setsid, setgid, setuid), atomically increase us-
age counters for file descriptors (fork), cancel a request for a specific process
(unpause), or issue requests that end up on the queues or are harmless to other
concurrent requests (exit, dumpcore, reboot, exec). The latter calls, except
exec, actually lower usage counters for file descriptors that could be shared

1There is a fourth possibility where user B first looks up file x, then user A does the same
and a stat on file x, and finally user B unlinks x. This way a correct result is achieved.
However, interleaving allows for incorrect answers, while non-interleaving does not.

31

Category System calls
System calls with a path
name argument

mkdir, access, chmod, open, creat, mknod,
chdir, chroot, unlink, utime, truncate, chown,
mount, unmount, rename, link, slink, rdlink,
stat, lstat

System calls with a file
descriptor argument

lseek, read, write, close, fchdir, fchmod, fchown,
pipe, fstat, fstatfs, ftruncate, dup, dup2, fcntl,
select2, getdents, ioctl

System calls with other
or no arguments

umask, sync, fsync

Indirect through PM setsid, setgid, setuid, fork, exit, dumpcore, un-
pause, reboot, exec

Table 4.2: System call categories directed at VFS

among more than one process. However, a process can never close a file de-
scriptor for another process, so the file descriptor will not cease to exist while
another process is still using it.

A problem arises with the order of requests for system calls with a file de-
scriptor argument. When two system calls arrive at VFS that operate on the
same file descriptor and filp object, the result can be subject to race condi-
tions. For example, processes A and B share a file descriptor fd and process A
writes 20 bytes to fd while B does a file position seek. The write request is on
the queue and advances the file pointer x with 20 bytes when the write went
okay to x+20 (actually, the FS tells how many bytes were written). In the mean
time the seek request advances the file pointer with 10 bytes. That is, it takes
the current position and adds 10 bytes (cur + 10). If these system calls were to
be executed sequentially, the seek operation would result in x+20+10 = x+30.
However, the write request has not yet finished, so the seek sets the file position
to x + 10. When the write request finishes, the file position is set to x + 20, a
different result. This is possible because the seek command requires no commu-
nication with an FS and consequently is not serialized by a queue. Serializing
all requests prevents these problems.

The two approaches achieve serialization differently. Without going into
much detail (the designs are discussed in detail in Section 4.3), in the threaded
design a worker thread has to obtain an exclusive lock on a vmnt and releases
it when it is done. As soon as the mutex is free, the next thread obtains a lock
on it. Multiple threads trying to obtain a lock on the mutex constitute a queue.
Internally, this is handled as a FIFO queue by the threading library to prevent
starvation. While waiting on obtaining a lock, a thread is suspended.

In the continuations design each vmnt has a queue associated. A queue
consists of a linked list of fproc entries. The head of the queue has an implicit,
exclusive lock on the virtual mount point.

32

4.2 Locking model

In VFS there are multiple global variables; vmnt table, vnode table, filp table,
lock table, select table, and dmap table. These variables need to be protected
against concurrent access by multiple system calls, because otherwise we risk
race conditions. In order to provide protection, each system call handler has to
obtain an exclusive lock on a mount point, as all global variables can be linked
one way or another to a vmnt. By granting exclusive access and serializing the
requests, we can guarantee correct results. This rather coarse-grained locking
model is required and enough to ensure protection. Making the locking model
more fine-grained, will make the implementation much more complex, but gain
little benefit. The time spent by VFS working on a system call is negligible
compared to the time spent by FSes[32].

In general, a system call handler obtains an exclusive lock on a vmnt for
exactly the time it requires exclusive access (possibly spanning multiple calls to
an FS). By making sure only one request at a time is allowed exclusive access
to a vmnt until it has completely finished its operations, it is not necessary to
explicitly lock other data structures as they are implicitly locked.

A lookup (known as pathname resolution in the posix standard) requires
special attention. A lookup might involve multiple FSes and can use any FS as
starting point. If a lookup would lock all FSes it visits, we risk a deadlock sit-
uation when multiple lookups are done concurrently. For example, two lookups
where one lookup starts at FS A and one at FS B and the former tries to enter
FS B and the latter FS A. Both have to wait until the other has unlocked the
vmnt, which is not going to happen. Therefore, when a lookup leaves a mount
point and enters another one, it is removed from the queue of the former and
added to the tail of the queue of the latter mount point. When the lookup is
finished, the lock on the vmnt is kept, in order to maintain exclusive access such
that the original system call can be fully executed.

In the time window between moving from mount point to mount point, any-
thing could happen to the path the lookup is trying to resolve. For example,
the access mode might get changed or a component of the path might be un-
linked or renamed. If the lookup was atomic, this situation could never occur.
The posix standard is unclear on this subject as to what to do. A possible
workaround would be to add a lookup-mutex that is locked by the lookup pro-
cedure, followed by locking all vmnts. The lookup can then take place safely.
This mechanism is known as a barrier and would kill performance. We have
decided that this is too minor a problem and leave it as is.

4.3 Threads vs. Continuations

In this section we describe the two approaches based on threads and continu-
ations that implement the key requirements. The threaded design is based on
previous work by David van Moolenbroek [32], who wrote a threading library
that works in user-space and is none-preemptive. He used a very fine-grained
locking model (separate locks for most global variables), which as mentioned ear-
lier, is much too complex and not necessary in our design. The continuations
design is based on work by Philip Homburg, who wanted to use continuations
to prevent VFS from hanging after a driver crash (see Section 3.5)[22]. His

33

approach differs from ours as we handle incoming messages from and sending
replies to processes centrally.

Threads Continuations
Obtain lock on vmnt Explicitly serialize state on FS calls
(May cause temporary thread sus-
pension)

Add to vmnt queue to grab lock

SENDA(FS request); if(head of queue) SENDA(FS

request);

Suspend thread to await reply Explicit return to main loop to await
reply

Main loop does RECV(ANY, &m in);

if(sender == FS) lookup process that sent last request
vmnt lock is still held No interleaving possible; can remove

request from queue
Resume thread by fire event()

with result
Call next continuation do foo x with
result

(asynchronous) (synchronous)
Continue thread execution Deserialize continuation state and

continue
Thread must explicitly unlock vmnt

when done
Replace request at head of queue to
keep lock

Next thread can send mes-
sage on release of vmnt lock
(another thread may be unblocked
and get the lock)

(after callback)
if(queue not empty) SENDA(next FS

request)

Table 4.3: Overview of threads and continuations.

In Table 4.3 we present an overview on how both approaches work. In Sec-
tion 4.3.1 we discuss the threaded design in detail, followed by the continuations
design in Section 4.3.2.

4.3.1 Threaded design

In this section we describe a threaded design of VFS that provides dynamic
updates and failure resilience. This threading model is based on a main thread
which receives messages and subsequently spawns a worker thread for each mes-
sage. The worker thread carries out the work and sends back a reply to the
originating process. During operation, the worker thread can send a number
of asynchronous messages (SENDA()) to FSes and suspend itself (waiting for an
event). When the main thread receives a message from an FS, it looks up the
worker thread the message belongs to and schedules it to run again by firing
the event the worker thread is waiting for (fire event()).

For example, to do a chmod(“/usr/bin/cc”, mode) we do the following.
First, we have to find the inode of cc. The lookup routine obtains a lock on the
root-FS and issues a lookup request to this FS by calling sendrec. Subsequently,
sendrec asynchronously sends the message to the FS and schedules to wait
for the reply by calling event wait(&fp->fp event). Afterwards, control is

34

Figure 4.3: Code structure threads.

switched to another thread. Each thread has part of the stack allocated to it,
so there is no need to explicitly serialize and deserialize state. When the main
thread receives the reply from the FS, it figures out which worker thread handles
the chmod call, and calls event fire(&rfp->fp event) to fire the event. At this
point, the worker thread is scheduled to run again. Once running, the result of
the lookup request is that we have to enter the /usr-FS and continue the lookup
there, using the same method described above. When it has finally found the
inode belonging to cc and permissions are all right, the worker thread can issue
the actual chmod request to the /usr-FS. Subsequently, it waits for the event
that a reply is received and reports the result to the user process when it is
finished.

Under heavy load it is unfeasible to spawn a thread for each process, because
that could easily exhaust stack space (or lead to excessive memory usage if
virtual memory is used). The threading library allows to use fewer worker
threads than processes by using a store t data structure, that stores all data a
thread needs to be able to start running. This enables VFS to use max threads
and create a queue of pending work that is processed by available worker threads.
A worker thread is available when it has completely finished a system call (i.e.,
a reply is sent back to the originating process).

As described in our initial observations, a process can have at most one
system call outstanding at once. This makes it possible to bind a thread to
a process and store associated data in the fproc entry. At some point in the
future Minix is going to have kernel threads and processes will be able to do
multiple system calls. For VFS to support multiple system calls from a single
process, it should keep an fthread table inside the fproc entry with room for
n threads.3 Multiple worker threads for the same process do not compete with
each other as they are serialized. Hence there is not need to apply mutual
exclusion for shared data structures. While the table is full, subsequent system
calls should be ignored until room is available again. A reasonable value for n

and other design changes that are required, are to be considered in the future.
A worker thread is reserved specifically for requests from PM. This ensures

3System processes in Minix maintain state in static data structures to prevent bugs.

35

messages from PM are always handled, no matter how many threads are busy
(although PM does not require immediate response, it does expect fast re-
sponse). Requests that are on behalf of other processes, are handed over to
worker threads associated with that process. The other requests are handled by
the PM-thread.

As we pointed out in the locking model in Section 4.2 it is not necessary
to use a fine-grained locking model as all variables are protected by exclusive
access to a vmnt. There is, however, one exception when using threads. During
development of the threading library and implementation of the library in VFS,
the author tried to minimize memory usage on the stack, and found that during
exec calls memory usage peaked at 4 kilobytes whereas 1 kilobyte would suffice
for the other system calls [32]. This was caused by a 4 kilobyte buffer put on
the stack by the patch stack routine.4 This was solved by making this buffer
static, which essentially makes it a global variable. Consequently, this buffer
needs protection against concurrent access. A global exec mutex was introduced
to provide exclusive access and covers all code of the exec implementation. We
extend our locking model by letting a thread obtain a lock on the exec mutex
when it executes the exec system call.

Serialization

We pointed out in Section 4.1.2 that it is necessary to serialize all requests, even
when they do not need communication with an FS. To accomplish this in the
threaded design, a thread must obtain a lock on a vmnt.

A thread releases the lock it obtained, when it has fully executed the system
call. Consequently, no interleaving can take place.

4.3.2 Design based on Continuations

In the current version of VFS, each system call handler consists of a do foo rou-
tine and some helper routines. Requests to an FS are carried out by req foo rou-
tines that will return the result of the request. A do foo routine can consist of
multiple requests to FSes. For example, let us consider chmod(“/usr/bin/cc”,
mode) again. We first need to find the inode of cc. We start at the root of the
file system, move to /usr which happens to be mounted on a different FS, and
finally find the inode of cc. This required two messages. If everything went well
and permissions to alter are all right, we can execute the actual call. To do this
call asynchronously, we need to split chmod in three parts:

1. do chmod: start of call → lookup inode.

2. do chmod 1: inode found → execute mode change.

3. do chmod 2: mode changed → handle result.

As a message is sent asynchronously, the call will return immediately. When
the FS is done processing the request, it sends a reply to VFS. VFS handles
the message as every other message, so it will only start processing it when it

4patch stack is called when the file-to-be-executed is in fact an interpreted script. In that
case, the interpreter to which the script references should be executed with the path name of
the script as argument instead.

36

Figure 4.4: Code structure continuations.

has returned to its main loop (all messages are handled centrally). VFS detects
the reply from the FS, looks up which call and process the reply belongs to,
and continues the call at the next part (note that this is the same for threads).
Clearly, the structure of do foo with some helping routines cannot be used
anymore.

In the continuations design, a system call to VFS is separated into sub-
requests where each sub-request sends a message asynchronously to an FS. With
each call, progress has to be recorded, so VFS can lookup where it has to
continue. Each step should have an accompanying routine. See lines 13-18 of
Listing B.2 in Appendix B for an example on how this is done.

Before a message is sent, all state that is required to continue the system
call after the reply from the FS is received, has to be serialized. After receiving
the reply, that state is deserialized again. For example, see lines 62 and 63
(serializing) and line 80 (deserializing). This data is stored in a request state
table and a pointer to the table entry is recorded in the fproc entry to which
the state belongs. For continuations to be able to handle multiple system calls
from one process (to support multithreaded programs in the future), each fproc

entry should keep a list of pointers to the request state table entries, instead of
just one pointer. This way it can keep track of multiple requests per process.

By using a statically sized table there is a limit to how many system calls we
can handle at the same time. When that limit is reached, new incoming system
calls are suspended. One entry in the table is reserved for PM, so it can always
be serviced (cf., a dedicated thread in the threaded design).

Serialization

Similar to the threaded design, all requests need to be serialized here as well.
Requests are explicitly serialized by appending them to a queue that is asso-
ciated with the FS. When the system call requires additional communication
with the same FS, the request at the head of the queue is overwritten with the
new request and resend (overwritten, because at this point the head request
is not yet removed from the queue). Only the head request is being handled
until it is finished. When the system call has completed its job, the request is

37

Figure 4.5: Each FS has its own request queue and put node queue associated.
The request queue consists of a list of pointers to fproc entries. The put node
queue consists of a list of pointers to vnodes and is handled with priority.

removed from the head of the queue, allowing the next request on the queue to
be executed. This way interleaving is impossible.

To make sure all requests are properly serialized (also taking into account
the system calls that do not require communication) each do foo routine starts
with a dummy step (see line 14). However, when no message is send to an FS,
VFS will never receive a reply in the main loop to continue the system call.
This is solved by having the get work procedure in the main loop check if the
head of a queue is a dummy request. If one exists, it is handled first, otherwise
it will block on an incoming message.

One of the most often executed requests is req putnode and needs special
treatment because of this. That is, if we would treat this (sub)request like any
other request, the number of states a system call can have, would explode (note
that each sub-request is separated by a communication step). It would make the
code extremely complex and probably slow. Moreover, put vnode in VFS is a
void function; the request always returns ok, so we are not interested in results.
To solve this problem we introduce a putnode queue specifically for req putnode

requests. If the queue is empty and a request is put on the queue, it is executed
asynchronously right away. If it is not empty, the request is simply added to
the queue. In both cases the function returns almost immediately. Of course we
now risk race conditions due to inodes not being put yet and new requests for
the MFS coming in. This is remedied by making sure that the putnode queue,
which is associated with the FS a request is targeted at, is empty. If it is not
empty, then that queue should be handled first; it has priority over the normal
request queue.

38

Request interdependencies

Not all requests to an FS immediately lead to results that can be used by VFS.
For example, in the do chmod routine the first step consists of looking up the
inode of the targeted file. Often this involves several FSes. The lookup routine
sends a message, checks if it needs to change to another FS (crossing mount
points), and issues another message to that FS. However, it just set the call
state to chmod lookup with accompanying parameters. So after sending one
message by the lookup routine, VFS will continue with do chmod lookup while
the request might not be finished yet. Somehow, we need to keep “stuck” in the
lookup routine before returning to the chmod routine.

This is solved by setting the call state to do lookup and add a next state
field to the request state table. The sole purpose of the routine associated with
the do lookup state, is to keep issuing req lookup requests until the result is
ok or an error message, after being set up properly by helping routines. When
it receives the result it is looking for, the current state can be changed into
next state and the current request at the head of the queue is restarted.

4.4 Comparison

Regarding our key requirements (see beginning of this chapter), both designs
are not that different. Initially we thought that the threaded design would have
much more difficulty handling failures. However, after realizing we can simply
resend a failed request after restoration, there is no need to keep much state in
the threaded design. Also, if a request keeps failing and we have to abort the
complete call, both approaches have the availability over the same data to undo
changes.

There are, however, a few important differences. The threaded design must
obtain an exclusive lock explicitly, whereas continuations obtains this lock im-
plicitly. Another difference is that continuations must insert additional requests
at the head of the queue (overwriting the former head) to keep this lock. Both
designs must explicitly unlock; threads unlock the mutex and continuations
remove the head of the queue and send the next request, if there is one. Con-
tinuations must serialize and deserialize state before and after communication.
Threads just store state on the stack. Finally, to serialize all requests, threads
simply obtain a lock, while continuations must use a dummy step. Because this
dummy step does not involve communication, the main loop must check on each
iteration for the existence of a dummy step on one of the queues.

By using threading, we can stick for a large part to the current design of
VFS which gives us a clear advantage; we will not have to rewrite big portions
of the code to make it adhere to a new design. Moreover, most changes can
be hidden inside a communication layer, keeping existing code fairly readable.
The changes that are most visible in the code, are locking and unlocking vmnts.
This is certainly not the case with continuations. All of VFS requires a major
overhaul, which will not result in very readable code. Also, VFS is already
complex as it is, continuations would make it really hard for future developers
to understand what is going on where, and how to make adjustments.

Both approaches introduce asynchrony to decouple VFS and MFS. However,
the code becomes much harder to test and debug. Both designs can introduce

39

Threading Continuations
Code readability + −−
Complexity + −
Engineering effort + −−
Performance + +
Support for kernel threads + +
Memory footprint − −
“Debuggability” − −

Table 4.4: Property comparison

timing issues which are hard to solve. The threaded design keeps much of the
normal program flow intact, whereas continuations jump from routine to routine
each time communication is necessary. This leads to an explosion of states in
which a system call can occur. Technically the same operations are executed,
but it is much harder to keep an overview of how all involved routines cooperate.

We pointed out that our coarse-grained locking model is sufficient in order
to protect access to global variables in VFS. Fine-grained locking (i.e., lock vari-
ables such as filps and vnodes individually) does not offer us any advantages.
Moreover, with continuations it is not even feasible. As there is only one thread
of execution, it does not make sense to use locks. These locks would merely
function as a means to choose a job from a list of jobs (i.e., pick one that is not
locked). If implemented, we would just try to mimic threads in a very compli-
cated way. Fine-grained locking would cause for even more subdivisions (similar
to put node requests), as each access to a global variable is separated.

A comparison of the code of the two approaches can be found in Appendix B
where we show example implementations of the chmod and read system calls
and the lookup procedure. The first thing one notices, is the amount of code
required for continuations. Due to the separation of code into multiple functions,
structure is lost. The code is less elegant and there is a lot of additional code
that deals with serializing and deserializing state. Reduced code readability
and more lines of code, are bound to contain more bugs. The threaded design
does require some additional code for locking and unlocking vmnts, but not
near as much as continuations do. Also, multiple worker threads are easier to
grasp compared to a single thread of execution in the continuations design, that
constantly switches between subsets of requests.

Comparison of properties We have compared both designs in Table 4.4.
Code readability suffers greatly when using continuations, while the threaded
design remains almost the same as the synchronous version of VFS. Continu-
ations require a major overhaul of the current VFS, while making it threaded
will take considerably less time as there are fewer changes to make.

Performance-wise both designs are very similar. The locking model and
communication protocol are the same for both. More importantly, they achieve
the same level of concurrency. The time VFS spends working on a system call,
is negligible compared to the time spent by FS and the disk driver [32].

When kernel threads are implemented, VFS needs to be altered in such a
way that it can handle multiple system calls from a single process. Both designs

40

can be easily adapted to this requirement.
The threaded design and continuations design have a larger footprint than

the current, synchronous VFS. Each thread in the threaded design requires 1
kbyte of memory on the stack and continuations need memory to serialize and
deserialize state.

Due to concurrency, both designs are hard to debug as they introduce timing
issues.

41

Chapter 5

Summary and Conclusion

The method we describe in this document to implement dynamic updates for
VFS, classifies as a program with built-in update mechanisms. Our technique
avoids versioning by writing dirty cache to disk, start a copy of the new version of
the binary, and then reopen inodes that were open, returning it to the previous
state. Because we start a fresh copy of the binary and restore state from disk,
we have the freedom to change virtually every aspect of the FS.

Resilience to failures is achieved by storing state externally in shared mem-
ory. Upon failure, a new copy of the FS is started, the shared memory region
used by the failed FS is mapped in, and the state is verified. State verification
involves computing checksums over the inodes and blocks in the block cache and
comparing these with the stored checksums. When inconsistencies are found, a
file system check is done and the problem has to be reported to the user.

The above can be implemented using synchronous communication. However,
we need asynchronous communication to decouple VFS and MFS. Asynchronous
communication makes it possible to queue requests and handle them when an
FS is available. This way, VFS can process all system calls up to the point when
communication is needed with an unavailable FS, instead of having VFS block
upon update or failure of an FS (either a failure of the FS itself or indirectly
through a disk driver crash). Also, asynchronous communication allows VFS
to instruct multiple FSes to handle requests concurrently. To prevent these
requests from interleaving and accessing global variables simultaneously, they
need to obtain a lock on a vmnt and be serialized.

We have introduced two designs to implement asynchronous communication;
one based on threads and one based on continuations. The threaded design takes
less effort to implement, is easier to grasp, and the code is less complex and more
structured than the continuations design. Therefore, we believe that this design
is preferable to the design based on continuations.

Current Status and Future Work We have implemented a prototype ver-
sion of dynamic updates in the synchronous version of VFS. It works, but has
some serious drawbacks compared to the technique we describe in this docu-
ment. The synchronous VFS has a very simple queueing mechanism, which is
much less flexible in its ability to suspend requests (i.e., we had to suspend a
process upon an incoming request, as we had no way of telling beforehand if the
request was going to communicate, and with which FS that would be, instead

42

of suspending a request when it cannot be handled).
In order to be able to implement our failure resilience technique, we need

proper support for Virtual Memory in Minix. Currently, we lack support for
mprotect and shared memory.

A threaded version of VFS was implemented by David van Moolenbroek [32].
We implemented part of a prototype of the continuations design. It required
a lot of effort to implement just a few requests, which led us to redesign VFS
using threads.

Based on the above conclusions, our implementation of VFS using threads
is scheduled for the near future.

We stated in Section 1.1 FSes are considered a special case of drivers, that
are not trusted. Recently, support was added to Minix to provide end-to-end
integrity and silent data corruption protection for block-device drivers. Ideally
something similar would be devised for FSes, as currently VFS has no way of
verifying whether FSes do what they say they do (see transaction protocol in
Section 3.3).

We apply asynchrony to decouple VFS and MFS. As a side effect, VFS’s
performance is improved due to concurrency. There are, however, more ways to
speed up certain operations. For example, we could cache the results of lookups
(directory entries). Consequently, an inode stays opened and thus in memory,
even when it is not used by any process. When the vnode table fills up, the
oldest cache entries are removed, allowing for new inodes to be opened.

As we mentioned in Section 3.2, it is probably useful to introduce a pipe-FS
that handles all anonymous pipe operations. These operations are currently
handled by the root-FS, creating a bottleneck (e.g., many lookups start at or
pass through the root-FS, too). A pipe-FS could relieve the load of the root-FS.
Other FSes can be simplified as they do not have to be able to handle these
pipes anymore.

43

Bibliography

[1] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. Opus:
online patches and updates for security. In SSYM’05: Proceedings of the
14th conference on USENIX Security Symposium, Berkeley, CA, USA,
2005. USENIX Association.

[2] Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic rebootless ker-
nel updates. In 2009 ACM SIGOPS EuroSys Conference on Computer
Systems, April 2009.

[3] Wendy Bartlett, Ieee Computer Society, and Lisa Spainhower. Commercial
fault tolerance: A tale of two systems. IEEE Transactions on Dependable
and Secure Computing, 1:2004, 2004.

[4] A. Baumann. Dynamic Update for Operating Systems. PhD thesis, Uni-
versity of New South Wales, Sydney, Australia, Aug. 2007.

[5] A. Baumann, J. Appavoo, R. W. Wisniewski, D. Da Silva, O. Krieger, and
G.t Heiser. Reboots are for hardware: Challenges and solutions to updating
an operating system on the fly. In Proc. of USENIX’07, pages 279–291,
June 2007.

[6] A. Baumann, G. Heiser, J. Appavoo, D. Da Silva, O. Krieger, R. W. Wis-
niewski, and J. Kerr. Providing dynamic update in an operating system.
In ATEC ’05: Proceedings of the annual conference on USENIX Annual
Technical Conference, Apr. 2005.

[7] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Low-
ell. The rio file cache: Surviving operating system crashes. In Proc. 7th
Conf. on Architectural Support for Programming Languages and Operating
Systems, pages 74–83, 1996.

[8] R. C. Daley and J. B. Dennis. Virtual memory, processes, and sharing in
multics. Commun. ACM, 11(5):306–312, 1968.

[9] F. M. David, J. C. Carlyle, E. M. Chan, P. A. Reames, and R. H. Campbell.
Improving dependability by revisiting operating system design. In Proc. 3rd
Workshop on Hot Topics in Dependability, pages 58–63, June 2007.

[10] R. S. Fabry. Capability-based addressing. Commun. ACM, 17(7):403–412,
1974.

44

[11] R. S. Fabry. How to design a system in which modules can be changed on
the fly. In ICSE ’76: Proceedings of the 2nd international conference on
Software engineering, pages 470–476, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[12] B. Geröfi. Minix vfs: Design and implementation of the minix virtual file
system. Master’s thesis, Vrije Universiteit, Amsterdam, The Netherlands,
August 2007.

[13] S. Gilmore, D. Kı́rĺı, and C. Walton. Dynamic ML without dynamic types.
Technical Report ECS-LFCS-97-378, Laboratory for Foundations of Com-
puter Science, Department of Computer Science, The University of Edin-
burgh, 1997.

[14] H. Goullon, R. Isle, and K. P. Lohr. Dynamic restructuring in an experi-
mental operating system. IEEE Trans. Softw. Eng., 4(4):298–307, 1978.

[15] D. Gupta and P. Jalote. On-line software version change using state transfer
between processes. Softw. Pract. Exper., 23(9):949–964, 1993.

[16] Roger Haskin, Yoni Malachi, Wayne Sawdon, and Gregory Chan. Recov-
ery management in quicksilver. ACM Transactions on Computer Systems,
6:82–108, 1988.

[17] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Failure
resilience for device drivers. In Proc. 37th Conf. on Dependable Systems
and Networks, pages 41–50, June 2007.

[18] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Con-
struction of a highly dependable operating system. In Proc. 6th European
Dependable Computing Conf., pages 3–12, Oct. 2006.

[19] J. N. Herder, D. C. van Moolenbroek, R. Appuswamy, B. Wu, B. Gras,
and A. S. Tanenbaum. Dealing with driver failures in the storage stack. In
Submitted for publication 4th Latin-American Symposium on Dependable
Computing, Sept. 2009.

[20] M. Hicks. Dynamic Software Updating. PhD thesis, University of Pennsyl-
vania, 2001.

[21] Gı́sli Hjálmtýsson and Robert Gray. Dynamic c++ classes: a lightweight
mechanism to update code in a running program. In ATEC ’98: Proceed-
ings of the annual conference on USENIX Annual Technical Conference,
Berkeley, CA, USA, 1998. USENIX Association.

[22] Philip Homburg. Asynchronous VFS. Available in src.20080414.asynchvfs
branch of the Minix SVN repository.

[23] I. Lee. Dymos: a dynamic modification system. PhD thesis, The University
of Wisconsin - Madison, 1983.

[24] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic software
updating for c. SIGPLAN Not., 41(6):72–83, 2006.

45

[25] A. Orso, A. Rao, and M. Harrold. A technique for dynamic updating of
java software. In ICSM ’02: Proceedings of the International Conference on
Software Maintenance (ICSM’02), page 649, Washington, DC, USA, 2002.
IEEE Computer Society.

[26] D. Pescovitz. Monsters in a box. Wired, 8(12):341–437, 2000.

[27] T. Ritzau and J. Andersson. Dynamic deployment of java applications. In
Java for Embedded Systems Workshop, May 2000.

[28] Mark E. Segal and Ophir Frieder. On-the-fly program modification: Sys-
tems for dynamic updating. IEEE Software, 10(2):53–65, 1993.

[29] Robert E. Strom and Shaula Yemini. Optimistic recovery in distributed
systems. ACM Transactions on Computer Systems, 3:204–226, 1985.

[30] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy. Recovering
device drivers. ACM Trans. on Comp. Syst., 24(4):333–360, November
2006.

[31] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability of
commodity operating systems. ACM Trans. on Comp. Syst., 23(1):77–110,
Feb. 2005.

[32] D. van Moolenbroek. Multimedia support for minix 3. Master’s thesis,
Vrije Universiteit, September 2007.

[33] Matthew J. Weinstein, Jr. Thomas W. Page, Brian K. Livezey, and Ger-
ald J. Popek. Transactions and synchronization in a distributed operating
system. In SOSP ’85: Proceedings of the tenth ACM symposium on Oper-
ating systems principles, pages 115–126, New York, NY, USA, 1985. ACM.

[34] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Networked win-
dows nt system field failure data analysis. In PRDC ’99: Proceedings of
the 1999 Pacific Rim International Symposium on Dependable Computing,
page 178, Washington, DC, USA, 1999. IEEE Computer Society.

46

Appendix A

Request listing

This appendix lists the requests that VFS sends to MFS and PM to VFS.

A.1 VFS-MFS requests

Table A.1 gives an overview of the requests sent by VFS to FSes. The handling
of these messages upon failure of an FS is discussed in Section 3.3.2.

Request Operation

breadwrite fetches disk block, reads/writes data from/to those blocks
chmod gets inode, sets mode to predetermined value
chown gets inode, sets owner to predetermined value
create allocates free inode, creates directory entry, and initializes inode
flush writes dirty blocks to disk, flags blocks as clean after write, inval-

idates blocks (i.e., need to be fetched from disk after new read)
fstatfs retrieves info on the file system
ftrunc wipes part of inode
getdents copies entries of a directory to user buffer
inhibread sets a flag to stop read ahead
link adds an entry to a directory
lookup looks up the inode belonging to a pathname
mkdir creates inode (see create), adds . and .. entries
mknod creates inode (see create)
mountpoint looks up if an FS can be mounted on an inode, marks inode as

mountpoint afterwards
newdriver updates endpoint value with predetermined value
newnode allocates free inode
putnode marks inode not in use, deallocates inode
rdlink reads contents of a soft link
readsuper reads superblock for valid file system
readwrite fetches/acquires disk block, reads/writes data (on partial write

acquired blocks are reused and overwritten)

47

rename adds new directory entry, removes old directory entry
rmdir removes directory entry
slink creates inode, adds directory entry
stat reads inode data
sync writes dirty inodes to block cache, see flush
unlink see rmdir
unmount writes root inode to disk, see flush
utime updates file dates

Table A.1: VFS-MFS requests

A.2 PM-VFS requests

Table A.2 shows an overview of requests PM sends to VFS. How these mes-
sages are handled upon dynamic update or failure of an FS is discussed in
Section 4.1.1.

Request Operation

dumpcore writes dump of program image in memory to disk and stops
process

exec executes program
exit stops process
fork fork a child process
reboot exits all processes and unmounts all mount points
setgid set group ID for process
setsid make a process session leader
setuid set user ID for process
unpause interrupt pending request

Table A.2: PM-VFS requests

48

Appendix B

Design comparison

In this section we show two examples of system calls and the lookup procedure
when implemented using the designs described in this document. All examples
of the threaded design are for a large part based on results by [32].

We will not explain the code in detail. That is left to the reader as an
exercise.

B.1 chmod

The chmod system call changes the permission of a file (read, write, and execute
settings for the owner, group members, and everyone else). Arguments for the
call are a path name and the desired permissions mode. First the path name
is resolved to a vnode, then permissions are verified to make sure the user is
allowed to modify the file permissions (owner and super user are allowed), and
finally a request is sent to the FS to make the change when everything is okay.

The examples shown here, differ slightly from the actual implementations.
The fchmod call provides a file descriptor which can easily be resolved to a
vnode. Normally, the chmod and fchmod calls are combined and a test is done
to find out which call was made to do either a lookup for a vnode or just take
it from the file descriptor. We have left out the implementation of fchmod to
make the example more readable.

Listing B.1: chmod system call using threads

1 PUBLIC int do_chmod() {

2 char fullpath[PATH_MAX];

3 struct chmod_req req;

4 struct lookup_req lookup_req;

5 struct node_details res;

6 struct vmnt *vmp;

7 struct vnode *vp;

8 int r, ch_mode;

9

10 if(fetch_name(fullpath, m_in.name, m_in.name_length, M3) != OK)

11 return(err_code);

12

13 /* Fill in lookup request fields */

49

14 lookup_req.path = fullpath;

15 lookup_req.lastc = NULL;

16 lookup_req.flags = EAT_PATH;

17

18 /* Request lookup */

19 if ((r = lookup(&lookup_req, &vmp, &res)) != OK) return r;

20

21 req.fs_e = res.fs_e;

22 req.inode_nr = res.inode_nr;

23

24 /* Find vnode, if there is an entry for it. */

25 vp = find_vnode(req.fs_e, req.inode_nr);

26

27 /* Only the owner or the super_user may change the mode of a file. No

28 * one may change the mode of a file on a read-only file system. */

29 if (vp->v_uid != uid && uid != SU_UID)

30 r = EPERM;

31 else

32 r = read_only(vp);

33

34 if(r != OK) {

35 unlock_vmnt(vmp);

36 return r;

37 }

38

39 /* Clear setgid bit if file is not in caller’s grp. */

40 if (fp->fp_effuid != SU_UID && vp->v_gid != fp->fp_effgid)

41 m_in.mode &= ~I_SET_GID_BIT;

42

43 /* Fill in request message fields.*/

44 req.uid = fp->fp_effuid;

45 req.gid = fp->fp_effgid;

46 req.rmode = m_in.mode;

47

48 /* Issue request */

49 r = req_chmod(&req, &ch_mode);

50

51 /* Update and unlock the corresponding vnode, if any. */

52 if (vp != NIL_VNODE) {

53 if (r == OK) vp->v_mode = ch_mode;

54 put_vnode(vp);

55 }

56

57 /* Unlock the file system if necessary */

58 unlock_vmnt(vmp);

59

60 return r;

61 }

The threaded design does not differ much from the original synchronous
version. The lookup procedure obtains a exclusive lock on the vmnt and tries
to find the inode belonging to the pathname. It performs some sanity checks
and subsequently issues the chmod request to the FS, followed by an unlock of
the vmnt lock that was obtained by the lookup procedure. Except for the code

50

related to locking the data structures, the procedure is exactly the same as the
original version.

Now let us look at the equivalent using continuations.

Listing B.2: chmod system call using continuations design

1 PUBLIC int do_chmod() {

2 int r;

3 struct fproc *rfp;

4 struct vmnt *vmntp;

5

6 rfp = get_proc(); /* Get fproc entry to original proc */

7 vmntp = get_vmnt(); /* Get pointer to vmnt entry of FS */

8 rfp->REQ_STATE.call_nr = call_nr; /* System call nr */

9

10 if(rfp->REQ_STATE.call_state == NULL_STATE)

11 rfp->REQ_STATE.call_state = CHMOD_START;

12

13 switch(rfp->REQ_STATE.call_state) {

14 case CHMOD_START: r = dummy(CHMOD_INIT, ROOT_FS_E); break;

15 case CHMOD_INIT: r = do_chmod_init(); break;

16 case CHMOD_LOOKUP: r = do_chmod_lookup(); break;

17 case CHMOD_MODE: r = do_chmod_mode(); break;

18 }

19

20 if(r != SUSPEND) { /* An error occured or we have a result */

21 vmntp->m_state = MS_IDLE; /* Reset vmnt and */

22 rfp->REQ_STATE.call_state = NULL_STATE; /* request state */

23 dequeue_req(vmntp, rfp); /* Remove request from queue */

24 revive(rfp->fp_endpoint, r); /* Unsuspend proc */

25 }

26

27 /* Execute next request on queue */

28 while(WORK_LEFT(vmntp)) restart_req(vmntp, TRUE);

29

30 return r;

31 }

32

33 PUBLIC int dummy(int call_state, int fs_e) {

34 struct fproc *rfp;

35 struct vmnt *vmntp;

36

37 rfp = get_proc(); /* Get fproc entry to original proc */

38 vmntp = find_vmnt(fs_e); /* Get pointer to vmnt entry of FS */

39

40 rfp->REQ_STATE.call_state = call_state; /* Where to continue */

41 vmntp->dummy_requests++; /* Increase dummy request counter */

42 rfp->fp_message = m_in; /* Store message for later usage */

43 enqueue_req(fs_e, rfp); /* Put dummy request on the queue */

44

45 suspend(XFS); /* Suspend process on FS communication */

46 return SUSPEND;

47 }

48

49 PUBLIC int do_chmod_init() {

51

50 struct fproc *rfp;

51 int r;

52

53 rfp = get_proc(); /* Get fproc entry to original proc */

54

55 /* Fetch path name from user space (or message) and store it in request

56 * state for this process */

57 if (fetch_name(rfp, rfp->fp_message.name, rfp->fp_message.name_length,

58 rfp->fp_message.pathname) != OK) {

59 return(err_code);

60 }

61

62 rfp->REQ_STATE.CHMOD.rs_mode = rfp->fp_message.mode;

63 rfp->REQ_STATE.next_state = CHMOD_LOOKUP; /* State to go to */

64

65 /* Request lookup */

66 r = lookup(rfp, 0 /*flags*/, FALSE /*!use_realuid*/);

67 if (r != OK) return r;

68

69 return SUSPEND;

70 }

71

72 PUBLIC int do_chmod_lookup() {

73 struct fproc *rfp;

74 int r;

75 uid_t uid;

76 gid_t gid;

77 struct vnode *vp;

78

79 rfp = get_proc(); /* Get fproc entry to original proc */

80 vp = rfp->REQ_STATE.LOOKUP.rs_vnode; /* Resolved vnode */

81 uid = rfp->fp_effuid;

82 gid = rfp->fp_effgid;

83

84 /* Only the owner or the super_user may change the mode of a file. No

85 * one may change the mode of a file on a read-only file system. */

86 if (vp->v_uid != uid && uid != SU_UID)

87 r = EPERM;

88 else

89 r = read_only(vp);

90

91 /* If error, return inode. */

92 if (r != OK) {

93 put_vnode(vp);

94 rfp->REQ_STATE.LOOKUP.rs_vnode = NULL; /* Reset */

95 return(r);

96 }

97

98 /* Clear setgid bit if file is not in caller’s grp. */

99 if (uid != SU_UID && vp->v_gid != gid)

100 rfp->REQ_STATE.CHMOD.rs_mode &= ~I_SET_GID_BIT;

101

102 /* Issue request. Note that we don’t have to enqueue. We simply replace

103 * the head of the queue (previous lookup) with a new request. */

52

104 req_chmod(vp->v_vmnt, vp->v_inode_nr, rfp->REQ_STATE.CHMOD.rs_mode);

105 return SUSPEND;

106 }

107

108 PUBLIC int do_chmod_mode() {

109 struct fproc *rfp;

110 struct vmnt *vmntp;

111 int r;

112 struct vnode *vp;

113

114 rfp = get_proc(); /* Get fproc entry to original proc */

115 vmntp = find_vmnt(fs_e); /* Get pointer to vmnt entry of FS */

116 r = m_in.RESULT;

117

118 vp = rfp->REQ_STATE.LOOKUP.rs_vnode; /* Result of last lookup */

119 rfp->REQ_STATE.LOOKUP.rs_vnode = NULL; /* Reset */

120

121 if (r == OK) vp->v_mode = m_in.RES_MODE;

122 put_vnode(vp);

123

124 return r;

125 }

In Listing B.2 dummy puts a dummy request on the queue of the root-FS
to serialize the request. The root-FS is used as we do not know at this point,
on which FS the file is located. Then do_chmod_init retrieves the path name
argument from the originating process and issues a lookup request. When the
lookup finally results in a vnode we arrive at do_chmod_lookup which checks
permission to change the file mode. Then it issues a chmod request to the FS
holding the file. When the FS sends the reply we finalize in do_chmod_mode

by registering the new mode in the vnode, putting the vnode retrieved by the
lookup process, and telling the originating process everything went well.

B.2 lookup

The lookup procedure in VFS is very complicated. The procedure is fed a
pathname and some other details and it has to find the FS and inode number
that hold the designated file. The lookup can start from any FS, move to other
FSes, and visit an FS multiple times.

Listing B.3: lookup using threads

1 PUBLIC int lookup(lookup_req, vmpp, node, pathrem)

2 lookup_req_t *lookup_req;

3 struct vmnt **vmpp;

4 node_details_t *node;

5 char **pathrem;

6 {

7 struct vmnt *vmp, *old_vmp;

8 struct vnode *start_node;

9 struct lookup_res res;

10 int r = 0;

11 int symloop = 0;

53

12 int path_processed = 0;

13

14 /*Make a copy of the request so that the original values will be kept*/

15 struct lookup_req req = *lookup_req;

16 char *fullpath = lookup_req->path;

17

18 /* Clear pathrem */

19 if (pathrem != NULL) *pathrem = NULL;

20

21 /* Better safe than sorry */

22 node->inode_nr = 0;

23 *vmpp = NIL_VMNT;

24

25 /* Empty (start) path? */

26 if (fullpath[0] == ’\0’) {

27 if (pathrem != NULL) *pathrem = fullpath;

28 return ENOENT;

29 }

30

31 /* Set user and group ids according to the system call */

32 req.uid = (call_nr == ACCESS ? fp->fp_realuid : fp->fp_effuid);

33 req.gid = (call_nr == ACCESS ? fp->fp_realgid : fp->fp_effgid);

34

35 /* Set the starting directories inode number and FS endpoint, if the

36 * calling function hasn’t already filled them in. */

37 if (req.flags != ADVANCE) {

38 start_node = (fullpath[0] == ’/’ ? fp->fp_rd : fp->fp_wd);

39 req.start_dir = start_node->v_inode_nr;

40 req.fs_e = start_node->v_fs_e;

41 vmp = start_node->v_vmnt;

42 } else {

43 start_node = NULL;

44 req.flags = EAT_PATH_OPAQUE;

45 vmp = find_vmnt(req.fs_e);

46 }

47

48 /* Is the process’ root directory on the same partition?

49 * If so, set the chroot directory too. */

50 if (req.fs_e == fp->fp_rd->v_fs_e)

51 req.root_dir = fp->fp_rd->v_inode_nr;

52 else

53 req.root_dir = 0;

54

55 req.skip_chars = path_processed;

56 req.symloop = symloop;

57

58 /* Lock the vmnt */

59 lock_vmnt(vmp);

60

61 /* Issue the request */

62 r = req_lookup(&req, &res);

63

64 /* While the response is related to mount control set the

65 * new requests respectively */

54

66 while(r == EENTERMOUNT || r == ELEAVEMOUNT || r == ESYMLINK) {

67 /* At this point, a symlink may have been copied back into the path

68 * buffer by FS, and FS may already have processed a part of it. If

69 * not, it will simply have advanced over the old contents of the

70 * buffer. In any case, the number of chars processed as returned by

71 * the FS is the new correct offset into our buffer. */

72 path_processed = res.char_processed;

73

74 /* Remember the current value of the symloop counter */

75 symloop = res.symloop;

76

77 /* Remember for which vmnt we currently hold a lock */

78 old_vmp = vmp;

79

80 if(r == ESYMLINK){ /*Symlink encountered with absolute path*/

81 start_node = fp->fp_rd;

82 vmp = start_node->v_vmnt;

83 } else if(r == EENTERMOUNT) { /* Entering a new partition */

84 start_node = NIL_VNODE;

85 /* Start node is now the mounted partition’s root node */

86 for (vmp = &vmnt[0]; vmp != &vmnt[NR_MNTS]; ++vmp) {

87 if (vmp->m_fs_e != NONE

88 && vmp->m_mounted_on->v_inode_nr == res.inode_nr

89 && vmp->m_mounted_on->v_fs_e == res.fs_e) {

90 start_node = vmp->m_root_node;

91 break;

92 }

93 }

94 if (start_node == NIL_VNODE) {

95 res.inode_nr, res.fs_e);

96 if (old_vmp != NIL_VMNT) unlock_vmnt(old_vmp);

97 return ENOENT;

98 }

99 } else { /* Climbing up mount */

100 /* Find the vmnt that represents the partition on which we

101 * "climb up". */

102 if ((vmp = find_vmnt(res.fs_e)) == NIL_VMNT) {

103 if (old_vmp != NIL_VMNT) unlock_vmnt(old_vmp);

104 return ENOENT;

105 }

106 /* Start node is the vnode on which the partition is mounted */

107 start_node = vmp->m_mounted_on;

108 }

109 /* Fill in the request fields */

110 req.start_dir = start_node->v_inode_nr;

111 req.fs_e = start_node->v_fs_e;

112

113 /* Is the process’ root directory on the same partition?*/

114 if (start_node->v_dev == fp->fp_rd->v_dev)

115 req.root_dir = fp->fp_rd->v_inode_nr;

116 else

117 req.root_dir = 0;

118

119 /* Fill in the current offset into the path name */

55

120 req.skip_chars = path_processed;

121 req.symloop = symloop;

122

123 /* Unlock the previously locked vmnt, if any */

124 if (old_vmp != NIL_VMNT) unlock_vmnt(old_vmp);

125

126 /* Acquire a lock to the next vmnt */

127 lock_vmnt(vmp);

128

129 /* Issue the request */

130 r = req_lookup(&req, &res);

131 }

132

133 if (r == ENOENT && pathrem != NULL) {

134 path_processed = res.char_processed;

135 *pathrem = &fullpath[path_processed];

136 } else if (r != OK && vmp != NIL_VMNT) {

137 unlock_vmnt(vmp);

138 vmp = NIL_VMNT;

139 }

140

141 /* Fill in response fields */

142 node->inode_nr = res.inode_nr;

143 node->fmode = res.fmode;

144 node->fsize = res.fsize;

145 node->dev = res.dev;

146 node->fs_e = res.fs_e;

147 node->uid = res.uid;

148 node->gid = res.gid;

149 *vmpp = vmp;

150

151 return r;

152 }

The lookup procedure in the threaded design had to be adapted in order to
make it work properly with concurrent threads. When a thread does a lookup
and later another one, the file system could have been altered in the mean time
(i.e., part of the path residing at another FS was changed). In practice, this
happens when the first lookup tries to find a directory and a second lookup tries
to find the inode of a file within that directory. In the original, synchronous
version this is not a problem, but it is with threads. As a solution the lookup
procedure was adapted by making the second lookup continue with the results
of the first lookup. That is, it takes the inode of the directory as starting point
instead of the working directory or root directory.

The code above can be divided in three sections;

• the first section prepares the lookup and issues the first request,

• the second section consists of a while loop that keeps trying to find the
inode until an error occurs or the inode is found, and

• the last section unlocks the vmnt in case of an error or wraps the result in
a data structure for the calling function.

56

Differences to the original version are the modification to continue a lookup
with the results of a previous lookup and the locking of a vmnt in the first
section, the (un)locking and error handling of vmnts in the second section, and
finally unlocking a vmnt in case of an error in the last section (note that a vmnt

is not unlocked if the lookup went well).
Now let us look at the same lookup using continuations. Again we have

simplified the example a little to make the code more readable. In reality there
are a few helping routines that help pick the starting vnode. For example, to
start the lookup using the results of the previous lookup (i.e., to lookup a file
within a directory).

Listing B.4: lookup using continuations

1 PUBLIC int lookup(rfp, startnode, flags, use_realuid, next_state)

2 struct fproc *rfp;

3 struct vnode *startnode;

4 int flags;

5 int use_realuid;

6 int next_state;

7 {

8 /* Resolve a pathname relative to startnode. */

9 int r;

10

11 /* Empty path? */

12 if(rfp->REQ_STATE.LOOKUP.rs_fullpath[0] == ’\0’) return ENOENT;

13

14 rfp->REQ_STATE.LOOKUP.rs_path_off = 0; /* path characters processed */

15 rfp->REQ_STATE.LOOKUP.rs_dir_ino = startnode->v_inode_nr;

16

17 /* Is the process’ root directory on the same partition?

18 * If so, set the chroot directory too. */

19 if (rfp->fp_rd->v_dev == startnode->v_dev)

20 rfp->REQ_STATE.LOOKUP.rs_root_ino = rfp->fp_rd->v_inode_nr;

21 else

22 rfp->REQ_STATE.LOOKUP.rs_root_ino = 0;

23

24 /* Set user and group ids according to the system call */

25 rfp->REQ_STATE.LOOKUP.rs_uid =

26 (use_realuid ? rfp->fp_realuid : rfp->fp_effuid);

27 rfp->REQ_STATE.LOOKUP.rs_gid =

28 (use_realuid ? rfp->fp_realgid : rfp->fp_effgid);

29 rfp->REQ_STATE.LOOKUP.rs_flags = flags;

30 rfp->REQ_STATE.LOOKUP.rs_vnode = NULL;

31

32 /* Number of symlinks seen so far */

33 rfp->REQ_STATE.LOOKUP.rs_symloop = 0;

34

35 rfp->REQ_STATE.call_state = DO_LOOKUP;

36 rfp->REQ_STATE.next_state = next_state;

37

38 /* Enqueue and optionally start request */

39 enqueue_req(startnode->v_vmnt, rfp);

40

41 return SUSPEND;

57

42 }

43

44 PUBLIC int cnt_lookup()

45 {

46 int r, i = 0;

47 struct vmnt *vmntp;

48 struct fproc *rfp;

49 lookup_res_t res;

50

51 rfp = get_proc();

52 vmntp = get_vmnt();

53 r = m_in.RESULT;

54 cpf_revoke(vmntp->m_ctx.mc_gid); /* Revoke grant */

55 vmntp->m_state = MS_IDLE;

56

57 /* Fill in response according to the return value */

58 res.fs_e = m_in.m_source;

59 switch (r) {

60 case OK:

61 res.inode_nr = m_in.RES_INODE_NR_A;

62 res.fmode = m_in.RES_MODE_A;

63 res.fsize = m_in.RES_FILE_SIZE_A;

64 res.dev = m_in.RES_DEV_A;

65 res.uid= m_in.RES_UID_A;

66 res.gid= m_in.RES_GID_A;

67 break;

68 case EENTERMOUNT:

69 res.inode_nr = m_in.RES_INODE_NR_A;

70 res.char_processed = m_in.RES_OFFSET_A;

71 res.symloop = m_in.RES_SYMLOOP_A;

72 break;

73 case ELEAVEMOUNT:

74 res.char_processed = m_in.RES_OFFSET_A;

75 res.symloop = m_in.RES_SYMLOOP_A;

76 break;

77 case ESYMLINK:

78 res.char_processed = m_in.RES_OFFSET_A;

79 res.symloop = m_in.RES_SYMLOOP_A;

80 break;

81 default:

82 break;

83 }

84

85 r = lookup_restart(vmntp, rfp, r, &res);

86 while(WORK_LEFT(vmntp)) restart_req(vmntp, TRUE);

87 return r;

88 }

89

90 PUBLIC int lookup_restart(vmntp, rfp, r, resp)

91 struct vmnt *vmntp;

92 struct fproc *rfp;

93 int r;

94 lookup_res_t *resp;

95 {

58

96 /* The lookup request replies with EENTERMOUNT, ELEAVEMOUNT, ESYMLINK,

97 * OK, or an error message (ENOTDIR, ENOENT, EACCESS, etc). In the latter

98 * two cases we’re done; the others require more lookup requests. */

99

100 struct vnode *dir_vp = 0, *vp;

101 struct vmnt *vmp;

102

103 rfp->REQ_STATE.LOOKUP.result = OK;

104 while (r == EENTERMOUNT || r == ELEAVEMOUNT || r == ESYMLINK) {

105 /* Update new path offset and symbolic link loop counter */

106 rfp->REQ_STATE.LOOKUP.rs_path_off = resp->char_processed;

107 rfp->REQ_STATE.LOOKUP.rs_symloop += resp->symloop;

108

109 if(rfp->REQ_STATE.LOOKUP.rs_symloop > SYMLOOP_MAX) {

110 r = ELOOP;

111 break;

112 }

113

114 if(r == ESYMLINK) { /* Symlink encountered with absolute path */

115 dir_vp = rfp->fp_rd;

116 } else if(r == EENTERMOUNT){ /* Entering a new partition */

117 /* Start node is now the mounted partition’s root node */

118 /* Find that ’child’ vmnt */

119 for (vmp = &vmnt[0]; vmp != &vmnt[NR_MNTS]; vmp++) {

120 if (vmp->m_mounted_on->v_inode_nr == resp->inode_nr &&

121 vmp->m_mounted_on->v_fs_e == resp->fs_e) {

122 dir_vp = vmp->m_root_node;

123 break;

124 }

125 }

126 } else { /* Climbing up mount */

127 vmp = find_vmnt(resp->fs_e); /* Find ’parent’ vmnt */

128

129 /* Start node is the vnode on which the partition is

130 * mounted */

131 dir_vp = vmp->m_mounted_on;

132 }

133

134 /* Set the starting directory inode number */

135 rfp->REQ_STATE.LOOKUP.rs_dir_ino = dir_vp->v_inode_nr;

136

137 /* Is the process’ root directory on the same partition?

138 * If so, set the chroot directory too. */

139 if (rfp->fp_rd->v_dev == dir_vp->v_dev)

140 rfp->REQ_STATE.LOOKUP.rs_root_ino = rfp->fp_rd->v_inode_nr;

141 else

142 rfp->REQ_STATE.LOOKUP.rs_root_ino = 0;

143

144 if (dir_vp->v_vmnt != vmntp) { /* Changing mount points? */

145 dequeue_req(vmntp, rfp); /* Then clean up request queue */

146 vmntp->m_state = MS_IDLE;

147 enqueue_req(dir_vp->v_vmnt,rfp); /* Queue new request */

148 } else /* Staying at current mount point */

149 restart_req(vmntp, FALSE); /* Retry request */

59

150

151 return SUSPEND;

152

153 }

154

155 /* Store lookup result so orig. call can deal with the problem if there

156 * is any. (For example, clean up data structures.) */

157

158 if(r != OK) /* Encountered problems while looking up inode? */

159 rfp->REQ_STATE.LOOKUP.result = r;

160 else {

161 /* We found the inode; store result in request state */

162 /* Check vnode already in use */

163 vp = find_vnode(resp->fs_e, resp->inode_nr);

164 if (vp != NIL_VNODE) vp->v_ref_count++;

165 else {

166 /* Find free vnode */

167 vp = get_free_vnode();

168

169 /* Fill in the free vnode’s fields */

170 vp->v_fs_e = resp->fs_e;

171 vp->v_inode_nr = resp->inode_nr;

172 vp->v_mode = resp->fmode;

173 vp->v_size = resp->fsize;

174 vp->v_uid = resp->uid;

175 vp->v_gid = resp->gid;

176 vp->v_sdev = resp->dev;

177 vp->v_vmnt = vmntp;

178 vp->v_dev = vmntp->m_dev;

179 vp->v_ref_count = 1;

180

181 rfp->REQ_STATE.LOOKUP.rs_vnode = vp;

182 }

183

184 rfp->REQ_STATE.call_state = rfp->REQ_STATE.next_state;

185 rfp->REQ_STATE.next_state = NULL_STATE;

186

187 return restart_req(vmntp, FALSE); /* Continue orig. request */

188 }

The lookup works as follows. The lookup starts by calling lookup (through
the use of helping routines) where the lookup state is prepared and the first
lookup request is issued. The function calling lookup also has to provide the
next state the request arrives at, after finishing the lookup (next state).

The reply of the FS will be picked up by the main loop of VFS which catches
all incoming messages. When a message comes from an FS, VFS knows it is a
reply to a request sent earlier. VFS then looks up the fproc entry that sent the
message and is then able to figure out what the original system call was (e.g.,
open, chmod, close, etc). Normally, the system call is the key to a function
pointer in a table and the original do foo routine is called. However, lookup is
an exception, because it cannot be the original call. Therefore VFS checks if the
reply was for a lookup and calls cnt lookup or the do foo routine accordingly.

60

cnt lookup wraps the result in a data structure and restarts the lookup pro-
cedure by calling lookup restart. lookup restart corresponds to the second
section in the threaded version (which is a while loop, hence the restart). In case
the file is not yet found, lookup restart removes the lookup request from the
queue and adds it to the new queue, if necessary (e.g., this is necessary when the
lookup has to continue on another FS, but not when we encounter a symbolic
link which resides on the same FS). The lookup request is then restarted. If the
FS did find the file or an error occurred, the result is wrapped in a data struc-
ture and the function belonging to next state is called (using a huge switch
statement in restart req).

B.3 read

As final example we will show the implementations of the read system call.
This system call provides a file descriptor, a buffer where the data should end
up, and the number of bytes to read.

Listing B.5: read using threads

1 PUBLIC int do_read()

2 {

3 return(read_write(READING));

4 }

5

6 PUBLIC int read_write(rw_flag)

7 int rw_flag; /* READING or WRITING */

8 {

9 /*Do read(fd, buffer, nbytes) or write(fd, buffer, nbytes) call*/

10 register struct filp *f;

11 register struct vnode *vp;

12 struct vmnt *vmp;

13 off_t bytes_left;

14 u64_t position;

15 unsigned int off, cum_io;

16 int op, oflags, r, chunk, who_e, block_spec, char_spec;

17 int regular, partial_pipe = 0, partial_cnt = 0;

18 mode_t mode_word;

19 struct filp *wf;

20 phys_bytes p;

21 struct dmap *dp;

22

23 /* Request and response structures */

24 struct readwrite_req req;

25 struct readwrite_res res;

26

27 /* For block spec files */

28 struct breadwrite_req breq;

29

30 if(m_in.nbytes < 0) return(EINVAL);

31

32 /* Get the filp, and lock the vmnt */

33 f = get_filp(m_in.fd);

34 if(f == NIL_FILP) return(err_code);

61

35

36 if(((f->filp_mode)&(rw_flag == READING ? R_BIT : W_BIT)) == 0){

37 r = f->filp_mode == FILP_CLOSED ? EIO : EBADF;

38 return(r);

39 }

40

41 if (m_in.nbytes == 0)

42 return(0); /* so char special files need not check for 0 */

43

44

45 position = f->filp_pos;

46 oflags = f->filp_flags;

47 vp = f->filp_vno;

48 vmp = vp->v_vmnt;

49 r = OK;

50

51 lock_vmnt(vmp);

52

53 if (vp->v_pipe == I_PIPE) {

54 /* fp->fp_cum_io_partial is only nonzero when doing partial writes */

55 cum_io = fp->fp_cum_io_partial;

56 } else

57 cum_io = 0;

58

59 op = (rw_flag == READING ? VFS_DEV_READ : VFS_DEV_WRITE);

60 mode_word = vp->v_mode & I_TYPE;

61 regular = mode_word == I_REGULAR || mode_word == I_NAMED_PIPE;

62 char_spec = (mode_word == I_CHAR_SPECIAL ? 1 : 0);

63 block_spec = (mode_word == I_BLOCK_SPECIAL ? 1 : 0);

64

65 if(char_spec) { /* Character special files. */

66 dev_t dev;

67 dev = (dev_t) vp->v_sdev;

68 r = dev_io(op, dev, who_e, m_in.buffer, position,m_in.nbytes,

69 oflags);

70 if (r >= 0) {

71 cum_io = r;

72 position = add64ul(position, r);

73 r = OK;

74 }

75 } else if(block_spec) { /* Block special files. */

76

77 /* Fill in the fields of the request */

78 breq.rw_flag = rw_flag;

79 breq.fs_e = vp->v_bfs_e;

80 breq.blocksize = vp->v_blocksize;

81 breq.dev = vp->v_sdev;

82 breq.user_e = who_e;

83 breq.pos = position;

84 breq.num_of_bytes = m_in.nbytes;

85 breq.user_addr = m_in.buffer;

86

87 /* Issue request */

88 r = req_breadwrite(&breq, &res);

62

89

90 position = res.new_pos;

91 cum_io += res.cum_io;

92

93 } else { /* Regular files (and pipes) */

94 if(rw_flag == WRITING && block_spec == 0) {

95 /* Check for O_APPEND flag. */

96 if(oflags & O_APPEND) position = cvul64(vp->v_size);

97

98 /* Check in advance to see if file will grow too big.*/

99 if(cmp64ul(position,vp->v_vmnt->m_max_file_size - m_in.nbytes)> 0){

100 unlock_vmnt(vmp);

101 return(EFBIG);

102 }

103 }

104

105 /* Pipes are a little different. Check. */

106 if (vp->v_pipe == I_PIPE) {

107 r = pipe_check(vp, rw_flag, oflags, m_in.nbytes, position,

108 &partial_cnt, 0);

109 if (r <= 0) {

110 unlock_vmnt(vmp);

111 return(r);

112 }

113 }

114

115 if (partial_cnt > 0) {

116 /* So that we don’t have to deal with partial count in the FS

117 * process. */

118 m_in.nbytes = MIN(m_in.nbytes, partial_cnt);

119 partial_pipe = 1;

120 }

121

122 /* Fill in request structure */

123 req.fs_e = vp->v_fs_e;

124 req.rw_flag = rw_flag;

125 req.inode_nr = vp->v_inode_nr;

126 req.user_e = who_e;

127 req.seg = D;

128 req.pos = position;

129 req.num_of_bytes = m_in.nbytes;

130 req.user_addr = m_in.buffer;

131 req.inode_index = vp->v_index;

132

133 /* Truncate read request at size (not for special files). */

134 if((rw_flag == READING) &&

135 cmp64ul(add64ul(position, req.num_of_bytes), vp->v_size) > 0){

136 /* Position always should fit in an off_t (LONG_MAX). */

137 req.num_of_bytes = vp->v_size - cv64ul(position);

138 }

139

140 /* Issue request */

141 r = req_readwrite(&req, &res);

142

63

143 if (r >= 0) {

144 if (ex64hi(res.new_pos))

145 panic(__FILE__, "read_write: bad new pos", NO_NUM);

146

147 position = res.new_pos;

148 cum_io += res.cum_io;

149 }

150 }

151

152 /* On write, update file size and access time. */

153 if (rw_flag == WRITING) {

154 if (regular || mode_word == I_DIRECTORY) {

155 if (cmp64ul(position, vp->v_size) > 0) {

156 if (ex64hi(position) != 0)

157 panic(__FILE__,"read_write: file size too big",NO_NUM);

158 vp->v_size = ex64lo(position);

159 }

160 }

161 } else {

162 if (vp->v_pipe == I_PIPE) {

163 if (cmp64ul(position, vp->v_size) >= 0) {

164 /* Reset pipe pointers */

165 vp->v_size = 0;

166 position = cvu64(0);

167 wf = find_filp(vp, W_BIT);

168 if (wf != NIL_FILP) wf->filp_pos = cvu64(0);

169 }

170 }

171 }

172

173 f->filp_pos = position;

174 unlock_vmnt(vmp);

175

176 if (r == OK) {

177 if(partial_pipe) {

178 partial_pipe = 0;

179 /* partial write on pipe with */

180 /* O_NONBLOCK, return write count */

181 if(!(oflags & O_NONBLOCK)) {

182 fp->fp_cum_io_partial = cum_io;

183 suspend(XPIPE); /* partial write on pipe with */

184 return(SUSPEND); /* nbyte > PIPE_SIZE - non-atomic */

185 }

186 }

187 fp->fp_cum_io_partial = 0;

188 return cum_io;

189 }

190

191 return r;

192 }

The threaded implementation starts by obtaining a lock on the vmnt object
pointed to by the file descriptor (file descriptor → filp → vnode → vmnt).
Then specific steps are taken for the different types of files (character special,

64

block special, and normal files). The rest of the code does not differ much from
the original version, except that in case of an error or the read request executed
successfully, the vmnt object is to be explicitly unlocked. This resembles how
vnodes are supposed to be put after another function created it or increased its
usage counter and the vnode is no longer used.

Using continuations the implementation would look as follows.

Listing B.6: read using continuations

1 PUBLIC int do_read()

2 {

3 /* Perform the read(fd, buffer, nbytes) system call. */

4 return(do_rw(READING));

5 }

6

7 PUBLIC int do_rw(rw_flag)

8 int rw_flag;

9 {

10 int r, fs_e;

11 struct fproc *rfp;

12 struct filp *f;

13

14 rfp = get_proc();

15 rfp->REQ_STATE.call_nr = call_nr;

16

17 if(rfp->REQ_STATE.call_state == NULL_STATE) {

18 if((f = get_filp(m_in.fd)) == NIL_FILP)

19 return(err_code);

20 else

21 fs_e = f->filp_vno->v_fs_e;

22 rfp->REQ_STATE.call_state = RW_START;

23 }

24

25 switch(rfp->REQ_STATE.call_state) {

26 case RW_START: r = dummy(RW_INIT, fs_e); break;

27 case RW_INIT: r = read_write(rw_flag); break; /* Initialize */

28 case RW_BLOCK: r = fnlz_block_rw(); break; /* Finalize block rw */

29 case RW_NORMAL: r = fnlz_normal_rw(); break; /* Finalize normal rw */

30 case RW_PIPE: r = fnlz_pipe_rw(); break; /* Finalize pipe rw */

31 default:

32 panic(__FILE__, "Unknown state for do_rw", NO_NUM);

33 }

34

35 if(r != SUSPEND) { /* An error occured or we have a result */

36 vmntp->m_state = MS_IDLE; /* Reset vmnt and */

37 rfp->REQ_STATE.call_state = NULL_STATE; /* request state */

38 dequeue_req(vmntp, rfp); /* Remove request from queue */

39 revive(rfp->fp_endpoint, r); /* Unsuspend proc */

40 }

41

42 return r;

43 }

44

45 PUBLIC int read_write(rw_flag)

46 int rw_flag; /* READING or WRITING */

65

47 {

48 /*Do read(fd, buffer, nbytes) or write(fd, buffer, nbytes) call*/

49 struct filp *f;

50 struct vnode *vp;

51 struct vmnt *vmntp;

52 struct dmap *dp;

53 u64_t position;

54 unsigned int cum_io, cum_io_incr;

55 int op, oflags, r, chunk, block_spec, char_spec, regular;

56 mode_t mode_word;

57 phys_bytes p;

58

59 if (m_in.nbytes < 0) return(EINVAL);

60

61 if ((f = get_filp(m_in.fd)) == NIL_FILP) return(err_code);

62

63 if(((f->filp_mode)&(rw_flag == READING ? R_BIT : W_BIT)) == 0)

64 return(f->filp_mode == FILP_CLOSED ? EIO : EBADF);

65

66 if (m_in.nbytes == 0)

67 return(0); /* so char special files need not check for 0 */

68

69 position = f->filp_pos;

70 oflags = f->filp_flags;

71 vp = f->filp_vno;

72

73 if (vp->v_pipe) {

74 if (fp->fp_cum_io_partial != 0)

75 panic(__FILE__,"read_write: fp_cum_io_partial not cleared",NO_NUM);

76

77 r = rw_pipe(rw_flag, who_e, m_in.fd, f, m_in.buffer, m_in.nbytes);

78 return r;

79 }

80

81 r = OK;

82 cum_io = 0;

83 op = (rw_flag == READING ? VFS_DEV_READ : VFS_DEV_WRITE);

84 mode_word = vp->v_mode & I_TYPE;

85 regular = mode_word == I_REGULAR;

86 char_spec = (mode_word == I_CHAR_SPECIAL ? 1 : 0);

87 block_spec = (mode_word == I_BLOCK_SPECIAL ? 1 : 0);

88

89 if (char_spec) { /* Character special files. */

90 dev_t dev;

91 int suspend_reopen;

92 suspend_reopen = (f->filp_state != FS_NORMAL);

93

94 dev = (dev_t) vp->v_sdev;

95 r = dev_io(op, dev, who_e, m_in.buffer, position,

96 m_in.nbytes, oflags, suspend_reopen);

97 if (r >= 0) {

98 cum_io = r;

99 position = add64ul(position, r);

100 r = OK;

66

101 }

102

103 /* On write, update file size and access time. */

104 if (rw_flag == WRITING) {

105 if (regular || mode_word == I_DIRECTORY) {

106 if (cmp64ul(position, vp->v_size) > 0) {

107 if (ex64hi(position) != 0) {

108 panic(__FILE__,"read_write: size too big", NO_NUM);

109 }

110 vp->v_size = ex64lo(position);

111 }

112 }

113 }

114

115 f->filp_pos = position;

116 if (r == OK) return cum_io;

117 } else if (block_spec) { /* Block special files. */

118 fp->REQ_STATE.call_state = RW_BLOCK;

119

120 /* Store parameters in process structure. */

121 fp->REQ_STATE.BLOCK_RW.rs_filp = f;

122 fp->REQ_STATE.BLOCK_RW.rs_dev = vp->v_sdev;

123 fp->REQ_STATE.BLOCK_RW.rs_pos = position;

124 fp->REQ_STATE.BLOCK_RW.rs_count = m_in.nbytes;

125 fp->REQ_STATE.BLOCK_RW.rs_buffer = m_in.buffer;

126 fp->REQ_STATE.BLOCK_RW.rs_rw_flag = rw_flag;

127

128 /* Enqueue and optionally start request */

129 vmntp = find_vmnt(vp->v_bfs_e);

130 enqueue_req(vmntp, fp);

131

132 return SUSPEND;

133

134 } else { /* Regular files */

135 if (rw_flag == WRITING) {

136 /* Check for O_APPEND flag. */

137 if (oflags & O_APPEND) position = cvul64(vp->v_size);

138 }

139

140 fp->REQ_STATE.call_state = RW_NORMAL;

141

142 /* Store parameters in process structure. */

143 fp->REQ_STATE.NORMAL_RW.rs_filp = f;

144 fp->REQ_STATE.NORMAL_RW.rs_position = position;

145 fp->REQ_STATE.NORMAL_RW.rs_rw_flag = rw_flag;

146 fp->REQ_STATE.NORMAL_RW.rs_buffer = (vir_bytes)m_in.buffer;

147 fp->REQ_STATE.NORMAL_RW.rs_count = m_in.nbytes;

148

149 /* Enqueue and optionally start request */

150 enqueue_req(vp->v_vmnt, fp);

151 return SUSPEND;

152

153 }

154

67

155 return r;

156 }

157

158 PUBLIC int rw_pipe(rw_flag, usr, fd_nr, f, buf, req_size)

159 int rw_flag; /* READING or WRITING */

160 endpoint_t usr;

161 int fd_nr;

162 struct filp *f;

163 char *buf;

164 size_t req_size;

165 {

166 int r, oflags, partial_pipe;

167 size_t size;

168 struct vnode *vp;

169 u64_t position;

170

171 oflags = f->filp_flags;

172 vp = f->filp_vno;

173 position = cvu64((rw_flag == READING) ?

174 vp->v_pipe_rd_pos : vp->v_pipe_wr_pos);

175

176 r = pipe_check(vp, rw_flag, oflags, req_size, position, 0);

177 if (r <= 0) {

178 if (r == SUSPEND)

179 pipe_suspend(fp, rw_flag, fd_nr, buf, req_size);

180 else

181 fp->REQ_STATE.call_state = NULL_STATE;

182 return(r);

183 }

184

185 size = r;

186 partial_pipe = (size < req_size) ? 1 : 0 ;

187

188 /* Truncate read request at size. */

189 if((rw_flag==READING) && cmp64ul(add64ul(position,size),vp->v_size)>0){

190 /* Position always should fit in an off_t (LONG_MAX). */

191 size = vp->v_size - cv64ul(position);

192 }

193

194 fp->REQ_STATE.call_state = RW_PIPE;

195

196 /* Store parameters in process structure. */

197 fp->REQ_STATE.PIPE_RW.rs_filp = f;

198 fp->REQ_STATE.PIPE_RW.rs_position = position;

199 fp->REQ_STATE.PIPE_RW.rs_rw_flag = rw_flag;

200 fp->REQ_STATE.PIPE_RW.rs_buffer = (vir_bytes) buf;

201 fp->REQ_STATE.PIPE_RW.rs_count = size;

202 fp->REQ_STATE.PIPE_RW.rs_partial_pipe = partial_pipe;

203 fp->REQ_STATE.PIPE_RW.rs_fd_nr = fd_nr;

204 fp->REQ_STATE.PIPE_RW.rs_req_size = req_size;

205

206 /* Enqueue and optionally start request */

207 enqueue_req(vp->v_vmnt, fp);

208

68

209 return SUSPEND;

210 }

211

212 PUBLIC int fnlz_block_rw(void) {

213 int r;

214 off_t position;

215 struct fproc *rfp;

216 struct filp *f;

217 struct vnode *vnop;

218 struct vmnt *vmntp;

219

220 vmntp = get_vmnt(); /* Look up vmnt */

221 rfp = get_proc(); /* Get fproc entry to original proc */

222 cpf_revoke(vmntp->m_ctx.mc_gid); /* Revoke grant */

223 r = m_in.RESULT;

224

225 if(r >= 0) {

226 f = rfp->REQ_STATE.BLOCK_RW.rs_filp;

227 f->filp_pos = make64(m_in.RES_FD_POS_LO_A, m_in.RES_FD_POS_HI_A);

228 r = m_in.RES_FD_CUM_IO_A;

229 }

230

231 return r;

232 }

233

234 PUBLIC int fnlz_normal_rw(void)

235 {

236 int r;

237 off_t position;

238 struct fproc *rfp;

239 struct filp *f;

240 struct vnode *vnop;

241 struct vmnt *vmntp;

242

243 vmntp = get_vmnt(); /* Look up vmnt */

244 rfp = get_proc(); /* Get fproc entry to original proc */

245 cpf_revoke(vmntp->m_ctx.mc_gid); /* Revoke grant */

246 r = m_in.RESULT;

247

248 if(r >= 0) {

249 f = rfp->REQ_STATE.NORMAL_RW.rs_filp;

250 vnop = f->filp_vno;

251 position = m_in.RES_FD_POS_LO_A;

252

253 /* On write, update file size. */

254 if (rfp->REQ_STATE.NORMAL_RW.rs_rw_flag == WRITING &&

255 position > vnop->v_size){

256 vnop->v_size = position;

257 }

258 f->filp_pos = cvul64(position);

259 r = m_in.RES_FD_CUM_IO_A;

260 }

261

262 return r;

69

263 }

264

265 PUBLIC int fnlz_pipe_rw(void)

266 {

267 int r;

268 off_t position;

269 size_t cum_io, cum_io_incr, req_size;

270 struct fproc *rfp;

271 struct vmnt *vmntp;

272

273 int rw_flag; /* READING or WRITING */

274 int fd_nr, partial_pipe, oflags;

275 vir_bytes buf;

276 struct filp *f;

277 struct vnode *vp;

278

279 vmntp = get_vmnt(); /* Look up vmnt */

280 cpf_revoke(vmntp->m_ctx.mc_gid); /* Revoke grant */

281 rfp = get_proc(); /* Get fproc entry to original proc */

282

283 r = m_in.RESULT;

284 position = m_in.RES_FD_POS_LO_A;

285 cum_io_incr = m_in.RES_FD_CUM_IO_A;

286

287 /* Return on error*/

288 if (r < 0) return r;

289

290 /* rfp->fp_cum_io_partial is only nonzero when doing partial writes */

291 cum_io = rfp->fp_cum_io_partial;

292 buf = rfp->REQ_STATE.PIPE_RW.rs_buffer;

293 rw_flag = rfp->REQ_STATE.PIPE_RW.rs_rw_flag;

294 f = rfp->REQ_STATE.PIPE_RW.rs_filp;

295 partial_pipe = rfp->REQ_STATE.PIPE_RW.rs_partial_pipe;

296 fd_nr = rfp->REQ_STATE.PIPE_RW.rs_fd_nr;

297 req_size = rfp->REQ_STATE.PIPE_RW.rs_req_size;

298

299 oflags = f->filp_flags;

300 vp = f->filp_vno;

301

302 cum_io += cum_io_incr; /* Update cumulative io */

303 buf += cum_io_incr; /* Update buffer pointer */

304 req_size -= cum_io_incr; /* Calculate remaining bytes */

305

306 /* On write, update file size and access time. */

307 if(rw_flag == WRITING) {

308 if (position > vp->v_size) vp->v_size = position;

309 } else if (position >= vp->v_size) {

310 /* Reset pipe pointers */

311 vp->v_size = 0;

312 vp->v_pipe_rd_pos = 0;

313 vp->v_pipe_wr_pos = 0;

314 position = 0;

315 }

316

70

317 if(rw_flag == READING)

318 vp->v_pipe_rd_pos = position;

319 else

320 vp->v_pipe_wr_pos = position;

321

322 if (partial_pipe) {

323 /* partial write on pipe with O_NONBLOCK, return write count */

324 if (!(oflags & O_NONBLOCK)) {

325 /* partial write on pipe with req_size > PIPE_SIZE, non-atomic */

326 rfp->fp_cum_io_partial = cum_io;

327 pipe_suspend(rfp, rw_flag, fd_nr, (char *)buf, req_size);

328 return SUSPEND;

329 }

330 }

331

332 rfp->fp_cum_io_partial = 0;

333 return cum_io;

334 }

As the system call requires a file descriptor, we can put the dummy request
on the queue for the FS that actually holds the inode. Upon return the read
operation is prepared by read write, which makes sure the arguments make
sense and figures out what type of file we try to read from. Subsequently it
prepares the request state needed for the request that is to be sent. When
an FS replies with the result, the wrapper calls the function that finalizes the
request (i.e., to finish the block read, pipe read, or normal read).

What can be seen from this example is that not only the amount of code has
almost doubled compared to the threaded version, it has also become unclear.
The structure is gone. This makes the code hard to understand for future
developers, hard to modify, and consequently bug prone.

71

	Introduction
	The MINIX 3 OS
	The Virtual File System Layer
	Dynamic Updates and Failure Resilience
	Decoupling VFS and MFS
	Outline of the Thesis

	Related Work
	Dynamic Updates
	Classification
	Languages and runtime systems
	Dynamic updating mechanisms in operating systems
	Binary patchers
	Programs with built-in dynamic update mechanisms

	Failure Resilience

	Dynamic Updates and Failure Resilience
	General observations
	Dynamic Updates
	Resilience to FS crashes
	Shared memory regions
	Transactions
	Data structures temporarily in use

	Request queueing
	Asynchrony

	Decoupling VFS and MFS
	General Request Handling
	Processing Requests to VFS
	Serializing requests to MFS

	Locking model
	Threads vs. Continuations
	Threaded design
	Design based on Continuations

	Comparison

	Summary and Conclusion
	Request listing
	VFS-MFS requests
	PM-VFS requests

	Design comparison
	chmod
	lookup
	read

